Recent NUSTAR Experiments with Relativistic Uranium Beams

Hans Geissel

GSI and Justus Liebig University Giessen

- * Discovery of new n-rich Isotopes Phys. Lett. B 717, 371 (2012)
- * New Accurate Mass Measurements Nucl. Phys. A 882, 71, 2012
- New Experimental Developments towards the Super-FRS

Secondary Nuclear Beam Facility

FRS: In-flight Separator & High-Resolution Spectrometer

In-Flight Identification of Exotic Nuclei

 $TPC \rightarrow B\rho + \Delta E$ $TOF \rightarrow v$ $MUSIC \rightarrow \Delta E$

Isomer Tagging Technique – ¹⁷⁵Lu Verification of Particle Identification

Cross-Section Measurement

$$\sigma_{\rm f} = \frac{N_{\rm f}}{N_{\rm P} \cdot N_{\rm T} \cdot f_{\rm corr}}$$

N_f : number of fragments reaching the final focaal plane

 N_{P} : total number of primary beam particles

 N_T : number of atoms in the target (cm⁻²)

f_{corr} accounts for:

- limited transmission of the FRS,
- losses due to secondary reactions in the matter,
- dead-time of the detectors and data acquisition.

Reaction Mechanism

ABRABLA:

• J.-J. Gaimard, K.-H. Schmidt Nucl. Phys. A 531 (1991) 709.

• A. Kelic et al., Proceedings of the Joint ICTP- IAEA, IAEA INDC(NDS)-530 (2008).

New Neutron-Rich Isotopes

F. Farinon, J. Kucewicz

Discovery of 60 New Isotopes

Physics Letters B 717 (2012) 371-375

Discovery and cross-section measurement of neutron-rich isotopes in the element range from neodymium to platinum with the FRS

J. Kurcewicz^{a,*}, F. Farinon^{a,b,1}, H. Geissel^{a,b}, S. Pietri^a, C. Nociforo^a, A. Prochazka^{a,b}, H. Weick^a, J.S. Winfield^a, A. Estradé^{a,c}, P.R.P. Allegro^d, A. Bail^e, G. Bélier^e, J. Benlliure^f, G. Benzoni^g, M. Bunce^h, M. Bowry^h, R. Caballero-Folchⁱ, I. Dillmann^{a,b}, A. Evdokimov^{a,b}, J. Gerl^a, A. Gottardo^j, E. Gregor^a, R. Janik^k, A. Kelić-Heil^a, R. Knöbel^a, T. Kubo¹, Yu.A. Litvinov^{a,m}, E. Merchan^{a,n}, I. Mukha^a, F. Naqvi^{a,o}, M. Pfützner^{a,p}, M. Pomorski^p, Zs. Podolyák^h, P.H. Regan^h, B. Riese^{a,b}, M.V. Ricciardi^a, C. Scheidenberger^{a,b}, B. Sitar^k, P. Spiller^a, J. Stadlmann^a, P. Strmen^k, B. Sun^{b,q}, I. Szarka^k, J. Taïeb^e, S. Terashima^{a,1}, J.J. Valiente-Dobón^j, M. Winkler^a, Ph. Woods^r

J. Kurcewicz, F. Farinon

FRS-ESR Experiments

Precision Experiments with the combination of the FRS and the ESR

Monoisotopic Fragment Beams Stored in the ESR

$$\sum_{i} \frac{(M_{i}^{b} - M_{i,syst}^{b})^{2}}{(\delta M_{i,syst}^{b})^{2} + (\sigma_{i}^{stat})^{2} + (\sigma^{syst})^{2}} = N_{n}$$

Systematic Error σ^{syst} ≈10 keV

Comparison with AME03

AME03: G. Audi, A. H. Wapstra, C. Thibault, Nucl. Phys. A 729 (2003) 337

Comparison with ISOLTRAP Z. Patyk, R. Knöbel

ISOLTRAP – data:

F. Herfurth et al., Eur. Phys. J. A 25 (2005) 17-21.D. Neidherr et al., Phys. Rev. Lett. 102 (2009) 112501.C. Weber et al., Nucl. Phys. A 803 (2008) 1.

$$\frac{\text{With }^{229}\text{Fr:}}{\Delta ME} = 14 \text{keV}$$

$$\sigma_{rms} = 48 \text{keV}$$

$$\frac{\text{Without }^{229}\text{Fr:}}{\Delta ME} = -0.22 \text{keV}$$

$$\sigma_{rms} = 19 \text{keV}$$

L. Chen et al., Nucl. Phys. A 882 (2012) 71.

Comparison with Mass Models

L. Chen et al., Nucl. Phys. A 882 (2012) 71

FRDM: P. Möller et al., At. Data Nucl. Data Tables 59 (1995) 185. HFB – 14: <u>http://www-astro.ulb.ac.be/Nucdata/Masses/hfb14-plain</u>,

S. Goriely, M. Samyn, and J.M. Pearson, Phys. Rev. C 75 (2007) 064312 and references therein. HFB – 17: S. Goriely, N. Chamel, and J.M. Pearson, Eur. Phys. J. A 42 (2009) 547-552. Duflo & Zuker: J. Duflo, A.P. Zuker, Phys. Rev. C 52 (1995) R23. Experimental data not marked in red: G. Audi, A. H. Wapstra, C. Thibault, Nucl. Phys. A 729 (2003) 337.

Lifetime Measurements of Short-lived Nuclei Applying Stochastic and Electronic Cooling

T. Otsubo, Phys. Rev. Lett. 100, 164801 (2008) D. Boutin PhD

Measured Nuclear Electron-Capture of H-like & He-like ¹⁴⁰Pr and ¹⁴²Pm lons

Half-life of H-like and Neutral ²¹³Fr

	neutral ²¹³ Fr		
	Decay events	$T_{1/2} ~\pm~ \sigma_T ~(s)$	χ^2_r
FRS (GSI)	36885	34.03 ± 0.27	1.18
LNS (ITALY)	~ 620000	34.160 ± 0.058	0.98

	H-like ²¹³ Fr		
	Decay events	$T_{1/2} \pm \sigma_T (s)$	χ^2_r
ESR (GSI)	~ 500	34.4 ± 1.6	1.7
many-particle method			
ESR (GSI)	36	34 ± 6	3.5
single-particle method			

The results of the pilot experiment at the ESR are a strong evidence against the predictions of the theoretical paper from Erma ($\Delta\lambda$ / λ ~ 34 %). (A. Erma, Phys. Rev. **105**, 1957).

FRS Ion Catcher

MR-TOF-MS Performance: Mass Resolving Power

W.R. Plass

GSI SCIENTIFIC REPORT 2010 PHN-NUSTAR-FRS-08

First 1 GeV/u ²³⁸U Run with Cryogenic Stopping Cell & MR-TOF-MS with FRS October 2011

First Results:

Short-lived projectile fragments (²²³Th,²²¹Ac) from 1 GeV/u 238U have been accepted and transmitted with high efficiency.

The combination of the two devices open a novel field for studies with exotic nuclei.

CSC and MR-ToF-MS online at the final focal plane at the FRS

Summary

- Mass-, Lifetime Measurements of stored exotic nuclei have contributed significantly to the basic knowledge of matter.
- The discovery of 60 new neutron-rich isotopes have opened up a new field for nuclear structure physics and astrophysics.
- The Ion Catcher consisting of a cryogenic gas stopping cell and the MR-Tof open a new field for spectroscopy with low-energy cooled reaction products at in-flight separators like FRS, Super-FRS. SHIP and LEB.

Acknowledgements

IONAS Group at JLU Gießen

S. Ayet, U. Czok, T. Dickel, M. Diwisch, J. Ebert, H. Geissel, F. Greiner, E. Haettner, C. Horbach, C. Jesch, N. Kuzminchuk, R. Knöbel, J. Lang, M. Petrick, W.R. Plaß, M.P. Reiter, A.-K. Rink, C. Scheidenberger, B. Sun, W. Lippert, M. Yavor

FRS Ion Catcher / S411 Collaboration

P. Dendooven, T. Dickel, J. Ebert, A. Estrade, F. Farinon,
H. Geissel, E. Haettner, C. Jesch, N. Kalantar-Nayestanaki,
R. Knöbel, J. Kurcewicz, J. Lang, I.D. Moore, C. Nociforo,
H. Penttilä, S. Pietri, W.R. Plaß, A. Prochazka, S. Purushothaman,
M. Ranjan, M.P. Reiter, S. Rinta-Antila, C. Scheidenberger,
M. Takechi, H. Weick, J.S. Winfield

