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Outline of the presentation
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® |Introduction

» neutrinos in the context of Binary Neutron Star
(BNS) mergers

® Presentation of the simulation
& heutrino treatment

® First results
® Conclusion and outlook
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BNS merger in anutshell
=

Final stage of a BNS system evolution:
# double BNS systems do exist (e.g. PSR1913+16)

-

me (s)

(Welsberg et al 2010)
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BNS merger in anutshell
=

Final stage of a BNS system evolution:
# double BNS systems do exist (e.g. PSR1913+16)
# inspiral phase, driven by GW emission
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(see, e.g., Lorimer 2005)
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BNS merger in anutshell
=

Final stage of a BNS system evolution:

# double BNS systems do exist (e.g. PSR1913+16)
# inspiral phase, driven by GW emission

#® coalescence phase

-

log |B| [G]

B field from a SPH
simulations of BNS
merger with 2 NS of
1.4Mg
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Price & Rosswog 2006
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BNS merger in a nutshell
=

Final stage of a BNS system evolution:
# double BNS systems do exist (e.g. PSR1913+16)

-

# inspiral phase, driven by GW emission
#® coalescence phase
#® NS merger aftermath

«w Log of axisymmetric density [g/cm™ 3]

s hot SMNS — BH
~2.7My, T ~ 15MeV

s thick torus of accreting
matter
~0.1My, Y. <0.05

B s Intense r emission
L, ~ 10°3erg/s
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BNS mergersand short GRBsS
5

BNS mergers are among the most promising candidates to T
explain short gamma-ray bursts (GRBS).

# observations: good compatibility with observed rates,
redshifts and host galaxies

# modeling: intense energy deposition in a relatively
baryon-free region as driving mechanism, due to matter
accretion on a stellar compact object (SMNS or BH)

Open guestions for this possible short GRB engine:

# pollution from v-driven baryonic wind (e.g. Dessart et al. 2009)

# nucleosynthesis in v-driven wind (e.g. wanajo & Janka 2012)
L’ role of B field and GR (e.g. Rezzolla et al. 2011)
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Neutrino transport

-

v's role in BNS merger:

-

# exchange energy with matter (heating and cooling)
® release energy out of the system
# influence explosive nucleosynthesis
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Neutrino transport
-

v's role in BNS merger:

exchange energy with matter (heating and cooling)
release energy out of the system
iInfluence explosive nucleosynthesis

'S behaviour In this scenario:

9
9

o

V'S are copiously produced in hot and dense matter

where matter is opaque, v’s thermalize and diffuse out
on the diffusion timescale ¢4;¢

where matter Is transparent, v’s stream out freely
interaction rates are energy&angle dependent (o, o< £2)
= radiation transport problem, f,(¢,x, p) J
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Modeling BNS merger

astrophysical plasma — MHD equations
wide ranges of scales
extreme matter conditions (nuclear EOS)
necessity to include all fundamental interactions
s Qravity: true driving interaction
s strong: nuclear matter properties and reactions
s EM: matter properties and magnetic fields
s Wweak: matter composition and neutrino interaction
Important role played by v (radiation MHD)

4

large multi-dimensional numerical models and
computational simulations required! J
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The model

# data from SPH BNS merger simulations
(Price & Rosswog (2006))

#® FISH 3D (M)HD Cartesian code (kappeli et al. (2011))
Shen nuclear EOS (shen et al. (1998))

°

# v treatment: Advanced Spectral Leakage (ASL)

(Perego et al., in preparation)

Goal: to study the aftermath of BNSM
#$ v emission
# disk dynamics and v-driven wind formation
# Dbaryonic pollution and GRB engine
L.o nucleosynthesis in the wind
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The ASL scheme

based on previous grey leakage schemes

spectral scheme

3 flavors: ve,ve, v+ (V4.r)

(Ruffert et al. 1997, Rosswog & Liebenddrfer 2003)

v reactions:

e +p—o>n+re OTP || (A Z2)+v— (A Z)+v O
et +n—p+ e OTP || et +e” —v+v T.P
e”+(AZ) s ve+(AZ—-1)| TP || N+ N> N+N+v+v | TP
N+v—+N+v @)

major roles: O — opacity, T — thermalization, P — production

treatment developed and tested in Core Collapse

Supernova context

-
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v optical depth
=

# optical depth: average number of interactions for a v,
before leaving the system

1
TV:/—dS
;A

o distinction between scattering (7,,s) and energy (7, g) v
optical depths:

s 7,5 > 1: diffusive regime
s 7, p > 1: diffusive regime & thermal equilibrium
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V rates

- N

o effective scheme: it mimics known solutions

# particles and energy effective rates: smooth
interpolation between diffusion and production rates
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V rates

- N

o effective scheme: it mimics known solutions

# particles and energy effective rates: smooth
interpolation between diffusion and production rates

i p‘[oduction rate E =I10 MeV
e+25 | :

e+24 |
e+23 |

e+22 |

rates [part/g/s]

—_ —_ —_ —_ —_ —_ —_ —_ —_ —_

e+21 |

e+20 |

trino

7, S 1, production rate

MNeu

e+19 |

e+18 |

e+17 |

e+16

1
10 100 1000 10000
Radius [km]

rates in CCSN model, just after bounce
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V rates

- N

o effective scheme: it mimics known solutions

# particles and energy effective rates: smooth
interpolation between diffusion and production rates

7, < 1, production rate $
7, > 1, diffusion rate

1
10 100 1000 10000
Radius [km]

rates in CCSN model, just after bounce
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V rates

- N

o effective scheme: it mimics known solutions

# particles and energy effective rates: smooth
interpolation between diffusion and production rates

7, < 1, production rate
7, > 1, diffusion rate

rates [part/g/s]

trino
- - - - - - - - - -
o © o o © o o ) o o

MNeu

T, ~ 1, Interpolation

1
10 100 1000 10000
Radius [km]

rates in CCSN model, just after bounce
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v heating term

- N

# inclusion of a heating rate (for ,, < 1)
® Theat X Xab ' v Where F, — p,

Xab absorptivity, p,, neutrino density, F}, neutrino flux
s F, from cooling rates: spectrum too hard
» effective implementation of thermalization:

- . Teff
Tcool = Tcool — Bcut T'cool €EXP | —

Acut

& Bcut : fOOO TCOOIE2 dE = fO choolEQ dE

& oy free parameter ( ~ 20)

# everything 3D, apart from axisymmetric 7,,, L, and p,

o |
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Multi-D diffusion

>,. v-surface
n,.h: A — Z “shortest” r-path towards ¥,

F,(n) o< cos @, where cos = n - nyu

e o o o

Isotropic emission from X, = F,, and p,

|
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Neutrino surfaces

- N

log1 O¢density [g/em ), t = 0.00999588

100

T, = 2/3 — v-surface (£,) =

&0

14
13

40 e

® 7,,=2/3 o
last (any) interaction
surface

-60

-1

z [km]

r 10

". TV,E — 2/3 -&0
last inelastic interaction /| -
surface e

Tv,s surfaces, for v, and different £,
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Neutrino surfaces
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Neutrino luminosities

-

Isotropized v luminosity v Ims energy T

Meutrino isotropized luminosity, angular distribution Meutrino s energies, angular distibution
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Neutrino densities

Ve De V,LL,T

log! D{p v, [partiem?]), E = 4.62 MeV, t = 000999585 10g10{p anti-v, [paren], E = 4.82 MeV, t= 0.0093958s log10{p v, . [patven®]), E = 452 MeV, t = 0.0093958¢
150 150
100 100
50 50 123
— = —
AMeV E E o £ {285
-50 -a0
-100 -100
-150 -150
50 100 150 200 250 300 0 50 100 150 200 250 300 ] 50 100 150 200 250 300
p [km] p [km] p [km]
log1 0(p v, [parem?), E = 10.63 Mev, t = 0.0099358s log10(p anti-v, [partcm]), E = 10.63 MeV, t = 0.0093958s log10ip v, ; [partcm]), E = 10.63 MeV, 1 = 0.0093358s

z [km]
z [k
2 [km]

10MeV

-150
a

a00 0 a0 100 150 z00 250 300 0 a0 100 150 zoa Za0 300

50 100 150 200 250
p [km] p [km]

p [km]

v from the aftermath of NS merger, Hirschegg Workshop - 27-31 January 2013 — p. 15/28



Conclusion and outlook

- N

# First results from 3D Cartesian simulations of the
aftermath of BNS merger, with neutrino multi-flavor
spectral treatment

® v results consistent with results in literature
(e.g. axisym.: Dessart et al. 2009, SPH: Rosswog et al. 2012 ... Ruffert et al. 1997)

Outlook:
# study disk dynamics and effects of the v heating

# perform nucleosynthesis calculation for the ejected
matter

® set constraints for short-GRB mechanism

o |
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Multi-D streaming

Modeling free streaming v:

K

9

°

axisymmetric rates

Isotropic emission from
>, and transparent
region

|

axisymmetric luminosity
axisymmetric p,

-

model for p, calculation:

AQ C

a8
N—

R, .2

E(u

-

D source position

C' evaluation point
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Neutrino properties
fAccording to our current knowledge, T

# v are fermions (s = 1/2), with very small masses
(my, < 1eV)

# v (and v) exist in 3 flavors v, v, and v,

# v and 7 interact via weak interaction (IW* and Z) with
guarks and other leptons

# typical neutrino cross section:
®» O X G%

, s (relatively) very low:
s ( E, ) oo = 10~*cem? ~ 1070y,
% 0 2 _
e s highly energy dependent
L (especially for £ < 50MeV) J
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Neutrinosin astrophysics

. N

v play a central role in many astrophysical scenarios
#® Cosmic Neutrino Background:

CvB with T, =~ 1.95K

® Neutrinos from the Sun:

Production rate: ~ 1.86 x 10%%s~1, E, < 0.420MeV
Flux on Earth: ~ 6 x 101%cm=2s~1

#® v-cooling of the core of massive stars, after He burning
Qu—cooling X T

#® Core Collapse SuperNova (CCSN)

# Binary Neutron Star Merger (BNSM)

|
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BNSM simulations

-

Evolution of simulations (from 80s’ up to now)

# dimensions: axisymmetry and 3D

o v from simple leakage scheme to approx transport
# gravity: from Newtonian to General Relativity

#® microphysics: from polytropic EOS to nuclear EOS

State-of-the-art:

® 3D Newtonian models, with detailed v treatment and
microphysics input

# 3D GR models, with simplified microphysics input (e.qg.
polytropic EOS)

o |
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NS merger: neutrino signature

- N

#® NS coalescence heats high density matter up
# SMNS and inner disk emit v of all flavors
# v provide efficient way to release gravitational energy

|1 # total luminosity:

: L, ~ 10°%erg/s

| 1 ® luminosity hierarchy:
B . Ly, > Ly, >L,, .

# mean energy hierarchy:
(Ev,.) > (Ep.) > (Ev.)

o |
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ASL applications and drawbacks

A

pplications

#® broad parameter space exploration

CCSN

s progenitor mass
s progenitor metallicity
s rotation rates

s B strength and
configuration

» microphysics input

>

BNSM

NS masses
NS spins
orbital parameters

B strength and
configuration

microphysics input
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ASL applications and drawbacks

o N

#® broad parameter space exploration

pplications

#® scenarios where details of v transport are less relevant

#® complicated geometries, where detailed v transport is
still not available

#® code development and testing phase

o |
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ASL applications and drawbacks

o N

#® broad parameter space exploration

pplications

#® scenarios where details of v transport are less relevant

#® complicated geometries, where detailed v transport is
still not available

#® code development and testing phase

Drawbacks
# reduced accuracy
# reduced reliablility far from tested configurations
# high sensitivity to single parts of the scheme
L #® presence of free parameters J
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Test of type | (only v, and 7., with most relevant reactions)
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Collapse phase

Test of type | (only v, and 7., with most relevant reactions)
tpp = Oms
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st of type | (only v, and 7., with most relevant reactions)
evolution of neutrino trapped component, Y,
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Early post bounce phase, dynamics

-
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Early post bounce phase, dynamics
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Test of type | (only v, and 7., with most relevant reactions)
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Early post bounce phase, dynamics
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Test of type | (only v, and 7., with most relevant reactions)
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Early post bounce phase, dynamics
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Test of type | (only v, and 7., with most relevant reactions)
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L ate bounce phase, dynamics
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Test of type | (only v, and 7., with most relevant reactions)
tpp = 150ms
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L ate bounce phase, dynamics

Test of type | (only v, and 7., with most relevant reactions)

tpp = 250ms

252ms After Bounce

Velocity [em/s]
b

0.5 1

1.5 2 2.3 3

Radius [cm] 10

o
T

Entropy per Baryon [KB/baryon]
£ co

B

0.5 1

1.5 2 2.5 3

Radius [cm] 10

Baryon Density, lag. (p) [g/cms]

Electron fraction, Ye []

—
&

—_
M

—_
o

o0

o

0.5

0.4

0.3

0.2

0.1

515s7b2

——AGILE-BOLZTRAN||

—ASL 1

5
Radius [em] %10

0 0.5 1 1.5 2 25

Radius [cm] %10

-

v from the aftermath of NS merger, Hirschegg Workshop - 27-31 January 2013 — p. 27/28



v luminosities and mean energies
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