ν emission from the aftermath of neutron star merger

Albino Perego

in collaboration with R. Cabezon, R. Käppeli, M. Liebendörfer, S. Rosswog albino.perego@physik.tu-darmstadt.de

Basel Universität \rightarrow TU Darmstadt

International Workshop XLI, Hirschegg, Austria 27-31 January 2013

Outline of the presentation

Introduction

- neutrinos in the context of Binary Neutron Star (BNS) mergers
- Presentation of the simulation
 - neutrino treatment
- First results
- Conclusion and outlook

Final stage of a BNS system evolution:

Jouble BNS systems do exist (e.g. PSR1913+16)

(Weisberg et al., 2010) ν from the aftermath of NS merger, Hirschegg Workshop - 27-31 January 2013 – p. 3/28

Final stage of a BNS system evolution:

- Jouble BNS systems do exist (e.g. PSR1913+16)
- inspiral phase, driven by GW emission

$$t_{\rm insp} \approx 10^7 {\rm yr} \left(\frac{T_{\rm orb}}{1{\rm h}}\right) \left(\frac{M}{M_{\odot}}\right)^{-2/3} \left(\frac{\mu}{M_{\odot}}\right)^{-1} \left(1-e^2\right)^{-7/2}$$

(see, e.g., Lorimer 2005)

Final stage of a BNS system evolution:

- Jouble BNS systems do exist (e.g. PSR1913+16)
- inspiral phase, driven by GW emission
- coalescence phase

B field from a SPH simulations of BNS merger with 2 NS of $1.4M_{\odot}$

Price & Rosswog 2006

Final stage of a BNS system evolution:

- double BNS systems do exist (e.g. PSR1913+16)
- inspiral phase, driven by GW emission
- coalescence phase
- NS merger aftermath

- hot SMNS \rightarrow BH ~ $2.7M_{\odot}$, $T \sim 15 \text{MeV}$
- thick torus of accreting matter

 $\sim 0.1 M_{\odot} , Y_e \lesssim 0.05$

• intense ν emission $L_{\nu} \sim 10^{53} \mathrm{erg/s}$

BNS mergers and short GRBs

BNS mergers are among the most promising candidates to explain short gamma-ray bursts (GRBs).

- observations: good compatibility with observed rates, redshifts and host galaxies
- modeling: intense energy deposition in a relatively baryon-free region as driving mechanism, due to matter accretion on a stellar compact object (SMNS or BH)

Open questions for this possible short GRB engine:

- **pollution from** ν -driven baryonic wind (e.g. Dessart et al. 2009)
- **nucleosynthesis in** ν **-driven wind** (e.g. Wanajo & Janka 2012)
- **•** role of B field and GR (e.g. Rezzolla et al. 2011)

Neutrino transport

 ν 's role in BNS merger:

- exchange energy with matter (heating and cooling)
- release energy out of the system
- influence explosive nucleosynthesis

Neutrino transport

 ν 's role in BNS merger:

- exchange energy with matter (heating and cooling)
- release energy out of the system
- influence explosive nucleosynthesis

 ν 's behaviour in this scenario:

- \checkmark ν 's are copiously produced in hot and dense matter
- where matter is opaque, ν 's thermalize and diffuse out on the diffusion timescale $t_{\rm diff}$
- where matter is transparent, ν 's stream out freely
- interaction rates are energy&angle dependent ($\sigma_{\nu} \propto E_{\nu}^2$) \Rightarrow radiation transport problem, $f_{\nu}(t, \mathbf{x}, \mathbf{p})$

Modeling BNS merger

- astrophysical plasma \rightarrow MHD equations
- wide ranges of scales
- extreme matter conditions (nuclear EOS)
- necessity to include all fundamental interactions
 - gravity: true driving interaction
 - strong: nuclear matter properties and reactions
 - EM: matter properties and magnetic fields
 - weak: matter composition and neutrino interaction
- important role played by ν (radiation MHD)

large multi-dimensional numerical models and computational simulations required!

The model

- data from SPH BNS merger simulations (Price & Rosswog (2006))
- FISH 3D (M)HD Cartesian code (Käppeli et al. (2011))
- Shen nuclear EoS (Shen et al. (1998))
- v treatment: Advanced Spectral Leakage (ASL) (Perego et al., in preparation)

Goal: to study the aftermath of BNSM

- ν emission
- disk dynamics and ν -driven wind formation
- baryonic pollution and GRB engine
- nucleosynthesis in the wind

The ASL scheme

based on previous grey leakage schemes

(Ruffert et al. 1997, Rosswog & Liebendörfer 2003)

- spectral scheme
- **9** 3 flavors: $\nu_e, \bar{\nu}_e, \nu_{\mu,\tau}$ ($\bar{\nu}_{\mu,\tau}$)
- ν reactions:

$e^- + p \rightarrow n + \nu_e$	O,T,P	$(A,Z) + \nu \to (A,Z) + \nu$	0
$e^+ + n \to p + \bar{\nu}_e$	O,T,P	$e^+ + e^- \rightarrow \nu + \bar{\nu}$	T,P
$e^- + (A, Z) \rightarrow \nu_e + (A, Z - 1)$	T,P	$N + N \to N + N + \nu + \bar{\nu}$	T,P
$N + \nu \rightarrow N + \nu$	0		

major roles: O \rightarrow opacity, T \rightarrow thermalization, P \rightarrow production

treatment developed and tested in Core Collapse Supernova context

ν optical depth

optical depth: average number of interactions for a ν , before leaving the system

$$\tau_{\nu} = \int_{\gamma} \frac{1}{\lambda} \,\mathrm{d}s$$

- distinction between scattering ($\tau_{\nu,s}$) and energy ($\tau_{\nu,E}$) ν optical depths:
 - $\tau_{\nu,s} \gg 1$: diffusive regime
 - $\tau_{\nu,E} \gg 1$: diffusive regime & thermal equilibrium

- effective scheme: it mimics known solutions
- particles and energy effective rates: smooth interpolation between diffusion and production rates

- effective scheme: it mimics known solutions
- particles and energy effective rates: smooth interpolation between diffusion and production rates

$\tau_{\nu} \lesssim 1$, production rate

rates in CCSN model, just after bounce

- effective scheme: it mimics known solutions
- particles and energy effective rates: smooth interpolation between diffusion and production rates

 $au_{
u} \lesssim 1$, production rate $au_{
u} \gg 1$, diffusion rate

rates in CCSN model, just after bounce

- effective scheme: it mimics known solutions
- particles and energy effective rates: smooth interpolation between diffusion and production rates

 $\tau_{\nu} \lesssim 1$, production rate $\tau_{\nu} \gg 1$, diffusion rate

 $\tau_{\nu} \sim 1$, interpolation

rates in CCSN model, just after bounce

ν heating term

• inclusion of a heating rate (for $\tau_{\nu} \lesssim 1$)

- $r_{\text{heat}} \propto \chi_{\text{ab}} \cdot \rho_{\nu}$ where $F_{\nu} \rightarrow \rho_{\nu}$ χ_{ab} absorptivity, ρ_{ν} neutrino density, F_{ν} neutrino flux
- F_{ν} from cooling rates: spectrum too hard
- effective implementation of thermalization:

$$r_{\rm cool} \to \tilde{r}_{\rm cool} = \beta_{\rm cut} r_{\rm cool} \exp\left(-\frac{\tau_{\rm eff}}{\alpha_{\rm cut}}\right)$$

•
$$\beta_{\text{cut}}$$
: $\int_0^\infty r_{\text{cool}} E^2 \, \mathrm{d}E = \int_0^\infty \tilde{r}_{\text{cool}} E^2 \, \mathrm{d}E$
• α_{cut} : free parameter (~ 20)

• everything 3D, apart from axisymmetric τ_{ν} , L_{ν} and ρ_{ν}

Multi-D diffusion

• Σ_{ν} : ν -surface

- $\mathbf{n}_{\text{path}}: A \to Z$ "shortest" τ -path towards Σ_{ν}
- \bullet $F_{\nu}(\mathbf{n}) \propto \cos \theta$, where $\cos \theta = \mathbf{n} \cdot \mathbf{n}_{\text{path}}$
- \blacksquare isotropic emission from $\Sigma_{\nu} \Rightarrow F_{\nu}$ and ρ_{ν}

Neutrino surfaces

 $\tau_{\nu} = 2/3 \rightarrow \nu$ -surface (Σ_{ν})

- $\tau_{\nu,s} = 2/3$ last (any) interaction
 surface
- $\tau_{\nu,E} = 2/3$ last inelastic interaction surface

 $au_{
u,s}$ surfaces, for u_e and different $E_{
u}$

Neutrino surfaces

 $u_{\mu,\tau}$

Neutrino luminosities

- θ angular dependence at 10 ms and 30 ms
- Iuminosity hierarchy: $L_{\bar{\nu}_e} > L_{\nu_e} > L_{\nu_{\mu,\tau}}$
- mean energy hierarchy: $\langle E_{\nu_{\mu,\tau}} \rangle > \langle E_{\bar{\nu}_e} \rangle > \langle E_{\nu_e} \rangle$

Neutrino densities

Conclusion and outlook

- First results from 3D Cartesian simulations of the aftermath of BNS merger, with neutrino multi-flavor spectral treatment
- ν results consistent with results in literature
 (e.g. axisym.: Dessart et al. 2009, SPH: Rosswog et al. 2012 ... Ruffert et al. 1997)

Outlook:

- study disk dynamics and effects of the ν heating
- perform nucleosynthesis calculation for the ejected matter
- set constraints for short-GRB mechanism

u from the aftermath of NS merger, Hirschegg Workshop - 27-31 January 2013 – p. 17/28

 ν from the aftermath of NS merger, Hirschegg Workshop - 27-31 January 2013 – p. 18/28

Multi-D streaming

model for ρ_{ν} calculation:

Modeling free streaming ν :

- axisymmetric rates
- isotropic emission from
 Σ_{ν} and transparent
 region

\downarrow

- axisymmetric luminosity
- axisymmetric ρ_{ν}

Neutrino properties

According to our current knowledge,

- ν are fermions (s=1/2), with very small masses ($m_{\nu} \lesssim 1 \, {\rm eV}$)
- ν (and $\bar{\nu}$) exist in 3 flavors ν_e , ν_μ and ν_τ
- ν and $\bar{\nu}$ interact via weak interaction (W^{\pm} and Z) with quarks and other leptons
- typical neutrino cross section:

•
$$\sigma_0 \propto G_F^2$$

$$\sigma_{\nu} \propto \sigma_0 \left(\frac{E_{\nu}}{m_e c^2}\right)^2$$

• (relatively) very low:

$$\sigma_0 = 10^{-44} \text{cm}^2 \sim 10^{-20} \sigma_{\text{nuc}}$$

• highly energy dependent (especially for $E \lesssim 50 {
m MeV}$)

Neutrinos in astrophysics

 ν play a central role in many astrophysical scenarios

Cosmic Neutrino Background:

 $\mathbf{C}\nu\mathbf{B}$ with $T_{\nu} \approx 1.95\mathrm{K}$

Neutrinos from the Sun:

Production rate: $\sim 1.86 \times 10^{38} \text{s}^{-1}$, $E_{\nu} \lesssim 0.420 \text{MeV}$ Flux on Earth: $\sim 6 \times 10^{10} \text{cm}^{-2} \text{s}^{-1}$

 \checkmark *v*-cooling of the core of massive stars, after He burning

$$Q_{\nu-\mathrm{cooling}} \propto T^9$$

- Core Collapse SuperNova (CCSN)
- Binary Neutron Star Merger (BNSM)

Neutrinos in astrophysics

 ν play a central role in many astrophysical scenarios

Cosmic Neutrino Background:

 $\mathbf{C}\nu\mathbf{B}$ with $T_{\nu} \approx 1.95\mathrm{K}$

Neutrinos from the Sun:

Production rate: $\sim 1.86 \times 10^{38} \text{s}^{-1}$, $E_{\nu} \lesssim 0.420 \text{MeV}$ Flux on Earth: $\sim 6 \times 10^{10} \text{cm}^{-2} \text{s}^{-1}$

 \checkmark *v*-cooling of the core of massive stars, after He burning

$$Q_{\nu-\mathrm{cooling}} \propto T^9$$

- Core Collapse SuperNova (CCSN)
- Binary Neutron Star Merger (BNSM)

BNSM simulations

Evolution of simulations (from 80s' up to now)

- dimensions: axisymmetry and 3D
- ν : from simple leakage scheme to approx transport
- gravity: from Newtonian to General Relativity
- microphysics: from polytropic EOS to nuclear EOS

State-of-the-art:

- Solution States and States an
- 3D GR models, with simplified microphysics input (e.g. polytropic EOS)

NS merger: neutrino signature

- NS coalescence heats high density matter up
- **SMNS** and inner disk emit ν of all flavors
- ν provide efficient way to release gravitational energy

- total luminosity: $L_{\nu} \sim 10^{53} \mathrm{erg/s}$
- luminosity hierarchy: $L_{\bar{\nu}_e} > L_{\nu_e} > L_{\nu_{\mu,\tau}}$
- mean energy hierarchy: $\langle E_{\nu_{\mu,\tau}} \rangle > \langle E_{\bar{\nu}_e} \rangle > \langle E_{\nu_e} \rangle$

ASL applications and drawbacks

Applications

broad parameter space exploration

CCSN

- progenitor mass
- progenitor metallicity
- rotation rates
- B strength and configuration
- microphysics input

BNSM

- NS masses
- NS spins
- orbital parameters
- B strength and configuration
- microphysics input

ASL applications and drawbacks

Applications

- broad parameter space exploration
- scenarios where details of ν transport are less relevant
- complicated geometries, where detailed ν transport is still not available
- code development and testing phase

ASL applications and drawbacks

Applications

- broad parameter space exploration
- scenarios where details of ν transport are less relevant
- complicated geometries, where detailed ν transport is still not available
- code development and testing phase

Drawbacks

- reduced accuracy
- reduced reliability far from tested configurations
- high sensitivity to single parts of the scheme
- presence of free parameters

u from the aftermath of NS merger, Hirschegg Workshop - 27-31 January 2013 – p. 25/28

Test of type I (only ν_e and $\bar{\nu}_e$, with most relevant reactions) evolution of neutrino trapped component, Y_{ν}^T

Late bounce phase, dynamics

Late bounce phase, dynamics

Test of type I (only ν_e and $\bar{\nu}_e$, with most relevant reactions)

$t_{\rm pb} = 250 {\rm ms}$

ν luminosities and mean energies

Test of type I (only ν_e and $\bar{\nu}_e$, with most relevant reactions)

 ν from the aftermath of NS merger, Hirschegg Workshop - 27-31 January 2013 – p. 28/28