

.

Three-nucleon forces at neutron-rich extremes

Johannes Simonis

Institut für Kernphysik, TU Darmstadt

with Jason D. Holt, Javier Menéndez, Achim Schwenk (EMMI/TU Darmstadt)

Hirschegg 2013: Astrophysics and Nuclear Structure

International Workshop XLI on Gross Properties of Nuclei and Nuclear Excitations

January 29th, 2013

Physics motivation

Neutron-rich nuclei

- exhibit new shell structures
- can amplify subtle components of nuclear forces
- play a key role in astrophysics

Microscopic calculations of medium-mass nuclei

Valence-shell calculations based on nuclear forces

- Use chiral Effective Field Theory interactions, includes naturally NN, 3N and higher-body forces
- Perform a renormalization group evolution to $V_{low k}$ interaction to enhance convergence of the MBPT calculation
- Apply Many-Body Perturbation Theory (MBPT) to obtain interactions to be used in Shell-Model (SM) calculations
- ⇒ All parameters in the valence-shell Hamiltonian calculated from microscopic interactions (no fits!)
- \Rightarrow Test nuclear forces for stable and exotic nuclei
- \Rightarrow Goal: reliable predictions for neutron-rich extremes with controlled uncertainties

NN+3N forces in chiral EFT

- NN force couplings fitted to NN, πN data
- - ³H binding energy, ⁴He charge radius
- Chiral EFT potentials for NN up to N³LO and 3N up to N²LO
- But: N³LO 3N \sim 1/3 of N²LO 3N \rightarrow T. Krüger's talk

Tews et al., PRL 110 032504 (2013)

Shell-Model interactions

- Results with NN+3N forces included to 3rd order in MBPT
- In addition to standard sd and pf shell
 - O isotopes: $sdf_{7/2}p_{3/2}$ valence space
 - Ca isotopes: *pfg*_{9/2} valence space
- Full diagonalizations using ANTOINE Caurier *et al.*, *RMP* **77** 427 (2005).
- MBPT with enlarged valence space to explicitly include orbits non-perturbatively
- Open problem for valence space beyond one major shell: center-of-mass factorization difficulty that < H_{cm} > is not real indicator Hagen *et al.*, *PRL* 103 062503 (2009).

3N forces for valence-shell Hamiltonians

• Contribution to valence neutron interactions Effective one body

$$\langle a|V_{3N,1b}|a
angle = rac{1}{2}\sum_{lpha,eta\in core} \langle lphaeta a|V_{3N}|lphaeta a
angle$$

 $\Rightarrow ({\sf Effective}) \ {\sf single-particle} \ {\sf energies} \\ ({\sf SPE})$

3N forces for valence-shell Hamiltonians

• Contribution to valence neutron interactions Effective one body Effective two body

3N forces for valence-shell Hamiltonians

When going to neutron-rich extremes must include

- Residual three body Friman, Schwenk, arXiv:1101.4858.
 - Estimated to be suppressed $N_{
 m v}/N_c$

- Becomes important for most neutron-rich isotopes
- Included perturbatively using wave function from ANTOINE

$$\Delta E_{3N,\textit{res}} = \langle \Psi_{\textit{NN}+3N,2b} | V_{3N} | \Psi_{\textit{NN}+3N,2b} \rangle$$

The oxygen anomaly

Where is the neutron dripline?

The oxygen anomaly

Where is the neutron dripline?

Neutron-rich oxygen isotopes

- NN predicts dripline at ²⁸O
- normal-ordered 3N forces lead to repulsion
- phenomenological USDb in good agreement
- 3N effect confirmed in other calculations Hagen *et al.*, *PRL* 108 242501 (2012)., Hergert *et al.*, in prep.

Neutron-rich oxygen isotopes - residual three body

- Residual three-body contribution is repulsive, small compared to normal-ordered 3N
- Increases with neutron number as expected
- Effect is marginal for $11 \le N \le 15$

Theory vs. experiment - arXiv:1209.0156

- Recent measurements for ^{25,26}O at MSU and at GSI
- Residual contributions relevant for a direct comparison
- Very good agreement with resonances in ^{25,26}O
- continuum not included, expected contribution about 200 keV to ^{25,26}O Hagen et al., PRL 108 242501 (2012); * * *

3N forces and proton-rich nuclei

first results with 3N forces of N=8, 20 Holt et al., PRL 110 022502 (2013).

prediction for ${}^{20}Mg$ agrees with new state observed at GSI Mukha, private comm.

first results away from semimagic chains

Neutron-rich calcium isotopes

Neutron-rich calcium isotopes - residual three body

Two-neutron separation energies of Ca isotopes

- New mass measurement at TITAN
- Significant deviations for ^{51,52}Ca from AME 2003
- NN+3N comparable with KB3G/GXPF1a
- Effect of residual three body?

Gallant et al., PRL 109 032506 (2012).

Two-neutron separation energies of ^{51,52}Ca

- TITAN S_{2n} deviate by 0.5 MeV and 1.7 MeV for ^{51,52}Ca from AME 2003
- NN+3N in very good agreement
- residual three-body contribution is a minor correction to S_{2n} for ^{51,52}Ca

Summary

Microscopic calculation of medium-mass nuclei based on chiral EFT (NN+3N forces) with inclusion of residual three-body contribution for the first time

Contribution of residual three body small compared to the normal-ordered 3N $E_{\rm 2-body}^{\rm normal-ordered}$, but increases with neutron number in the Shell Model up to 0.4 MeV in $^{26}{\rm O}$

Very good agreement with neutron-rich oxygen isotopes ^{25,26}O

First results away from semi-magic chains

Thank you for your attention!