Thomas Krüger

International Workshop XLI on Gross Properties of Nuclei and

Nuclear Excitations: Astrophysics and nuclear structure, Hirschegg

I. Tews, TK, K. Hebeler, and A. Schwenk, Phys. Rev. Lett. **110**, 032504 (2013) TK, I. Tews, K. Hebeler, and A. Schwenk, *arXiv:1301.xxxx*

Neutron matter from chiral effective field theory interactions

European Research Council Established by the European Commission

Outline

- Introduction: chiral EFT for nuclear interactions
- 3N and 4N interactions at N³LO
- Complete neutron matter calculation at N³LO
- From neutron matter to neutron stars
- Summary

Short motivation

- Neutron matter constrains properties of neutron stars
- All calculations so far: NN forces at N³LO and 3N forces at N²LO
- First inclusion of 3N and 4N interactions at N³LO

[NASA/CXC/M.Weiss]

Orientation

Introduction: chiral EFT for nuclear interactions

- 3N and 4N interactions at N³LO
- ► Complete neutron matter calculation at N³LO
- From neutron matter to neutron stars

- Separation of scales: low mom. Q ≪ breakdown scale Λ
 Write most general Lagrangian
- Write most general Lagrangian and expand in powers of

$$\left(rac{Q\sim m_\pi}{\Lambda\sim 500\,{
m MeV}}\simrac{1}{3}
ight)^
u$$

Systematic: can work to desired accuracy and obtain error estimates

5/26

[Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meißner, ...] Thomas Krüger Technische Universität Darmstadt – Institut für Kernphysik – Theory Center 30th Jan 2013

- Explicit degrees of freedom: pions and nucleons
- Long-range physics explicitly, short-range physics expanded in general operator basis
- High-momentum physics absorbed into few short-range couplings, fit to experiment

[Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meißner, ...] Thomas Krüger Technische Universität Darmstadt – Institut für Kernphysik – Theory Center 30th Jan 2013 6/26

- Many-body forces are crucial
- Consistent interactions: same couplings for NN and many-body sector
- So far: only leading 3N forces included

7/26

[Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meißner, ...] Thomas Krüger Technische Universität Darmstadt – Institut für Kernphysik – Theory Center 30th Jan 2013

This work: take into account all contributions to N^3LO N^3LO 3N forces have been derived only recently

[Bernard *et al.*, PRC **77**, 064004 (2008) and PRC **84**, 054001 (2011); Epelbaum, PLB **639**, 456, (2006)]

In neutron matter:

- simpler, only certain parts of the many-body forces contribute
- chiral 3- and 4-neutron forces are predicted to N³LO

[Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meißner, ...] Thomas Krüger Technische Universität Darmstadt – Institut für Kernphysik – Theory Center 30th Jan 2013 8/26

This work: take into account all contributions to $N^3 LO$ $N^3 LO$ 3N forces have been derived only recently

[Bernard *et al.*, PRC **77**, 064004 (2008) and PRC **84**, 054001 (2011); Epelbaum, PLB **639**, 456, (2006)]

In neutron matter:

 simpler, only certain parts of the many-body forces contribute

8/26

 chiral 3- and 4-neutron forces are predicted to N³LO

[Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meißner, . . .] Thomas Krüger Technische Universität Darmstadt – Institut für Kernphysik – Theory Center 30th Jan 2013

This work: take into account all contributions to N^3LO N^3LO 3N forces have been derived only recently

[Bernard *et al.*, PRC **77**, 064004 (2008) and PRC **84**, 054001 (2011); Epelbaum, PLB **639**, 456, (2006)]

In neutron matter:

 simpler, only certain parts of the many-body forces contribute

8/26

 chiral 3- and 4-neutron forces are predicted to N³LO

[Weinberg, van Kolck, Kaplan, Savage, Wise, Epelbaum, Kaiser, Meißner, ...] Thomas Krüger Technische Universität Darmstadt – Institut für Kernphysik – Theory Center 30th Jan 2013

Orientation

- Introduction: chiral EFT for nuclear interactions
- ► 3N and 4N interactions at N³LO
- Complete neutron matter calculation at N³LO
- From neutron matter to neutron stars

3N interactions at N³LO

 $(2-body-contacts C_T, C_S)$

[Bernard et al., PRC 77, 064004 (2008) and PRC 84, 054001 (2011)]

4N interactions at $N^{3}LO$

Energy per particle in the Hartree-Fock approximation

3N forces are perturbative at N²LO (for smaller c_i) [Hebeler, Schwenk] Hartree-Fock is a reliable approximation at this order!

$$\frac{E}{N} = \frac{1}{n} \frac{1}{A!} \sum_{\sigma_1, \dots, \sigma_A} \int \frac{d^3 k_1}{(2\pi)^3} \cdots \int \frac{d^3 k_A}{(2\pi)^3} f_R^2 n_{\mathbf{k}_1} \cdots n_{\mathbf{k}_A}$$

$$\times \langle 1 \cdots A \mid \mathcal{A}_A \sum_{\pi \in S_A} V(\pi(1), \dots, \pi(A)) \mid 1 \cdots A \rangle$$

$$\bigcup_{E_{\mathrm{kin}}} \underbrace{\bigcup_{E_{\mathrm{NN}}} K_{\mathrm{NN}}}_{E_{\mathrm{NN}}^{(1)}} \underbrace{\bigcup_{E_{\mathrm{3N}}} K_{\mathrm{NN}}}_{E_{\mathrm{3N}}^{(1)}} \underbrace{\bigcup_{E_{\mathrm{4N}}} K_{\mathrm{NN}}}_{E_{\mathrm{3N}}^{(1)}} \underbrace{\bigcup_{E_{\mathrm{4N}}} K_{\mathrm{NN}}}_{E_{\mathrm{4N}}^{(1)}} \underbrace{\prod_{E_{\mathrm{NN}}} K_{\mathrm{NN}}}_{E_{\mathrm{3N}}^{(1)}} \underbrace{\bigcup_{E_{\mathrm{4N}}} K_{\mathrm{NN}}}_{E_{\mathrm{4N}}^{(1)}} \underbrace{\prod_{E_{\mathrm{NN}}} K_{\mathrm{NN}}}_{E_{\mathrm{3N}}^{(1)}} \underbrace{\prod_{E_{\mathrm{NN}}} K_{\mathrm{NN}}}_{E_{\mathrm{4N}}^{(1)}} \underbrace{\prod_{E_{\mathrm{NN}}} K_{\mathrm{NN}}}_{E_{\mathrm{NN}}^{(1)}} \underbrace{\prod_{$$

cutoff variation: $\Lambda=2-2.5\,{\rm fm}^{-1}$

[Tews, TK, Hebeler, Schwenk, PRL 110, 032504 (2013)]

Good agreement with Kaiser, EPJ A48, 148 (2012) (only parts of 4N).

[Tews, TK, Hebeler, Schwenk, PRL 110, 032504 (2013)]

Good agreement with Kaiser, EPJ A48, 148 (2012) (only parts of 4N).

[Tews, TK, Hebeler, Schwenk, PRL 110, 032504 (2013)]

Good agreement with Kaiser, EPJ A48, 148 (2012) (only parts of 4N).

[Tews, TK, Hebeler, Schwenk, PRL 110, 032504 (2013)]

Good agreement with Kaiser, EPJ A48, 148 (2012) (only parts of 4N).

[Tews, TK, Hebeler, Schwenk, PRL 110, 032504 (2013)]

Good agreement with Kaiser, EPJ A48, 148 (2012) (only parts of 4N).

[Tews, TK, Hebeler, Schwenk, PRL 110, 032504 (2013)]

Good agreement with Kaiser, EPJ A48, 148 (2012) (only parts of 4N).

[Tews, TK, Hebeler, Schwenk, PRL 110, 032504 (2013)]

Good agreement with Kaiser, EPJ A48, 148 (2012) (only parts of 4N).

[Tews, TK, Hebeler, Schwenk, PRL 110, 032504 (2013)]

Good agreement with Kaiser, EPJ A48, 148 (2012) (only parts of 4N).

Orientation

- Introduction: chiral EFT for nuclear interactions
- 3N and 4N interactions at N³LO
- ► Complete neutron matter calculation at N³LO
- From neutron matter to neutron stars

Energy per particle beyond the Hartree-Fock approximation

NN and leading 3N (with large c_i) need to be evaluated beyond the HF approximation [Hebeler, Schwenk, PRC 82, 014314 (2010)]

Use density-dependent NN forces

$$\bar{V}_{3N} = \sum_{\sigma_3} \int \frac{d^3 k_3}{(2\pi)^3} n_{k_3} \mathcal{A}_3 V_{3N} \Big|_{nnn}$$

Density dependent NN forces from many-body forces at N³LO are currently developed. Second order $E_{1}^{(2)}$ $E_{2}^{(2)}$ $E_{3}^{(2)}$ $E_{4}^{(2)}$ $E_{\epsilon}^{(2)}$ $E_{\epsilon}^{(2)}$ $E_{o}^{(2)}$ $E_{10}^{(2)}$

Energy per particle beyond the Hartree-Fock approximation

NN and leading 3N (with large c_i) need to be evaluated beyond the HF approximation [Hebeler, Schwenk, PRC 82, 014314 (2010)]

Use density-dependent NN forces

$$ar{V}_{3N} = \sum_{\sigma_3} \int \frac{d^3 k_3}{(2\pi)^3} n_{\mathbf{k}_3} \mathcal{A}_3 V_{3N} \Big|_{nnn}$$

Density dependent NN forces from many-body forces at N^3LO are currently developed.

Total neutron matter energy

Good agreement with other approaches!

[Tews, TK, Hebeler, Schwenk, PRL 110, 032504 (2013)]

Total neutron matter energy

Bands include:

- ► $\Lambda = 2 2.5 \, \mathrm{fm}^{-1}$
- many-body uncertainties

► 3N uncertainties mainly: c₁ = -(0.75 - 1.13) GeV⁻¹

 $c_1 = -(0.75 - 1.15) \text{ GeV}$ $c_3 = -(4.77 - 5.51) \text{ GeV}^{-1}$

> [Krebs, Gasparyan, Epelbaum, PRC **85**, 054006 (2012)]

Final N³LO result:

 $\frac{E}{N}(n_0) = (14.1 - 21.0) \,\mathrm{MeV}$

Good agreement with other approaches!

[Tews, TK, Hebeler, Schwenk, PRL 110, 032504 (2013)]

Thomas Krüger Technische Universität Darmstadt – Institut für Kernphysik – Theory Center 30th Jan 2013 17/26

[TK, Tews, Hebeler, Schwenk, arXiv:1301.xxxx]

[TK, Tews, Hebeler, Schwenk, arXiv:1301.xxxx]

[TK, Tews, Hebeler, Schwenk, arXiv:1301.xxxx]

[TK, Tews, Hebeler, Schwenk, arXiv:1301.xxxx]

Orientation

- Introduction: chiral EFT for nuclear interactions
- ► 3N and 4N interactions at N³LO
- Complete neutron matter calculation at N³LO
- From neutron matter to neutron stars

Neutron matter from chiral EFT vs. supernova EOS

[Lines from Hempel; Lattimer; G. Shen]

- Chiral EFT constrains neutron matter energy per particle
- N³LO many-body forces add more density dependence
- Constrains many model equations of state

Thomas Krüger Technische Universität Darmstadt – Institut für Kernphysik – Theory Center 30th Jan 2013 19/26

Constraining the symmetry energy

Neutron matter band puts constraints on symmetry energy and its density dependence

[Hebeler et al., PRL 105, 161102 (2010)]

Good agreement with experimental constraints:

- Dipole polarizability [Tamii et al., PRL 107, 062502 (2011)]
- Nuclear masses [Kortelainen *et al.*, PRC 82, 024313 (2010)]

Equation of state for neutron-star matter: extend results to small $Y_{e,p}$

[Hebeler et al., PRL 105, 161102 (2010) and in preparation]

Agrees with standard crust EOS after inclusion of many-body forces

Extend to higher densities using polytropic expansion

A two-solar-mass neutron star measured using Shapiro delay

P. B. Demorest¹, T. Pennucci², S. M. Ransom¹, M. S. E. Roberts³ & J. W. T. Hessels^{4,5}

Heaviest neutron star: $\mathsf{M} = 1.97 \pm 0.04 \mathsf{M}_{\odot}$

[Nature 467, 1081 (2010)]

Constrain resulting EOS with causality and heaviest observed neutron star

- Chiral EFT interactions provide strong constraints for EOS
- Rule out many model equations of state

Radius for $M = 1.4 M_{\odot}$ neutron star:

▶ $R = 9.7 - 13.9 \, \mathrm{km}$

Maximal supported mass:

• $M_{\rm max} = 3.05 M_{\odot} \ (14 \ {\rm km})$

Uncertainties from many-body forces and polytropic expansion

[TK, Tews, Hebeler, Schwenk *arXiv:1301.xxxx*]

Summary

- First consistent neutron matter calculation at N³LO
- ▶ Neutron matter energy per particle at n₀: 14.1 21.0 MeV
- ▶ Symmetry energy: $S_v = 28.9 34.9 \text{ MeV}$, L = 43.0 66.6 MeV
- \blacktriangleright Neutron stars: $1.4 M_{\odot}$ neutron star $ightarrow R = 9.7 13.9 \, {
 m km}$

Thanks for Your Attention

European Research Council Established by the European Commission