Towards an effective relativistic density functional for dense matter in supernovae and compact stars

Stefan Typel

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt Nuclear Astrophysics Virtual Institute

Astrophysics and Nuclear Structure

International Workshop XLI on Gross Properties of Nuclei and Nuclear Excitations January 26 – February 1, 2013 Hirschegg, Kleinwalsertal, Austria

Outline

• Introduction

Astrophysics and Equation of State, Nuclear and Stellar Matter, Constraints, Correlations, Relativistic Density Functional

• Nuclear Correlations in Matter

Generalized Relativistic Density Functional, Light and Heavy Clusters, Low-Density Limit, Scattering Correlations, Neutron Matter

• Coulomb Correlations in Matter

Coulomb Interaction in Matter, One-Component Plasma, Gas/Liquid Phase, Solid Phase

• Summary

Introduction

Astrophysics and Equation of State

• essential ingredient in astrophysical model calculations:

Equation(s) of State (EoS) of dense matter

- \Rightarrow dynamical evolution of supernovae
- \Rightarrow static properties of neutron stars
- \Rightarrow conditions for nucleosynthesis
- \Rightarrow energetics, chemical composition,

transport properties, . . .

X-ray: NASA/CXC/J.Hester (ASU) Optical: NASA/ESA/J.Hester & A.Loll (ASU) Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

NASA/ESA/R.Sankrit & W.Blair (Johns Hopkins Univ.)

Astrophysics and Equation of State

essential ingredient in astrophysical model calculations:

Equation(s) of State (EoS) of dense matter

- \Rightarrow dynamical evolution of supernovae
- \Rightarrow static properties of neutron stars
- \Rightarrow conditions for nucleosynthesis
- \Rightarrow energetics, chemical composition,

transport properties, . . .

 timescale of reactions ≪ timescale of system evolution
 ⇒ equilibrium (thermal, chemical, . . .)
 ⇒ application of EoS reasonable

X-ray: NASA/CXC/J.Hester (ASU) Optical: NASA/ESA/J.Hester & A.Loll (ASU) Infrared: NASA/JPL-Caltech/R.Gehrz (Univ. Minn.)

NASA/ESA/R.Sankrit & W.Blair (Johns Hopkins Univ.)

EoS Parameters

standard choice:

• density:

 $10^{-9} \lesssim \varrho/\varrho_{\rm sat} \lesssim 10$ with nuclear saturation density $arrho_{\mathrm{sat}} pprox 2.5 \cdot 10^{14} \ \mathrm{g/cm^3}$ $(n_{\mathrm{sat}} = \varrho_{\mathrm{sat}}/m_n pprox 0.15 \ \mathrm{fm}^{-3})$

- temperature:
 - $0 \text{ MeV} \le k_B T \lesssim 50 \text{ MeV}$ $(= 5.8 \cdot 10^{11} \text{ K})$
- electron fraction: $0 \le Y_e \lesssim 0.6$

sometimes other choices more appropriate: e.g. crust of neutron stars (density \rightarrow pressure)

simulation of core-collapse supernova

T. Fischer, GSI/TU Darmstadt

EoS Constituents

most relevant particles: (at low temperatures and not too high densities)

- neutrons, protons
- nuclei
- electrons, (muons) (charge neutrality!)
- neutrinos

(often not in equilibrium, treated independently of EoS)

more particles under extreme conditions: e.g. high densities, high temperatures (hyperons, mesons, . . .)

simulation of core-collapse supernova

T. Fischer, GSI/TU Darmstadt

• many EoS developed in the past:

from simple parametizations to sophisticated models

- many investigations of detailed aspects: often restricted to particular conditions
- \Rightarrow only few realistic global EoS used in astrophysical simulations

• many EoS developed in the past:

from simple parametizations to sophisticated models

- many investigations of detailed aspects: often restricted to particular conditions
- \Rightarrow only few realistic global EoS used in astrophysical simulations

• challenge:

covering of full parameter space in a single model ⇒ combination of different features/approaches required

• many EoS developed in the past:

from simple parametizations to sophisticated models

- many investigations of detailed aspects: often restricted to particular conditions
- \Rightarrow only few realistic global EoS used in astrophysical simulations

• challenge:

covering of full parameter space in a single model ⇒ combination of different features/approaches required

• here:

- \circ effect of correlations
 - \Rightarrow formation and dissolution of clusters
 - \Rightarrow phase transition: gas/liquid \leftrightarrow solid

• many EoS developed in the past:

from simple parametizations to sophisticated models

- many investigations of detailed aspects: often restricted to particular conditions
- \Rightarrow only few realistic global EoS used in astrophysical simulations

• challenge:

covering of full parameter space in a single model ⇒ combination of different features/approaches required

• here:

• effect of correlations

 \Rightarrow formation and dissolution of clusters

 \Rightarrow phase transition: gas/liquid \leftrightarrow solid

• important distinction:

nuclear matter \leftrightarrow stellar matter

 \Rightarrow very different systems

Nuclear Matter

- only strongly interacting particles
- no electromagnetic interaction, no charge neutrality

Nuclear Matter

- only strongly interacting particles
- no electromagnetic interaction, no charge neutrality
- many-body correlations due to short-range nuclear interaction
 ⇒ clustering ⇒ liquid-gas phase transition in thermodynamic limit
 ⇒ balance attraction ↔ repulsion ⇒ feature of saturation
- characteristic nuclear matter parameters $\rho_{\rm sat}$, $E_{\rm sat}/A$, K, J, L, . . .

Nuclear Matter

- only strongly interacting particles
- no electromagnetic interaction, no charge neutrality
- many-body correlations due to short-range nuclear interaction
 - \Rightarrow clustering \Rightarrow liquid-gas phase transition in thermodynamic limit
 - \Rightarrow balance attraction \leftrightarrow repulsion \Rightarrow feature of saturation
- characteristic nuclear matter parameters $\rho_{\rm sat}$, $E_{\rm sat}/A$, K, J, L, . . .

Stellar Matter

- both hadrons and leptons
- strong and electromagnetic interaction
- condition: charge neutrality

Stellar Matter

- both hadrons and leptons
- strong and electromagnetic interaction
- condition: charge neutrality
- \bullet many-body correlations due to short-range and long-range interactions \Rightarrow
 - \circ formation of inhomogeneous matter and finite-size structures
 - \circ clustering \Rightarrow new particle species (nuclei) \Rightarrow change of chemical composition
 - \circ lattice formation \Rightarrow phase transition: liquid/gas \leftrightarrow solid
 - \circ "pasta phases"
 - modification of thermodynamic properties

Stellar Matter

- both hadrons and leptons
- strong and electromagnetic interaction
- condition: charge neutrality
- \bullet many-body correlations due to short-range and long-range interactions \Rightarrow
 - \circ formation of inhomogeneous matter and finite-size structures
 - \circ clustering \Rightarrow new particle species (nuclei) \Rightarrow change of chemical composition
 - \circ lattice formation \Rightarrow phase transition: liquid/gas \leftrightarrow solid
 - \circ "pasta phases"
 - modification of thermodynamic properties

aim:

- consider these (and more) features by extending relativistic mean-field (RMF) model for nuclei
- theoretical formulation as "density functional" with well-constrained parameters

• nuclear physics

• nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, . . .)

[1] S. Typel, Phys. Rev. C 71 (2005) 064301

Stefan Typel

Constraints

• nuclear physics

nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, . . .)
 nuclear matter (saturation properties, characteristic parameters, . . .)

 $[1]\ S.\ Typel,\ Phys.\ Rev.\ C\ 71\ (2005)\ 064301$

[2] J.M. Lattimer, Y. Lim, arXiv:1203.4286

Constraints

• nuclear physics

nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, . . .)
 nuclear matter (saturation properties, characteristic parameters, . . .)
 heavy ion collisions (flow, particle production fragment yields . . .)

• heavy-ion collisions (flow, particle production, fragment yields, . . .)

[1] S. Typel, Phys. Rev. C 71 (2005) 064301

[2] J.M. Lattimer, Y. Lim, arXiv:1203.4286

[3] T. Klähn et al., Phys. Rev. C 74 (2006) 035802

Constraints

• nuclear physics

• nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, . . .)

- nuclear matter (saturation properties, characteristic parameters, . . .)
- heavy-ion collisions (flow, particle production, fragment yields, . . .)

• astrophysics

• compact stars (static properties, cooling, . . .)

• interacting many-body system

 \Rightarrow information on correlations in spectral functions

- interacting many-body system
 - \Rightarrow information on correlations in spectral functions
- approximation: quasiparticles with self-energies
 - \circ change of particle properties
 - \circ reduction of residual correlations
 - \circ definition of chemical composition?
 - \circ extreme case: uncorrelated quasiparticles

- interacting many-body system
 - \Rightarrow information on correlations in spectral functions
- approximation: quasiparticles with self-energies
 - \circ change of particle properties
 - \circ reduction of residual correlations
 - \circ definition of chemical composition?
 - \circ extreme case: uncorrelated quasiparticles
- quasiparticle concept very successful in nuclear physics
 - ⇒ phenomenological mean-field models (e.g. Skyrme, Gogny, relativistic) with only nucleons as degrees of freedom

- interacting many-body system
 - \Rightarrow information on correlations in spectral functions
- approximation: quasiparticles with self-energies
 - \circ change of particle properties
 - \circ reduction of residual correlations
 - \circ definition of chemical composition?
 - \circ extreme case: uncorrelated quasiparticles
- quasiparticle concept very successful in nuclear physics
 - ⇒ phenomenological mean-field models (e.g. Skyrme, Gogny, relativistic) with only nucleons as degrees of freedom
- low densities: clusters as new degrees of freedom
 - \Rightarrow benchmark: virial equation of state

(see e.g. C. J. Horowitz, A. Schwenk, Nucl. Phys. A 776 (2006) 55)

- interacting many-body system
 - \Rightarrow information on correlations in spectral functions
- approximation: quasiparticles with self-energies
 - \circ change of particle properties
 - \circ reduction of residual correlations
 - \circ definition of chemical composition?
 - \circ extreme case: uncorrelated quasiparticles
- quasiparticle concept very successful in nuclear physics
 - ⇒ phenomenological mean-field models (e.g. Skyrme, Gogny, relativistic) with only nucleons as degrees of freedom
- Iow densities: clusters as new degrees of freedom
 → benchmark: virial equation of state
 - \Rightarrow benchmark: virial equation of state

(see e.g. C. J. Horowitz, A. Schwenk, Nucl. Phys. A 776 (2006) 55)

 \Rightarrow transition in unified model?

• constituents: nucleons $\Rightarrow \psi_i$ (i = n, p) Dirac spinors

- constituents: nucleons $\Rightarrow \psi_i$ (i = n, p) Dirac spinors
- interaction: \circ strong \Rightarrow meson fields A_m ($m = \sigma, \omega, \rho$, convenient auxiliary fields) \circ electromagnetic $\Rightarrow A_{\gamma}$

- constituents: nucleons $\Rightarrow \psi_i \ (i = n, p)$ Dirac spinors
- interaction: strong ⇒ meson fields A_m (m = σ, ω, ρ, convenient auxiliary fields)
 electromagnetic ⇒ A_γ
- energy of nucleus $E = \int d^3 r \, \varepsilon(\vec{r}) + E_{\rm cm} + E_{\rm pair} + \dots$

with energy density functional

$$\varepsilon = \sum_{i} w_{i} \left[t_{i} + (m_{i} - \Gamma_{i\sigma}A_{\sigma})n_{i}^{(s)} + (\Gamma_{i\omega}A_{\omega} + \Gamma_{i\rho}A_{\rho} + \Gamma_{i\gamma}A_{\gamma})n_{i} \right]$$

$$+\frac{1}{2}\left(m_{\sigma}^{2}A_{\sigma}^{2}+\vec{\nabla}A_{\sigma}\cdot\vec{\nabla}A_{\sigma}-m_{\omega}^{2}A_{\omega}^{2}-\vec{\nabla}A_{\omega}\cdot\vec{\nabla}A_{\omega}-m_{\rho}^{2}A_{\rho}^{2}-\vec{\nabla}A_{\rho}\cdot\vec{\nabla}A_{\rho}-\vec{\nabla}A_{\gamma}\cdot\vec{\nabla}A_{\gamma}\right)$$

• single-particle densities $t_i = \bar{\psi}_i \vec{\gamma} \cdot \hat{\vec{p}} \psi_i$ $n_i^{(s)} = \bar{\psi}_i \psi_i$ $n_i = \bar{\psi}_i \gamma_0 \psi_i$ • occupation numbers w_i

- constituents: nucleons $\Rightarrow \psi_i \ (i = n, p)$ Dirac spinors
- interaction: strong ⇒ meson fields A_m (m = σ, ω, ρ, convenient auxiliary fields)
 electromagnetic ⇒ A_γ
- energy of nucleus $E = \int d^3 r \, \varepsilon(\vec{r}) + E_{\rm cm} + E_{\rm pair} + \dots$

with energy density functional

$$\varepsilon = \sum_{i} w_{i} \left[t_{i} + (m_{i} - \Gamma_{i\sigma}A_{\sigma})n_{i}^{(s)} + (\Gamma_{i\omega}A_{\omega} + \Gamma_{i\rho}A_{\rho} + \Gamma_{i\gamma}A_{\gamma})n_{i} \right]$$

$$+\frac{1}{2}\left(m_{\sigma}^{2}A_{\sigma}^{2}+\vec{\nabla}A_{\sigma}\cdot\vec{\nabla}A_{\sigma}-m_{\omega}^{2}A_{\omega}^{2}-\vec{\nabla}A_{\omega}\cdot\vec{\nabla}A_{\omega}-m_{\rho}^{2}A_{\rho}^{2}-\vec{\nabla}A_{\rho}\cdot\vec{\nabla}A_{\rho}-\vec{\nabla}A_{\gamma}\cdot\vec{\nabla}A_{\gamma}\right)$$

- \circ single-particle densities $t_i = \bar{\psi}_i \vec{\gamma} \cdot \hat{\vec{p}} \psi_i$ $n_i^{(s)} = \bar{\psi}_i \psi_i$ $n_i = \bar{\psi}_i \gamma_0 \psi_i$
- \circ occupation numbers w_i
- density dependent meson-nucleon couplings

$$\Gamma_{im} = g_{im}\Gamma_m(\varrho) \quad \varrho = n_n + n_p$$

- \Rightarrow medium dependent interaction
- \Rightarrow rearrangement contributions to self-energies
- \circ $\Gamma_{i\gamma} = Q_i \Gamma_{\gamma}$ with charge number Q_i

Nuclear Correlations in Matter

• ideal mixture of independent particles, no interaction \Rightarrow Nuclear Statistical Equilibrium/Law of Mass Action

most simple approach, suppression of nuclei \Rightarrow excluded volume mechanism

• ideal mixture of independent particles, no interaction
 ⇒ Nuclear Statistical Equilibrium/Law of Mass Action

most simple approach, suppression of nuclei \Rightarrow excluded volume mechanism

• mixture of interacting particles/correlations

\Rightarrow Virial Equation of State

model-independent low-density benchmark

• ideal mixture of independent particles, no interaction
 ⇒ Nuclear Statistical Equilibrium/Law of Mass Action

most simple approach, suppression of nuclei \Rightarrow excluded volume mechanism

• mixture of interacting particles/correlations

\Rightarrow Virial Equation of State

model-independent low-density benchmark

considering medium effects with increasing density
 ⇒ Quantum Statistical/Generalized Beth-Uhlenbeck Approach
 correlations of quasiparticles with medium-dependent properties,
 microscopic origin of cluster dissolution/Mott effect (action of Pauli principle)

- ideal mixture of independent particles, no interaction
 ⇒ Nuclear Statistical Equilibrium/Law of Mass Action
 most simple approach, suppression of nuclei ⇒ excluded volume mechanism
- mixture of interacting particles/correlations

\Rightarrow Virial Equation of State

model-independent low-density benchmark

- considering medium effects with increasing density
 ⇒ Quantum Statistical/Generalized Beth-Uhlenbeck Approach
 correlations of quasiparticles with medium-dependent properties,
 microscopic origin of cluster dissolution/Mott effect (action of Pauli principle)
- interpolation from low to high densities around nuclear saturation
 ⇒ Generalized Relativistic Density Functional
 correct limits, formation and dissolution of nuclei

Generalized Relativistic Density Functional

- include **new degrees of freedom** with medium-dependent properties:
 - \circ light nuclei (deuteron, triton, helion, α -particle)
 - nucleon-nucleon scattering correlations (nn, pp, np channels)
 - \circ heavy nuclei (A > 4)
 - \Rightarrow interaction via minimal coupling to mesons/photon with scaled strengths
Generalized Relativistic Density Functional

- include **new degrees of freedom** with medium-dependent properties:
 - \circ light nuclei (deuteron, triton, helion, α -particle)
 - nucleon-nucleon scattering correlations (nn, pp, np channels)
 - \circ heavy nuclei (A > 4)
 - \Rightarrow interaction via minimal coupling to mesons/photon with scaled strengths

model parameters

- o vacuum masses of nucleons, electrons, nuclei
- effective resonance energies and degeneracy factors
- density-dependent meson-nucleon/nucleus couplings, fitted to properties of atomic nuclei
- medium-dependent mass shifts of clusters (bound and continuum states)

Details:

- S. Typel, G. Röpke, T. Klähn, D. Blaschke, H.H. Wolter, Phys. Rev. C 81 (2010) 015803
- M. D. Voskresenskaya, S. Typel, Nucl. Phys. A 887 (2012) 42
- G. Röpke, N.-U. Bastian, D. Blaschke, T. Klähn, S. Typel, H.H. Wolter, Nucl. Phys. A 897 (2013) 70

Light Nuclei

shift of binding energies/masses

- solve in-medium Schrödinger equation with realistic nucleon-nucleon potentials
- parametrization of shifts Δm_i
- main effect: Pauli principle
 ⇒ blocking of states in the medium!

Light Nuclei

shift of binding energies/masses

- solve in-medium Schrödinger equation with realistic nucleon-nucleon potentials
- parametrization of shifts Δm_i
- main effect: Pauli principle
 ⇒ blocking of states in the medium!
- example: symmetric nuclear matter, nuclei at rest in medium
- in vacuum: experimental binding energies
- nuclei become unbound $(B_i < 0)$ with increasing density of medium
- dissolution of clusters at high densities ⇒ Mott effect

inhomogeneous matter at low densities

- comparison with uniform matter
 - \Rightarrow increase in binding energy

inhomogeneous matter at low densities

- comparison with uniform matter
 ⇒ increase in binding energy
- spherical Wigner-Seitz cell calculation
 - generalized rel. density functional
 extended Thomas-Fermi approximation
 electrons for charge compensation
 heavy nucleus surrounded by gas of nucleons
- self-consistent calculation with interacting nucleons, electrons

inhomogeneous matter at low densities

- comparison with uniform matter
 ⇒ increase in binding energy
- spherical Wigner-Seitz cell calculation
 - generalized rel. density functional
 extended Thomas-Fermi approximation
 electrons for charge compensation
 heavy nucleus surrounded by gas of nucleons and light clusters
- self-consistent calculation with interacting nucleons, electrons and light nuclei
- increased probability of finding light clusters at surface of heavy nucleus

 traditional approach in EoS tables:

 single-nucleus approximation (SNA) (one representative heavy nucleus)
 no distribution of nuclei

- traditional approach in EoS tables:

 single-nucleus approximation (SNA) (one representative heavy nucleus)
 no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)

- traditional approach in EoS tables:

 single-nucleus approximation (SNA) (one representative heavy nucleus)
 no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 vacuum binding energies needed
 modium dependent chift of bindi
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)

- traditional approach in EoS tables:

 single-nucleus approximation (SNA) (one representative heavy nucleus)
 no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 vacuum binding energies needed
 modium dependent chift of bindi
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)

- traditional approach in EoS tables:

 single-nucleus approximation (SNA) (one representative heavy nucleus)
 no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)

- traditional approach in EoS tables:

 single-nucleus approximation (SNA) (one representative heavy nucleus)
 no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)

- traditional approach in EoS tables:

 single-nucleus approximation (SNA) (one representative heavy nucleus)
 no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)

- traditional approach in EoS tables:

 single-nucleus approximation (SNA) (one representative heavy nucleus)
 no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)

- traditional approach in EoS tables:
 single-nucleus approximation (SNA) (one representative heavy nucleus)
 - \circ no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 - vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA
- medium effects:
 - relative stabilization of heavier and exotic nuclei
 - dissolution of nuclei depending on density, temperature, np-asymmetry
- parametrization of mass shifts Δm_i , only preliminary results

ERDF - 15

Low-Density Limit I

- only two-body correlations relevant
- comparison of generalized relativistic density functional with virial Equation of State (model-independent benchmark, depends only on experimental binding energies and phase shifts $\delta_l^{(ij)}$)

Low-Density Limit I

- only two-body correlations relevant
- comparison of generalized relativistic density functional with virial Equation of State (model-independent benchmark, depends only on experimental binding energies and phase shifts δ_l^(ij))
- \bullet fugacity expansion of thermodynamic potential Ω
 - \Rightarrow consistency relations with virial coefficients and zero-density meson-nucleon couplings $C_m = \Gamma_m^2/m_m^2$ $(m = \omega, \sigma, \rho, \delta)$
 - $\Rightarrow \text{ effective resonance energies } E_{ij}(T) \quad (i, j = n, p)$ representing NN scattering correlations
 - \Rightarrow effective degeneracy factors $g_{ij}^{(\text{eff})}(T)$

(cf. treatment of excited states of nuclei)

 \Rightarrow relativistic corrections

Low-Density Limit II

• zero temperature limit of consistency relations without scattering correlations

•
$$C_{\omega} - C_{\sigma} = \frac{\pi}{2m} \left[a_{nn}({}^{1}S_{0}) + a_{pp}({}^{1}S_{0}) + a_{np}({}^{1}S_{0}) + 3a_{np}({}^{3}S_{1}) \right]$$

•
$$C_{\rho} - C_{\delta} = \frac{\pi}{2m} \left[a_{nn}({}^{1}S_{0}) + a_{pp}({}^{1}S_{0}) - a_{np}({}^{1}S_{0}) - 3a_{np}({}^{3}S_{1}) \right]$$

with scattering lengths a_{ij} and assuming $m = m_n = m_p$

Low-Density Limit II

• zero temperature limit of consistency relations without scattering correlations

$$\circ \quad C_{\omega} - C_{\sigma} = \frac{\pi}{2m} \left[a_{nn}({}^{1}S_{0}) + a_{pp}({}^{1}S_{0}) + a_{np}({}^{1}S_{0}) + 3a_{np}({}^{3}S_{1}) \right]$$

•
$$C_{\rho} - C_{\delta} = \frac{\pi}{2m} \left[a_{nn}({}^{1}S_{0}) + a_{pp}({}^{1}S_{0}) - a_{np}({}^{1}S_{0}) - 3a_{np}({}^{3}S_{1}) \right]$$

with scattering lengths a_{ij} and assuming $m = m_n = m_p$

• comparison of experiment with RMF parametrizations

	exp.	DD2 [1]	DD-ME δ [2]
		(ω,σ, ho)	$(\omega,\sigma, ho,\delta)$
$C_{\omega} - C_{\sigma} [\mathrm{fm}^2]$	-14.15	-5.39	-4.90
$C_{ ho} - C_{\delta} [\mathrm{fm}^2]$	-9.61	2.48	2.55

[1] S. Typel et al., Phys. Rev. C 81 (2010) 015803, [2] X. Roca-Maza et al., Phys. Rev. C 84 (2011) 054309

- \Rightarrow conventional mean-field models don't reproduce effect of correlations at very-low densities
- \Rightarrow explicit scattering correlations needed

NN Scattering Correlations

 \circ effective resonance energies

$$\sum_{l} g_{l}^{(ij)} \int \frac{dE}{\pi} \frac{d\delta_{l}^{(ij)}}{dE} \exp\left(-\frac{E}{T}\right) = \pm g_{0}^{(ij)} \exp\left(-\frac{E_{ij}}{T}\right)$$

effective-range expansion for s-wave phase shifts:

$$k \cot \delta_0^{(ij)} = -\frac{1}{a_{ij}} + \frac{r_{ij}}{2}k^2$$

 \Rightarrow analytical results low T: $I_0^{(ij)}(T) \rightarrow -a_{ij}\sqrt{\mu_{ij}T/(2\pi)}$ unitary limit: $E_{ij}(T) = T \ln 2$

NN Scattering Correlations

• effective resonance energies $\sum g_l^{(ij)} \int \frac{dE}{\pi} \frac{d\delta_l^{(ij)}}{dE} \exp\left(-\frac{E}{T}\right) = \pm g_0^{(ij)} \exp\left(-\frac{E_{ij}}{T}\right)$

 $\sum_{l} g_{l} \int \frac{1}{\pi} \frac{dE}{dE} \exp\left(-\frac{1}{T}\right) =$

• effective degeneracy factors

$$S = \sum_{l} g_{l}^{(nn)} \int \frac{dE}{\pi} \frac{d\delta_{l}^{(nn)}}{dE} \exp\left(-\frac{E}{T}\right) = g_{nn}^{(\text{eff})}(T) \exp\left(-\frac{E_{nn}}{T}\right) - g_{n}^{2} \frac{\lambda_{nn}^{3} C_{+}}{\lambda_{n}^{6} 2T}$$

$$C_{+} = C_{\omega} - C_{\sigma} + C_{\rho} - C_{\delta}, \qquad \lambda_{i} = \sqrt{2\pi/(m_{i}T)}$$

comparison: different effects

• nonrelativistic ideal gas

comparison: different effects

- nonrelativistic ideal gas
 - \Downarrow rel. kinematics + quantum statistics
- relativistic Fermi gas

comparison: different effects

- nonrelativistic ideal gas
 - \Downarrow rel. kinematics + quantum statistics
- relativistic Fermi gas
 - \Downarrow two-body correlations
- virial EoS with relativistic correction

comparison: different effects

- nonrelativistic ideal gas
 \$\U0354\$ rel. kinematics + quantum statistics
- relativistic Fermi gas

 \Downarrow two-body correlations

- virial EoS with relativistic correction (not included in standard virial EoS)
 - \Downarrow mean-field effects
- standard RMF model with density dependent couplings

comparison: different effects

- nonrelativistic ideal gas
 \$\U0354\$ rel. kinematics + quantum statistics
- relativistic Fermi gas

 \Downarrow two-body correlations

• virial EoS with relativistic correction (not included in standard virial EoS)

 \Downarrow mean-field effects

- standard RMF model with density dependent couplings
 ↓ two-body correlations
- generalized relativistic density functional (gRDF) with contributions from nn scattering

comparison: p/n in different models (ideal gas: p/n = T)

STOS: H. Shen et al., Nucl. Phys. A 637 (1998) 435 (TM1)
SH: G. Shen et al., Phys. Rev. C 83 (2011) 065808 (FSUGold)
LS 220: J.M. Lattimer et al., Nucl. Phys. A 535 (1991) 331 (K = 220 MeV)

Light Clusters and Continuum Correlations

• particle fractions

$$X_i = A_i \frac{n_i}{n_b} \qquad n_b = \sum_i A_i n_i$$

• low densities:

two-body correlations most important

 high densities: dissolution of clusters
 ⇒ Mott effect

generalized relativistic density functional

(without heavy clusters)

Light Clusters and Continuum Correlations

• particle fractions

$$X_i = A_i \frac{n_i}{n_b} \qquad n_b = \sum_i A_i n_i$$

• low densities:

two-body correlations most important

- high densities: dissolution of clusters
 ⇒ Mott effect
- effect of NN continuum correlations

 o dashed lines: without continuum
 o solid lines: with continuum
 ⇒ reduction of deuteron fraction,
 - redistribution of other particles
- correct limits with generalized relativistic density functional

generalized relativistic density functional

(without heavy clusters)

Coulomb Correlations in Matter

• explicit potential A_{γ} only in systems with spatially inhomogeneous charge distribution, homogeneous approaches for EoS \Rightarrow effective treatment of Coulomb effects

- explicit potential A_{γ} only in systems with spatially inhomogeneous charge distribution, homogeneous approaches for EoS \Rightarrow effective treatment of Coulomb effects
- crystal:

lattice-periodic Coulomb potential \rightarrow potential in Wigner-Seitz approximation: single nucleus and electron background in spherical cell with size such that total charge vanishes \Rightarrow screening of Coulomb potential

- explicit potential A_{γ} only in systems with spatially inhomogeneous charge distribution, homogeneous approaches for EoS \Rightarrow effective treatment of Coulomb effects
- crystal:

lattice-periodic Coulomb potential \rightarrow potential in Wigner-Seitz approximation: single nucleus and electron background in spherical cell with size such that total charge vanishes \Rightarrow screening of Coulomb potential

- analytical solution for homogeneously charged sphere (ion, radius R, charge Qe) and constant electron density $n_e = 3/(4\pi R_e^3) = Qn_{ion}$
 - $\Rightarrow \text{Coulomb energy} \quad E_C^{(\text{WS})} = E_C^{(\text{sph})} + \Delta E_C^{(\text{WS})}$

- explicit potential A_{γ} only in systems with spatially inhomogeneous charge distribution, homogeneous approaches for EoS \Rightarrow effective treatment of Coulomb effects
- crystal:

lattice-periodic Coulomb potential \rightarrow potential in Wigner-Seitz approximation: single nucleus and electron background in spherical cell with size such that total charge vanishes \Rightarrow screening of Coulomb potential

- analytical solution for homogeneously charged sphere (ion, radius R, charge Qe) and constant electron density $n_e = 3/(4\pi R_e^3) = Qn_{ion}$
 - $\Rightarrow {\rm Coulomb\ energy} \quad E_C^{\rm (WS)} = E_C^{\rm (sph)} + \Delta E_C^{\rm (WS)} \quad {\rm with} \quad$

 $E_C^{(\text{sph})} = \frac{3}{5} \frac{Q^2 e^2}{R}$ part of energy of nucleus

 $\Delta E_C^{(\rm WS)} = -\frac{9}{10} \frac{Q^2 e^2}{R_e} \left(1 - \frac{R^2}{3R_e^2} \right) \quad \text{energy shift with finite-size correction}$

 \Rightarrow approximation for lattice Coulomb energy, often applied in EoS models in liquid phase (?)

One-Component Plasma (OCP) I

• N ions (point particles, charge Qe > 0) in homogeneous background of electrons (density $n_e = 3/(4\pi a_e^3)$) at temperature T

One-Component Plasma (OCP) I

- N ions (point particles, charge Qe > 0) in homogeneous background of electrons (density $n_e = 3/(4\pi a_e^3)$) at temperature T
- classical model with screened Coulomb interaction between ions (calculation: Ewald method)
- internal energy of ions: $U_{\rm ion} = U_{\rm kin} + U_{\rm pot}$ with $U_{\rm kin} = \frac{3}{2}NT$
- N ions (point particles, charge Qe > 0) in homogeneous background of electrons (density $n_e = 3/(4\pi a_e^3)$) at temperature T
- classical model with screened Coulomb interaction between ions (calculation: Ewald method)
- internal energy of ions: $U_{\rm ion} = U_{\rm kin} + U_{\rm pot}$ with $U_{\rm kin} = \frac{3}{2}NT$
- Monte Carlo simulation, only one relevant parameter $\Gamma =$

$$\frac{Q^2 e^2}{a_e T}$$
 for $U_{\rm pot}/(NT)$

- N ions (point particles, charge Qe > 0) in homogeneous background of electrons (density $n_e = 3/(4\pi a_e^3)$) at temperature T
- classical model with screened Coulomb interaction between ions (calculation: Ewald method)
- internal energy of ions: $U_{\rm ion} = U_{\rm kin} + U_{\rm pot}$ with $U_{\rm kin} = \frac{3}{2}NT$
- Monte Carlo simulation, only one relevant parameter $\Gamma = \frac{Q^2 e^2}{a_e T}$

$$\frac{2}{7}$$
 for $U_{\rm pot}/(NT)$

• example: 1024 ions in $8 \times 8 \times 8$ bcc lattice

ERDF - 23

Stefan Typel

• limits:

$$\Gamma \to 0$$
: liquid phase $U_{\rm pot}^{(L)}/(NT) \to -\frac{\sqrt{3}}{2}\Gamma^{3/2}$
(Debye-Hückel)

 $\Gamma \to \infty$: solid phase $U_{\rm pot}^{(S)}/(NT) \to \frac{3}{2} + C_M \Gamma$

 $(C_M^{(\mathrm{bcc})} = -0.895929255682$ Madelung constant)

• limits:

$$\Gamma \to 0$$
: liquid phase $U_{\rm pot}^{(L)}/(NT) \to -\frac{\sqrt{3}}{2}\Gamma^{3/2}$
(Debye-Hückel)

 $\frac{3}{2} + C_M \Gamma$

$$\Gamma \to \infty$$
 : solid phase $U_{\rm pot}^{(S)}/(NT) \to$

 $(C_M^{(\mathrm{bcc})} = -0.895929255682$ Madelung constant)

• parametrization of Monte Carlo results

(parametrization: H.E. DeWitt and W. Slattery, Contrib. Plasma Phys. 39 (1999) 97)

• limits:

$$\Gamma \to 0$$
: liquid phase $U_{\rm pot}^{(L)}/(NT) \to -\frac{\sqrt{3}}{2}\Gamma^{3/2}$
(Debye-Hückel)

$$\Gamma \to \infty$$
 : solid phase $U_{\rm pot}^{(S)}/(NT) \to \frac{3}{2} + C_M \Gamma$

 $(C_M^{(bcc)} = -0.895929255682$ Madelung constant)

- parametrization of Monte Carlo results
- free energies: $F_{\text{pot}}^{(L)}$, $F_{\text{pot}}^{(S)}$ from integration $F^{(L)}(\Gamma) = e\Gamma U U + (\Gamma') = F^{(S)}(\Gamma)$

$$\frac{T_{\text{pot}}(\Gamma)}{NT} = \int_0^1 \frac{d\Gamma'}{\Gamma'} \frac{U_{\text{pot}}(\Gamma)}{NT} \quad \frac{T_{\text{pot}}(\Gamma)}{NT} = \dots$$

 $\Rightarrow F^{(L)}, F^{(S)}$ (integration constants !)

(parametrization: H.E. DeWitt and W. Slattery, Contrib. Plasma Phys. 39 (1999) 97)

• limits:

$$\Gamma \to 0$$
 : liquid phase $U_{\rm pot}^{(L)}/(NT) \to -\frac{\sqrt{3}}{2}\Gamma^{3/2}$
(Debye-Hückel)

$$\Gamma \to \infty$$
 : solid phase $U_{\rm pot}^{(S)}/(NT) \to \frac{3}{2} + C_M \Gamma$

 $(C_M^{(bcc)} = -0.895929255682 \text{ Madelung constant})$

- parametrization of Monte Carlo results
- free energies: $F_{\text{pot}}^{(L)}$, $F_{\text{pot}}^{(S)}$ from integration $\frac{F_{\text{pot}}^{(L)}(\Gamma)}{NT} = \int_{0}^{\Gamma} \frac{d\Gamma' U_{\text{pot}}(\Gamma')}{\Gamma' NT} \quad \frac{F_{\text{pot}}^{(S)}(\Gamma)}{NT} = \dots$ $\Rightarrow F^{(L)}, F^{(S)} \text{ (integration constants !)}$
- melting point: $F^{(L)}(\Gamma_m) = F^{(S)}(\Gamma_m)$ $\Rightarrow \Gamma_m \approx 175$
 - \circ very sensitive to Coulomb correlations
 - Wigner-Seitz approximation fails

(parametrization: H.E. DeWitt and W. Slattery, Contrib. Plasma Phys. 39 (1999) 97)

Stefan Typel

constituents (i):

- baryons (n, p, Λ , Σ^+ , Σ^0 , Σ^- , Ξ^0 , Ξ^- , ...) \Rightarrow fermions ($\sigma_i = +1$)
- mesons $(\pi^+/\pi^-, \pi^0, K^+/K^-, K^0/\bar{K}^0, \omega, \rho, \dots) \Rightarrow$ bosons $(\sigma_i = -1)$
- light nuclei (²H, ³H, ³He, ⁴He) \Rightarrow fermions/bosons
- heavy nuclei $({}^{A_i}Z_i)$, NN scattering correlations \Rightarrow classical particles $(\sigma_i = 0)$
- leptons (e^-/e^+ , μ^-/μ^+ , $\nu_e/\bar{\nu}_e$, $\nu_\mu/\bar{\nu}_\mu$, . . .) \Rightarrow fermions
- photons $(\gamma) \Rightarrow$ bosons

constituents (i):

- baryons (n, p, Λ , Σ^+ , Σ^0 , Σ^- , Ξ^0 , Ξ^- , ...) \Rightarrow fermions ($\sigma_i = +1$)
- mesons $(\pi^+/\pi^-, \pi^0, K^+/K^-, K^0/\bar{K}^0, \omega, \rho, \dots) \Rightarrow$ bosons $(\sigma_i = -1)$
- light nuclei (²H, ³H, ³He, ⁴He) \Rightarrow fermions/bosons
- heavy nuclei $({}^{A_i}Z_i)$, NN scattering correlations \Rightarrow classical particles $(\sigma_i = 0)$
- leptons (e^-/e^+ , μ^-/μ^+ , $\nu_e/\bar{\nu}_e$, $\nu_\mu/\bar{\nu}_\mu$, . . .) \Rightarrow fermions
- photons $(\gamma) \Rightarrow$ bosons
- \circ consider particles ($\eta_i = +1$) and antiparticles ($\eta_i = -1$)
- \circ degeneracy factors g_i
- distinguish individual constituents $(g_i = \text{const.}, i \in \mathcal{I})$ and effective constituents $(g_i(T, n_j), i \in \mathcal{E})$

constituents (i):

- baryons (n, p, Λ , Σ^+ , Σ^0 , Σ^- , Ξ^0 , Ξ^- , ...) \Rightarrow fermions ($\sigma_i = +1$)
- mesons $(\pi^+/\pi^-, \pi^0, K^+/K^-, K^0/\bar{K}^0, \omega, \rho, \dots) \Rightarrow$ bosons $(\sigma_i = -1)$
- light nuclei (²H, ³H, ³He, ⁴He) \Rightarrow fermions/bosons
- heavy nuclei $({}^{A_i}Z_i)$, NN scattering correlations \Rightarrow classical particles $(\sigma_i = 0)$
- leptons (e^-/e^+ , μ^-/μ^+ , $\nu_e/\bar{\nu}_e$, $\nu_\mu/\bar{\nu}_\mu$, . . .) \Rightarrow fermions
- photons $(\gamma) \Rightarrow$ bosons
- \circ consider particles ($\eta_i = +1$) and antiparticles ($\eta_i = -1$)
- \circ degeneracy factors g_i
- distinguish individual constituents $(g_i = \text{const.}, i \in \mathcal{I})$ and effective constituents $(g_i(T, n_j), i \in \mathcal{E})$
- quasi-particles with relativistic energy

$$e_i^{(\eta_i)}(k) = \sqrt{k^2 + (m_i - S_i)^2} + \eta_i V_i$$

 S_i scalar potential, V_i vector potential m_i rest mass in vacuum, k momentum

interaction

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in \mathcal{V} = \{\omega, \rho, \phi, \ldots\}$

interaction

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in \mathcal{V} = \{\omega, \rho, \phi, \ldots\}$
- \circ represented by (classical) fields A_m with mass m_m
- coupling to constituents: $\Gamma_{im} = g_{im}\Gamma_m$ with scaling factors g_{im} and density dependent $\Gamma_m = \Gamma_m(\varrho)$, $\varrho = \sum_i B_i n_i$

interaction

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in \mathcal{V} = \{\omega, \rho, \phi, \ldots\}$
- \circ represented by (classical) fields A_m with mass m_m
- coupling to constituents: $\Gamma_{im} = g_{im}\Gamma_m$ with scaling factors g_{im} and density dependent $\Gamma_m = \Gamma_m(\varrho)$, $\varrho = \sum_i B_i n_i$
- \circ scalar potential $S_i = \sum_{m \in \mathcal{S}} \Gamma_{im} n_m^{(\mathrm{source})} \Delta m_i$

with medium-dependent mass shift $\Delta m_i(T, n_j)$

• vector potential
$$V_i = \sum_{m \in \mathcal{V}} \Gamma_{im} n_m^{(\text{source})} + V_i^{(\text{em})} + V_i^{(r)}$$

interaction

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in \mathcal{V} = \{\omega, \rho, \phi, \ldots\}$
- \circ represented by (classical) fields A_m with mass m_m
- coupling to constituents: $\Gamma_{im} = g_{im}\Gamma_m$ with scaling factors g_{im} and density dependent $\Gamma_m = \Gamma_m(\varrho)$, $\varrho = \sum_i B_i n_i$

$$\circ$$
 scalar potential $S_i = \sum_{m \in S} \Gamma_{im} n_m^{(\text{source})} - \Delta m_i$

with medium-dependent mass shift $\Delta m_i(T, n_j)$

• vector potential
$$V_i = \sum_{m \in \mathcal{V}} \Gamma_{im} n_m^{(\text{source})} + V_i^{(\text{em})} + V_i^{(r)}$$

with electromagnetic contribution $V_i^{(em)} = T f_L(\Gamma_i)$ from fit of OCP data assuming linear mixing rule ($\Gamma_i = Q_i^{5/3} \Gamma_Q$, $\Gamma_Q = e^2/(a_Q T)$, $a_Q = [3/(4\pi n_Q)]^{1/3}$) and rearrangement contribution $V_i^{(r)} = B_i V^{(r)} + U_i^{(mass)} + U_i^{(em)} + U_i^{(deg)}$ $V^{(r)} = \sum_{m \in \mathcal{V}} \Gamma'_m A_m n_m^{(source)} - \sum_{m \in \mathcal{S}} \Gamma'_m A_m n_m^{(source)}$, $\Gamma'_m = d\Gamma_m/d\varrho$

effective density functional

• grand canonical potential density $\omega^{(L)} = \omega^{(L)}_{qp} + \omega^{(L)}_{strong} + \omega^{(L)}_{em}$

effective density functional

- grand canonical potential density $\omega^{(L)} = \omega^{(L)}_{qp} + \omega^{(L)}_{strong} + \omega^{(L)}_{em}$
- contribution of quasi-particles

$$\omega_{\rm qp}^{(L)} = \sum_{i \in \mathcal{I}} g_i \left(\omega_i^{(r)} + \omega_i^{(p)} \delta_{\sigma_i, +1} + \omega_i^{(c)} \delta_{\sigma_i, -1} \right) + \sum_{i \in \mathcal{E}} \left(g_i \omega_i^{(r)} - U_i^{(\deg)} n_i \right)$$

effective density functional

- grand canonical potential density $\omega^{(L)} = \omega^{(L)}_{qp} + \omega^{(L)}_{strong} + \omega^{(L)}_{em}$
- contribution of quasi-particles

$$\boldsymbol{\omega}_{\mathrm{qp}}^{(L)} = \sum_{i \in \mathcal{I}} g_i \left(\boldsymbol{\omega}_i^{(r)} + \boldsymbol{\omega}_i^{(p)} \delta_{\sigma_i, +1} + \boldsymbol{\omega}_i^{(c)} \delta_{\sigma_i, -1} \right) + \sum_{i \in \mathcal{E}} \left(g_i \boldsymbol{\omega}_i^{(r)} - U_i^{(\mathrm{deg})} n_i \right)$$

- regular contribution $\omega_i^{(r)} = -\frac{T}{\sigma_i} \int \frac{d^3k}{(2\pi)^3} \sum_{\eta_i} \ln[1 + \sigma_i \exp(-E_i^{(\eta_i)}/T)]$
- with $E_i^{(\eta_i)} = e_i^{(\eta_i)} \mu_i$
- pairing contribution $\omega_i^{(p)} = \dots$
- \circ condensate contribution $\omega_i^{(c)} = \dots$

effective density functional

- grand canonical potential density $\omega^{(L)} = \omega^{(L)}_{qp} + \omega^{(L)}_{strong} + \omega^{(L)}_{em}$
- contribution of quasi-particles

$$\boldsymbol{\omega}_{\mathrm{qp}}^{(L)} = \sum_{i \in \mathcal{I}} g_i \left(\boldsymbol{\omega}_i^{(r)} + \boldsymbol{\omega}_i^{(p)} \delta_{\sigma_i, +1} + \boldsymbol{\omega}_i^{(c)} \delta_{\sigma_i, -1} \right) + \sum_{i \in \mathcal{E}} \left(g_i \boldsymbol{\omega}_i^{(r)} - U_i^{(\mathrm{deg})} n_i \right)$$

• regular contribution $\omega_i^{(r)} = -\frac{T}{\sigma_i} \int \frac{d^3k}{(2\pi)^3} \sum_{\eta_i} \ln[1 + \sigma_i \exp(-E_i^{(\eta_i)}/T)]$

• •

with
$$E_i^{(\eta_i)} = e_i^{(\eta_i)} - \mu_i$$

 \circ pairing contribution $\omega_i^{(p)} = \dots$
 \circ condensate contribution $\omega_i^{(c)} = \dots$

• contribution from strong interaction

$$\omega_{\text{strong}}^{(L)} = \sum_{m \in \mathcal{S}} m_m^2 A_m^2 - \sum_{m \in \mathcal{V}} m_m^2 A_m^2 - V^{(r)} \varrho - \sum_{i \in \mathcal{I} \cup \mathcal{E}} U_i^{(\text{mass})} n_i$$

effective density functional

- grand canonical potential density $\omega^{(L)} = \omega^{(L)}_{qp} + \omega^{(L)}_{strong} + \omega^{(L)}_{em}$
- contribution of quasi-particles

$$\boldsymbol{\omega}_{\mathrm{qp}}^{(L)} = \sum_{i \in \mathcal{I}} g_i \left(\boldsymbol{\omega}_i^{(r)} + \boldsymbol{\omega}_i^{(p)} \delta_{\sigma_i, +1} + \boldsymbol{\omega}_i^{(c)} \delta_{\sigma_i, -1} \right) + \sum_{i \in \mathcal{E}} \left(g_i \boldsymbol{\omega}_i^{(r)} - U_i^{(\mathrm{deg})} n_i \right)$$

- regular contribution $\omega_i^{(r)} = -\frac{T}{\sigma_i} \int \frac{d^3k}{(2\pi)^3} \sum_{\eta_i} \ln[1 + \sigma_i \exp(-E_i^{(\eta_i)}/T)]$
- with $E_i^{(\eta_i)} = e_i^{(\eta_i)} \mu_i$ \circ pairing contribution $\omega_i^{(p)} = \dots$ \circ condensate contribution $\omega_i^{(c)} = \dots$
- contribution from strong interaction

$$\omega_{\text{strong}}^{(L)} = \sum_{m \in \mathcal{S}} m_m^2 A_m^2 - \sum_{m \in \mathcal{V}} m_m^2 A_m^2 - V^{(r)} \varrho - \sum_{i \in \mathcal{I} \cup \mathcal{E}} U_i^{(\text{mass})} n_i$$

• contribution from electromagnetic interaction

$$\omega_{\text{em}}^{(L)} = -\sum_{i \in \mathcal{I} \cup \mathcal{E}} U_i^{(\text{em})} n_i$$

 $fermions \Rightarrow pairing \ correlations$

• pairing potential $v_i(k, k')$

 $\textbf{fermions} \Rightarrow \textbf{pairing correlations}$

- pairing potential $v_i(k,k')$
- \bullet pairing contribution to $\omega_{\rm qp}^{(L)}$

$$\begin{split} \omega_i^{(p)} &= \int \frac{d^3k}{(2\pi)^3} \sum_{\eta_i} \{ \frac{1}{2} [e_i^{(\eta_i)}(k) - \mu_i - E_i^{(\eta_i)}(k)] + \Delta_i^{(\eta_i)}(k) \nu_i^{(\eta_i)}(k) \} \\ &+ \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} \int \frac{d^3k'}{(2\pi)^3} \sum_{\eta_i} \nu_i^{(\eta_i)}(k) \nu_i^{(\eta_i)}(k, k') \nu_i^{(\eta_i)}(k') \\ E_i^{(\eta_i)} &= \pm \sqrt{[e_i^{(\eta_i)} - \mu_i]^2 + [\Delta_i^{(\eta_i)}]^2}, \ \Delta_i^{(\eta_i)}(k) \text{ pairing gap} \\ \nu_i^{(\eta_i)}(k) &= \frac{\Delta_i^{(\eta_i)}(k)}{2E_i^{(\eta_i)}(k)} [1 - 2f_{+1}(E_i^{(\eta_i)})] \text{ anomalous distribution function,} \\ f_{+1}(E) &= [\exp(E) + 1]^{-1} \text{ Fermi-Dirac distribution function} \end{split}$$

 $\textbf{fermions} \Rightarrow \textbf{pairing correlations}$

- pairing potential $v_i(k,k')$
- \bullet pairing contribution to $\omega_{\rm qp}^{(L)}$

$$\begin{split} \omega_{i}^{(p)} &= \int \frac{d^{3}k}{(2\pi)^{3}} \sum_{\eta_{i}} \{ \frac{1}{2} [e_{i}^{(\eta_{i})}(k) - \mu_{i} - E_{i}^{(\eta_{i})}(k)] + \Delta_{i}^{(\eta_{i})}(k) \nu_{i}^{(\eta_{i})}(k) \} \\ &+ \frac{1}{2} \int \frac{d^{3}k}{(2\pi)^{3}} \int \frac{d^{3}k'}{(2\pi)^{3}} \sum_{\eta_{i}} \nu_{i}^{(\eta_{i})}(k) v_{i}^{(\eta_{i})}(k, k') \nu_{i}^{(\eta_{i})}(k') \\ E_{i}^{(\eta_{i})} &= \pm \sqrt{[e_{i}^{(\eta_{i})} - \mu_{i}]^{2} + [\Delta_{i}^{(\eta_{i})}]^{2}}, \ \Delta_{i}^{(\eta_{i})}(k) \text{ pairing gap} \\ \nu_{i}^{(\eta_{i})}(k) &= \frac{\Delta_{i}^{(\eta_{i})}(k)}{2E_{i}^{(\eta_{i})}(k)} [1 - 2f_{+1}(E_{i}^{(\eta_{i})})] \text{ anomalous distribution function,} \\ f_{+1}(E) &= [\exp(E) + 1]^{-1} \text{ Fermi-Dirac distribution function} \\ \partial \omega^{(L)} / \partial \Delta_{i}^{(\eta_{i})}(k) &= 0 \Rightarrow \text{ gap equation} \end{split}$$

$$\Delta_i^{(\eta_i)}(k) + \int \frac{d^3k'}{(2\pi)^3} v_i^{(\eta_i)}(k,k') \nu_i^{(\eta_i)}(k') = 0$$

$\textbf{bosons} \Rightarrow \textbf{condensation}$

 \bullet condensate contribution to $\omega_{\rm qp}^{(L)}$

$$\omega_i^{(c)} = \frac{1}{2} [\zeta_i^{(\eta_i)}]^2 [(m_i - S_i)^2 - (\mu_i - V_i)^2]$$

with parameter $\zeta_i^{(\eta_i)}$

$\textbf{bosons} \Rightarrow \textbf{condensation}$

 \bullet condensate contribution to $\omega_{\rm qp}^{(L)}$

$$\omega_i^{(c)} = \frac{1}{2} [\zeta_i^{(\eta_i)}]^2 [(m_i - S_i)^2 - (\mu_i - V_i)^2]$$

with parameter $\zeta_i^{(\eta_i)}$

• general condition on chemical potential μ_i

$$|\mu_i - V_i| \le m_i - S_i$$

$\textbf{bosons} \Rightarrow \textbf{condensation}$

 \bullet condensate contribution to $\omega_{\rm qp}^{(L)}$

$$\omega_i^{(c)} = \frac{1}{2} [\zeta_i^{(\eta_i)}]^2 [(m_i - S_i)^2 - (\mu_i - V_i)^2]$$

with parameter $\zeta_i^{(\eta_i)}$

• general condition on chemical potential μ_i

$$|\mu_i - V_i| \le m_i - S_i$$

• $\partial \omega^{(L)} / \partial \zeta_i^{(\eta_i)} = 0 \implies$ condition for condensation solutions:

•
$$\zeta_i^{(\eta_i)} = 0$$
: no condensation
• $\zeta_i^{(\eta_i)} \neq 0$, $\mu_i = V_i + m_i - S_i$: condensation of particles
• $\zeta_i^{(\eta_i)} \neq 0$, $\mu_i = V_i - m_i + S_i$: condensation of antiparticles
value of $\zeta_i^{(\eta_i)}$ determined by density of condensate state

$\textbf{densities} \Rightarrow \textbf{usual}$ form for quasiparticles

• net particle density

$$n_{i} = g_{i} \sum_{\eta_{i}} \{ \int \frac{d^{3}k}{(2\pi)^{3}} \eta_{i} f_{i}^{(\eta_{i})}(k) + [\zeta_{i}^{(\eta_{i})}]^{2} (\mu_{i} - V_{i}) \delta_{\sigma_{i},-1} \}$$

$$f_{i}^{(\eta_{i})} = \frac{1}{2} \{ 1 - \frac{e_{i}^{(\eta_{i})} - \mu_{i}}{E_{i}^{(\eta_{i})}} [1 - 2f_{\sigma_{i}}(E_{i}^{(\eta_{i})})] \}, f_{\sigma}(E) = [\exp(E) + \sigma]^{-1}$$

$\textbf{densities} \Rightarrow \textbf{usual}$ form for quasiparticles

• net particle density

$$n_{i} = g_{i} \sum_{\eta_{i}} \{ \int \frac{d^{3}k}{(2\pi)^{3}} \eta_{i} f_{i}^{(\eta_{i})}(k) + [\zeta_{i}^{(\eta_{i})}]^{2} (\mu_{i} - V_{i}) \delta_{\sigma_{i},-1} \}$$
$$f_{i}^{(\eta_{i})} = \frac{1}{2} \{ 1 - \frac{e_{i}^{(\eta_{i})} - \mu_{i}}{E_{i}^{(\eta_{i})}} [1 - 2f_{\sigma_{i}}(E_{i}^{(\eta_{i})})] \}, f_{\sigma}(E) = [\exp(E) + \sigma]^{-1}$$

• net scalar density

$$n_i^{(s)} = g_i \sum_{\eta_i} \{ \int \frac{d^3k}{(2\pi)^3} \frac{m_i - S_i}{\sqrt{k^2 + (m_i - S_i)^2}} f_i^{(\eta_i)}(k) + [\zeta_i^{(\eta_i)}]^2 (m_i - S_i) \delta_{\sigma_i, -1} \}$$

$\textbf{densities} \Rightarrow \textbf{usual}$ form for quasiparticles

• net particle density

$$n_{i} = g_{i} \sum_{\eta_{i}} \{ \int \frac{d^{3}k}{(2\pi)^{3}} \eta_{i} f_{i}^{(\eta_{i})}(k) + [\zeta_{i}^{(\eta_{i})}]^{2} (\mu_{i} - V_{i}) \delta_{\sigma_{i},-1} \}$$
$$f_{i}^{(\eta_{i})} = \frac{1}{2} \{ 1 - \frac{e_{i}^{(\eta_{i})} - \mu_{i}}{E_{i}^{(\eta_{i})}} [1 - 2f_{\sigma_{i}}(E_{i}^{(\eta_{i})})] \}, f_{\sigma}(E) = [\exp(E) + \sigma]^{-1}$$

• net scalar density

$$n_i^{(s)} = g_i \sum_{\eta_i} \{ \int \frac{d^3k}{(2\pi)^3} \frac{m_i - S_i}{\sqrt{k^2 + (m_i - S_i)^2}} f_i^{(\eta_i)}(k) + [\zeta_i^{(\eta_i)}]^2 (m_i - S_i) \delta_{\sigma_i, -1} \}$$

- source densities
 - \circ Lorentz scalar mesons, $m \in \mathcal{S}$

$$n_m^{(\text{source})} = \sum_{i \in \mathcal{I} \cup \mathcal{E}} g_{im} n_i^{(s)}$$

 \circ Lorentz vector mesons, $m \in \mathcal{V}$

$$n_m^{(ext{source})} = \sum_{i \in \mathcal{I} \cup \mathcal{E}} g_{im} n_i$$

thermodynamic consistency

• natural variables of $\omega^{(L)}$: T, μ_i , A_m , $\Delta_i^{(\eta_i)}(k)$, $\zeta_i^{(\eta_i)}$

but $\omega^{(L)}$ depends explicitly on densities n_i , $n_i^{(s)}$ (already defined!)

thermodynamic consistency

• natural variables of $\omega^{(L)}$: T, μ_i , A_m , $\Delta_i^{(\eta_i)}(k)$, $\zeta_i^{(\eta_i)}$

but $\omega^{(L)}$ depends explicitly on densities n_i , $n_i^{(s)}$ (already defined!)

• consistency criterion $n_j \stackrel{!}{=} -\frac{\partial}{\partial \mu_j} \omega^{(L)}(T, \mu_i, A_m, \Delta_i^{(\eta_i)}(k), \zeta_i^{(\eta_i)}) \Big|_{T, \mu_{i \neq j}, A_m, \Delta_i^{(\eta_i)}(k), \zeta_i^{(\eta_i)}}$

thermodynamic consistency

• natural variables of $\omega^{(L)}$: T, μ_i , A_m , $\Delta^{(\eta_i)}_i(k)$, $\zeta^{(\eta_i)}_i$

but $\omega^{(L)}$ depends explicitly on densities n_i , $n_i^{(s)}$ (already defined!)

- consistency criterion $n_j \stackrel{!}{=} -\frac{\partial}{\partial \mu_j} \omega^{(L)}(T,\mu_i,A_m,\Delta_i^{(\eta_i)}(k),\zeta_i^{(\eta_i)})\Big|_{T,\mu_{i\neq j},A_m,\Delta_i^{(\eta_i)}(k),\zeta_i^{(\eta_i)}}$
 - \Rightarrow definition of rearrangement potentials

$$\circ \quad U_i^{(\text{mass})} = \sum_{j \in \mathcal{I} \cup \mathcal{E}} \frac{\partial \Delta m_j}{\partial n_i} n_j^{(s)}$$

•
$$U_i^{(\text{em})} = \sum_{j \in \mathcal{I} \cup \mathcal{E}} \frac{\partial V_j^{(em)}}{\partial n_i} n_j$$

•
$$U_i^{(\text{deg})} = \sum_{j \in \mathcal{E}} \frac{\partial g_j}{\partial n_i} \omega_j^{(r)}$$

thermodynamic consistency

• natural variables of $\omega^{(L)}$: T, μ_i , A_m , $\Delta_i^{(\eta_i)}(k)$, $\zeta_i^{(\eta_i)}$

but $\omega^{(L)}$ depends explicitly on densities n_i , $n_i^{(s)}$ (already defined!)

- consistency criterion $n_j \stackrel{!}{=} -\frac{\partial}{\partial \mu_j} \omega^{(L)}(T,\mu_i,A_m,\Delta_i^{(\eta_i)}(k),\zeta_i^{(\eta_i)})\Big|_{T,\mu_{i\neq j},A_m,\Delta_i^{(\eta_i)}(k),\zeta_i^{(\eta_i)}}$
 - \Rightarrow definition of rearrangement potentials

•
$$U_i^{(\text{mass})} = \sum_{j \in \mathcal{I} \cup \mathcal{E}} \frac{\partial \Delta m_j}{\partial n_i} n_j^{(s)}$$

•
$$U_i^{(\text{em})} = \sum_{j \in \mathcal{I} \cup \mathcal{E}} \frac{\partial V_j^{(em)}}{\partial n_i} n_j$$

•
$$U_i^{(\text{deg})} = \sum_{j \in \mathcal{E}} \frac{\partial g_j}{\partial n_i} \omega_j^{(r)}$$

• non-standard contributions to entropy density

$$s = - \left. \frac{\partial \omega^{(L)}}{\partial T} \right|_{\mu_i, A_m, \Delta_i^{(\eta_i)}(k), \zeta_i^{(\eta_i)}}$$

combination of models

- homogeneously distributed constituent particles
 - leptons, photons, neutrons, certain nuclei(?), . . .
 contribution to grand canonical potential as in gas/liquid phase

Solid Phase I

combination of models

- homogeneously distributed constituent particles
 - leptons, photons, neutrons, certain nuclei(?), . . .
 contribution to grand canonical potential as in gas/liquid phase
- nuclei on lattice sites, excitation of lattice vibrations/phonons
 - Einstein/Debye-like model, three branches ($\lambda = 0, 1, 2$) (extension of model by G. Chabrier, Ap. J. 414 (1993) 695)

combination of models

- homogeneously distributed constituent particles
 - leptons, photons, neutrons, certain nuclei(?), . . .
 contribution to grand canonical potential as in gas/liquid phase
- nuclei on lattice sites, excitation of lattice vibrations/phonons
 - Einstein/Debye-like model, three branches ($\lambda = 0, 1, 2$) (extension of model by G. Chabrier, Ap. J. 414 (1993) 695)
 - one longitudinal mode: $\omega_i(0, \vec{q}) = \alpha_0 \omega_i^{(p)}$
 - two transversal modes: $\omega_i(1, \vec{q}) = lpha_1 \omega_i^{(p)} q / k_i^{(D)}$

$$\omega_i(2,\vec{q}) = \alpha_2 \omega_i^{(p)} q / k_i^{(D)}$$

plasma frequency $\omega_i^{(p)} = \sqrt{4\pi Q_i e^2 n_Q/m_i}$ Debye wave number $k_i^{(D)} = (6\pi^2 n_i)^{1/3}$ parameters α_0 , α_1 , α_2

Solid Phase II

 \circ parameters α_0 , α_1 , α_2

fitted to reproduce known frequency moments

$$\mu_n = \frac{1}{3} \sum_{\lambda, \vec{q}} [\omega_i(\lambda, \vec{q}) / \omega_i^{(p)}]^n \quad \text{for } n = 1, 2$$

and consistency relation in classical limit $(3\bar{\mu} = \ln(\alpha_0\alpha_1\alpha_2) - 2/3)$

Solid Phase II

 \circ parameters α_0 , α_1 , α_2

fitted to reproduce known frequency moments

$$\mu_n = \frac{1}{3} \sum_{\lambda, \vec{q}} [\omega_i(\lambda, \vec{q}) / \omega_i^{(p)}]^n \quad \text{for } n = 1, 2$$

and consistency relation in classical limit $(3\bar{\mu} = \ln(\alpha_0\alpha_1\alpha_2) - 2/3)$ bcc lattice

	exact calculation*	model	significance
μ_{-2}	12.972	12.850	mean square displacement (classical)
μ_{-1}	2.79855	2.79031	mean square displacement (quantal)
μ_1	0.5113875	exact	zero-point oscillation energy
μ_2	1/3	exact	Kohn rule
μ_3	0.25031	0.24905	
$\bar{\mu}$	-0.831298	exact	classical limit of free energy

* D.A. Baiko, A.Y. Potekhin, D.G. Yakovlev, Phys. Rev. E 64 (2001) 057402
effective density functional

• canonical description \Rightarrow free energy density

 $f^{(S)} = \sum_{i \in S} n_i [m_i + F_i^{(\text{ph})} + F_i^{(\text{em})} + F_i^{(\text{mix})}]$

Solid Phase III

effective density functional

• canonical description \Rightarrow free energy density

$$f^{(S)} = \sum_{i \in S} n_i [m_i + F_i^{(\text{ph})} + F_i^{(\text{em})} + F_i^{(\text{mix})}]$$

 \circ contribution of phonons

$$F_i^{(ph)} = T\{\frac{3}{2}\mu_1\eta_i + \sum_{\lambda=0}^2 \ln[1 - \exp(-\alpha_\lambda\eta_i)] - \frac{1}{3}\sum_{\lambda=1}^2 D_3(\alpha_\lambda\eta_i)\}$$

- with Debye function $D_3(x)$
- essential parameters $\eta_i = \omega_i^{(p)}/T$

 $\eta_i \to 0$: classical limit $\eta_i \to \infty$: quantal effects

Solid Phase III

effective density functional

 \bullet canonical description \Rightarrow free energy density

$$f^{(S)} = \sum_{i \in S} n_i [m_i + F_i^{(\text{ph})} + F_i^{(\text{em})} + F_i^{(\text{mix})}]$$

 \circ contribution of phonons

$$F_i^{(ph)} = T\{\frac{3}{2}\mu_1\eta_i + \sum_{\lambda=0}^2 \ln[1 - \exp(-\alpha_\lambda\eta_i)] - \frac{1}{3}\sum_{\lambda=1}^2 D_3(\alpha_\lambda\eta_i)\}$$

- with Debye function $D_3(x)$
- essential parameters $\eta_i = \omega_i^{(p)}/T$

 $\eta_i \rightarrow 0$: classical limit $\eta_i \rightarrow \infty$: quantal effects

contribution of electromagnetic interaction

$$F_i^{(\mathrm{em})} = T[C_M^{(\mathrm{bcc})}\Gamma_i + f_S(\Gamma_i)]$$
 (from fit to OCP)

Solid Phase III

effective density functional

 \bullet canonical description \Rightarrow free energy density

$$f^{(S)} = \sum_{i \in S} n_i [m_i + F_i^{(\text{ph})} + F_i^{(\text{em})} + F_i^{(\text{mix})}]$$

 \circ contribution of phonons

$$F_i^{(ph)} = T\{\frac{3}{2}\mu_1\eta_i + \sum_{\lambda=0}^2 \ln[1 - \exp(-\alpha_\lambda\eta_i)] - \frac{1}{3}\sum_{\lambda=1}^2 D_3(\alpha_\lambda\eta_i)\}$$

with Debye function $D_3(x)$

essential parameters
$$\eta_i = \omega_i^{(p)}/T$$

 $\eta_i \rightarrow 0$: classical limit $\eta_i \rightarrow \infty$: quantal effects

contribution of electromagnetic interaction

$$F_i^{(\text{em})} = T[C_M^{(\text{bcc})}\Gamma_i + f_S(\Gamma_i)]$$
 (from fit to OCP)

• mixing contribution

$$F_i^{(\text{mix})} = T \ln(\frac{Q_i n_i}{g_i n_Q})$$
 $n_Q = \sum_i Q_i n_i$

• EoS of cold outer crust very well known (β equilibrium, T = 0 MeV)

BPS: G. Baym, C. Pethick, P. Sutherland, Ap. J. 170 (1971) 299

- EoS of cold outer crust very well known (β equilibrium, T = 0 MeV)
- calculation in Wigner-Seitz and Thomas-Fermi approximation (WS-TF) not sufficient

BPS: G. Baym, C. Pethick, P. Sutherland, Ap. J. 170 (1971) 299

- EoS of cold outer crust very well known (β equilibrium, T = 0 MeV)
- calculation in Wigner-Seitz and Thomas-Fermi approximation (WS-TF) not sufficient
- effects of temperature
 change of chemical composition
 - melting of crystal, solidification of gas/liquid

BPS: G. Baym, C. Pethick, P. Sutherland, Ap. J. 170 (1971) 299

- EoS of cold outer crust very well known (β equilibrium, T = 0 MeV)
- calculation in Wigner-Seitz and Thomas-Fermi approximation (WS-TF) not sufficient
- effects of temperature

 change of chemical composition
 melting of crystal, solidification of gas/liquid
- general electron fraction \circ out of β equilibrium \Rightarrow global EoS table

BPS: G. Baym, C. Pethick, P. Sutherland, Ap. J. 170 (1971) 299

- EoS of cold outer crust very well known (β equilibrium, T = 0 MeV)
- calculation in Wigner-Seitz and Thomas-Fermi approximation (WS-TF) not sufficient
- effects of temperature

 change of chemical composition
 melting of crystal, solidification of gas/liquid
- general electron fraction \circ out of β equilibrium \Rightarrow global EoS table
- details of phase transitions
- work in progress

 β equilibrium, $T=0~{\rm MeV}$

BPS: G. Baym, C. Pethick, P. Sutherland, Ap. J. 170 (1971) 299

ERDF - 35

Stefan Typel

Summary

construction of **effective relativistic density functional** for dense matter

- extended set of constituents \Rightarrow nucleons, hyperons, mesons, nuclei, leptons, . . . \Rightarrow quasiparticles with medium dependent properties
- nuclear interaction \Rightarrow meson exchange with density dependent couplings
- electromagnetic interaction \Rightarrow effective potential from Monte Carlo simulations
- formation and dissolution of clusters
- rearrangement contributions for thermodynamic consistency
- phase transition liquid/gas \leftrightarrow solid
- well constrained parameters, correct limits
- work in progress
- \Rightarrow preparation of EoS tables for astrophysical applications

Thanks

• to my collaborators

Gerd Röpke (Universität Rostock) Niels-Uwe Bastian (Universität Rostock) David Blaschke (Uniwersytet Wrocławski) Thomas Klähn (Uniwersytet Wrocławski) Hermann Wolter (Ludwig Maximilians-Universität München) Maria Voskresenskaya (GSI Darmstadt)

• for support from

- Helmholtz Association (HGF)
 - Nuclear Astrophysics Virtual Institute (VH-VI-417)
 - Helmholtz International Center (HIC) for FAIR
- \circ Excellence Cluster 'Universe', Technische Universität München
- to the organizers of the Hirschegg 2013 workshop for the invitation and support
- to you, the audience for your attention and patience