Quarkonium physics in nuclear collisions @ LHC

by Martin Freudenberger

31.01.2008
Outline

I. Introduction

II. Melting model and kinetic model

III. Statistical Hadronization Model

IV. RHIC data and predictions for LHC

V. Experiments @ LHC
Introduction

• Formation of QGP at nucleon-nucleon collisions
• “Fingerprint” for QGP J/Ψ suppression / enhancement
• Different Models describing J/Ψ production
• Satz – Matsui approach, Statistical Hadronization model, kinetic model …
Review

- Quarkonia = bound state of quark antiquark pair of heavy quarks e.g. J/Ψ

- No strong decay if mass of Quarkonia is less than combination of open charm mesons
Outline

I. Introduction

II. Melting model and kinetic model

III. Statistical Hadronization Model

IV. RHIC data and predictions for LHC

V. Experiments @ LHC
Review Melting Model

- Time Scales for QGP Formation and J/Ψ formation of same order
- Debye screening of color charge \rightarrow deconfinement
- Deconfining radius smaller than hadron radius \rightarrow diffusion during lifetime of QGP
- Melting before $T < T_D$ with $T_D > 1.15 T_C$
- Resent studies indicate $T_D = 2 T_C$
Widths of Charmonia in QGP

- Estimated from mean free path length in QGP $\lambda = 1 / n_p \sigma$
- Parton density $n_p = 4.25 \ T^3$
- J/Ψ Parton cross section $\sigma = 2\text{mb}$
- v_{rel} of J/Ψ vs. Partons
 \[\rightarrow \text{in medium width} \Gamma = \frac{v_{rel}}{\lambda} \]
- with numerical values:
 \[\Gamma(T=300 \text{ MeV}) = 320 \text{ MeV} \]
 \[\Gamma(T=400 \text{ MeV}) = 760 \text{ MeV} \]
Kinetic Model – Basic ideas

• Production of J / Ψ in the QGP through binding of independent quark antiquark pairs
• Centrality dependence due to impact parameter b
• Enhancement in J / Ψ production for central collisions at RHIC energies
Outline

I. Introduction

II. Melting model and kinetic model

III. Statistical Hadronization Model

IV. RHIC data and predictions for LHC

V. Experiments @ LHC
Statistical Hadronization Model

• All Charm quarks produced in initial hard collisions
• Early produced Charmonia destroyed in QGP
• Number of charm quarks = const.
• Input parameters
 i. Charm production cross section
 ii. Temperature T, Baryochemical Potential μ_B, and Volume $V_{\Delta y=1}$
Input Parameters

- Up to $\sqrt{s} = 200$ GeV $T \sim 160$ MeV
- μ_B decreases from 434 to 22 MeV
- Volume at midrapidity rises continuously
- For LHC:

 $T = 161 \pm 4$ MeV

 $\mu_b = 0.8^{+1.2}_{-0.6}$ MeV

 $V = 6200 \text{ fm}^3$

Input parameters

<table>
<thead>
<tr>
<th></th>
<th>Sqrt(s_{NN}) (GeV)</th>
<th>T (MeV)</th>
<th>μ_B (MeV)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>17.3</td>
<td>170</td>
<td>253</td>
</tr>
<tr>
<td></td>
<td>200</td>
<td>170</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>5500</td>
<td>170</td>
<td>1</td>
</tr>
</tbody>
</table>

$$
\mu_B = \frac{1270 \text{ [MeV]}}{1 + \frac{\sqrt{s_{NN}} \text{ [GeV]}}{4.3}}
$$
Charm production cross section

- $\sigma_{c\bar{c}}$ depends on $m_c \approx 1.3$ GeV
- Depends on rapidity as well
- extrapolated to small energies

$\sigma_{c\bar{c}}^{pp} / y = 0.64^{+0.64}_{-0.32}$ mb.

Quarkonium physics in nuclear collisions @ LHC
Charm Production Cross Section

• Calculation for extrapolation

\[\sigma_{c\bar{c}} = k \left(1 - \frac{\sqrt{S_{thr}}}{\sqrt{S}} \right)^a \left(\frac{\sqrt{S_{thr}}}{\sqrt{S}} \right)^b \]

with \(k = 1.85 \mu b \), \(\sqrt{S_{thr}} = 4.5 GeV \)

\(a = 4.3 \) and \(b = -1.44 \)
Charm Balance Equation

- Balance equation

\[
N_{cc}^{dir} = \frac{1}{2} g_c N_{oc}^{th} \frac{I_1(g_c N_{oc}^{th})}{I_0(g_c N_{oc}^{th})} + g_c^2 N_{cc}^{th}
\]

with \(N_{oc}^{th} = n_{oc}^{th} V \) and \(N_{cc}^{th} = n_{cc}^{th} V \)

from grand-canonical densities
Canonical Suppression

- Energy dependent
- $I_1/I_0 > 0.9$ for LHC Energies
- Dependent on centrality class

Source: A. Andronic et al. nucl-th/0611023v2
Initially produced charm quark pairs

- Strong rise with rising Energy

- For RHIC Energy \(\sim 1.6 - 1.7\)

- Extrapolation for LHC \(\rightarrow\) 1 order of magnitude

Outline

I. Introduction

II. Melting model and kinetic model

III. Statistical Hadronization Model

IV. RHIC data and predictions for LHC

V. Experiments @ LHC
Nuclear Modification Factor

- Ratio relating yield in nucleus-nucleus collisions to yield of N independent nucleon-nucleon collisions

$$R_{AA}^{J/\Psi} = \frac{dN_{J/\Psi}^{AA} / dy}{N_{Coll} \cdot dN_{J/\Psi}^{pp} / dy}$$

with rapidity density $dN_{J/\Psi}/dy$ integrated over transverse momentum p_t
Rapidity dependence of R

Source: P. Braun-Munzinger, nucl-th/0701093v1

Quarkonium physics in nuclear collisions @ LHC
Centrality dependence of R

- Reversed trends for RHIC data and LHC predictions

Source: P. Braun-Munzinger, nucl-th/0701093v1
Different Production cross sections

- If observed in Experiment; striking fingerprint for deconfined quarks in QGP

Source: P. Braun-Munzinger, nucl-th/0701093v1
Charmed Hadron Production

- Open charm production in Mesons and Baryons
- Yield normalized to yield of initial charm anticharm
- Increase in J/Ψ yield
- For LHC ~ 1%

Mass dependence

- Two models for mass change
- Open charm vary linearly with g_C
- Charmonia vary quadratic with g_C

Outline

I. Introduction

II. Melting model and kinetic model

III. Statistical Hadronization Model

IV. RHIC data and predictions for LHC

V. Experiments @ LHC
ALICE @ LHC

- A large ion collider experiment
- \(\frac{dN}{dy} = 8000 \)
- Only heavy ion experiment at LHC
ALICE @ LHC

- Decay of Charmonia in hadrons, dimuons, di-electrons …
- Many particles to be detected
- Sub-detectors TPC, TRD, ITS, etc.
- Charged particle tracks
• P. Braun-Munzinger, nucl-th/0701093v1
• A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, nucl-th/0701079v2
• A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, nucl-th/0209035v2
• A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, nucl-th/0303036v2
• A. Andronic, P. Braun-Munzinger, K. Redlich, J. Stachel, nucl-th/0611023v2
Thank you for your attention