Ultracold degenerate Fermi gases
Seminar 'Relativistic heavy ion physics'

Timo Bloch

December 4, 2008
Outline

1. Introduction
2. Production of ultracold Fermi gases
3. Ideal Fermi gas in harmonic trap
4. Two-body collisions
5. The many-body problem at equilibrium: Uniform gas
6. Interacting Fermi gas in harmonic trap
Motivation

- Elementary fermions: Quarks and Leptons
- Compound particles with even/odd number of constituents: Bosons/Fermions
- Atomic constituents: $p, n, e^- \rightarrow$ All fermions!

- 'Ordinary' Fermi gases/liquids
 - Electrons in metals/semiconductors
 - Neutron stars
 - Nucleus: Protons and Neutrons

- Enables experimental research of quantum effects!
Historical overview

- **1995**: First realization of Bose-Einstein condensation (Anderson et al., Bradley et al., Davis et al.)
- **1998**: Investigation of Feshbach resonances in bosonic systems (Courteille et al., Inouye et al.)
- **1999**: First ultracold fermionic gas (De Marco and Jin, JILA)
- **2001**: Observation of quantum degeneracy effects in 6Li (Truscott et al., Schreck et al.)

Last years of research:
- Dynamic behaviour of ultracold fermionic systems (Superfluidity)
- Spin polarized configurations
- Fermi gases in periodic potentials
Bosons vs. Fermions

BOSONS
- Integer spin
- Bose-Einstein statistics
 \[\langle n_{BE} \rangle = \frac{1}{e^{\beta(E-\mu)} - 1} \]
- Same q.s. preferred

FERMIONS
- Half-integer spin
- Fermi-Dirac statistics
 \[\langle n_{FD} \rangle = \frac{1}{e^{\beta(E-\mu)} + 1} \]
- Pauli’s exclusion principle

Behavior for T→0

Quantum degeneracy

- Fermionic ensemble in arbitrary potential V

- $T > 0$
 Width of Fermi edge $\sim 2k_B T$

- $T = 0$
 Maximum particle energy: Fermi energy $E_F = k_B T_F$

- Fermi temperature T_F marks crossover of classical \leftrightarrow quantum regime

$$k_B T_F \sim \frac{\hbar^2 n^{2/3}}{m}$$

(Typically for atomic gases: $T_F \lesssim 1\mu K$)
Production of ultracold Fermi gases

Production of BECs

Laser cooling (MOT) and evaporative cooling
Seminar talk 'Experimental production of BECs' (A. Kalweit)
⇒ Particle collisions play crucial role, for example keeping the gas in thermal equilibrium

Problem

Pauli’s exclusion principle!
⇒ s-wave-scattering inhibited for fermions in the same internal quantum state at ultracold temperatures + Fermi blocking

⇒ New cooling techniques required!
World's first ultracold fermionic gas
Brian DeMarco and Deborah Jin (JILA)

Introduction

Production Ideal FG 2-Body Collisions Uniform Gas Interacting FG

World's first ultracold fermionic gas

Brian DeMarco and Deborah Jin (JILA)

Idea

Trapping of two different spin states \((m_f = +9/2, +7/2)\) of \(^{40}\text{K}\) in the \(f = \frac{9}{2}\) hyperfine ground state

1. Collecting sample of \(^{40}\text{K}\) from a room-temperature vapour
2. Cooling in MOT \(\rightarrow \sim 500\) million atoms @ 150\(\mu\)K
3. Loading atoms in two different internal spin-states into a magnetic trap
4. Evaporative cooling \(\rightarrow <300nK\)

'One of the top 10 scientific breakthroughs in 1999’
(Science magazine)
Further method: Sympathetic cooling
Hulet et al. (Rice University), Salomon et al. (ENS)

Idea

Cooling gas ‘cocktail’, containing two different isotopes (one fermionic, one bosonic) - e.g. 6Li and 7Li

- Apply established cooling methods to bosonic part of the gas
- Fermionic part cools simply by being in thermal contact

\Rightarrow New cooling method for Fermi gases + enables study of boson-fermion mixtures!
Ideal Fermi gas in harmonic trap

Keywords

Fermionic ensemble, harmonic potential, no interactions!

- Harmonic potential
 \[V_{ho} = \frac{1}{2} m\omega_x^2 x^2 + \frac{1}{2} m\omega_y^2 y^2 + \frac{1}{2} m\omega_z^2 z^2 \]
- Fermi distribution function
 \[f(r, p) = \frac{1}{\exp[\beta(p^2/2m + V_{ho}(r) - \mu)] + 1} \]
- Normalization condition
 \[N_\sigma = \frac{1}{(2\pi\hbar)^3} \int dr dp \ f(r, p) \]
 \[= \int_0^\infty \frac{g(\epsilon) d\epsilon}{\exp[\beta(\epsilon - \mu)] + 1} \]

- Large N
- Many single-particle states occupied
- \(\Rightarrow \) Semiclassical approach

\(g(\epsilon) \): Single-particle density of states
• Energy dependence of $g(\epsilon)$

$$g(\epsilon) = \frac{\epsilon^2}{2(\hbar \omega_{ho})^3} \quad \omega_{ho} = (\omega_x \omega_y \omega_z)^{1/3}$$

• \Rightarrow Thermodynamic functions, e.g. energy $E(T)$

$$E(T) = \int_0^\infty d\epsilon \frac{\epsilon g(\epsilon)}{\exp[\beta(\epsilon - \mu)] + 1}$$

• At $T = 0$: μ coincides with the Fermi energy E_{F}^{ho}:

$$E_{F}^{ho} \equiv k_B T_{F}^{ho} = (6N_\sigma)^{1/3} \hbar \omega_{ho}$$

$$\Rightarrow E(0) = \frac{3}{4} E_{F}^{ho} N_\sigma$$
Density and momentum distributions

- Use Fermi energy E_F^{ho} to define typical length/momentum scales

Thomas-Fermi radius $R_i^0 \ (i = x, y, z)$

$$R_i^0 = \sqrt{2E_F^{ho}/m\omega_i^2} = a_{ho}(48N_\sigma)^{1/6}\frac{\omega_{ho}}{\omega_i}$$

$$a_{ho} = \sqrt{\hbar/m\omega_{ho}}$$

\Rightarrow width of the density distribution $n_\sigma(r)$ at $T = 0$

$$n_\sigma(r) = \frac{8}{\pi^2} \frac{N_\sigma}{R_x^0 R_y^0 R_z^0} \left[1 - \left(\frac{x}{R_x^0}\right)^2 - \left(\frac{y}{R_y^0}\right)^2 - \left(\frac{z}{R_z^0}\right)^2\right]^{3/2}$$
Density and momentum distributions

Fermi wavevector k_F^0

\[
k_F^0 \equiv \frac{p_F^0}{\hbar} = \sqrt{\frac{2mE^0_F}{\hbar}} = \frac{1}{a_{ho}} (48N_\sigma)^{1/6}
\]

⇒ width of the momentum distribution $n_\sigma(p)$ at $T = 0$

\[
n_\sigma(p) = \frac{8}{\pi^2} \frac{N_\sigma}{(p_F^0)^3} \left[1 - \left(\frac{p}{p_F^0}\right)^2\right]^{3/2}
\]

$n_\sigma(r), n_\sigma(p)$: Thomas-Fermi distributions
Experimentally accessible values
Absorption images (TOF experiments)

- Switch off potential, observe propagation of particles
 ⇒ Momentum/Energy distribution
- Non-interacting gas: ballistic law, \(f_0 := f(t = 0) \)

\[
f(r, p, t) = f_0(r - pt/m, p)
\]

\[
\langle r_i^2 \rangle = \frac{E(T)}{N_\sigma} \frac{1}{3m\omega_i^2} (1 + \omega_i^2 t^2)
\]

- Release energy (→ Equipartition theorem, ideal gas in HO)

\[
E_{rel} = \frac{E}{2} \quad E(T) : \text{total energy}
\]

- At low temperature:
 Energy per particle deviates from classical value \(3k_B T\)
Evidence for quantum degeneracy
DeMarco, Papp and Jin (2001), JILA

Graphics reference: (1) 'Theory of ultracold atomic Fermi gases' (S. Giorgini, L. Pitaevskii, S. Stringari), (2) 'A Fermi gas of atoms' (Deborah Jin, JILA), physicsworld.com 04/2002
Interaction effects in quantum degenerate, dilute Fermi gases can be accurately modeled by a small number of parameters characterizing the physics of two-body collisions.

Low temperatures, large mean particle distance

- $R_0 \ll \lambda_T = \sqrt{\frac{2\pi \hbar^2}{mk_B T}}$, λ_T: Thermal wavelength
- $R_0 \ll k_F^{-1}$, k_F: Fermi wavevector
- R_0: Spatial range of interatomic potential

⇒ Main contribution to scattering from states with $l=0$

Remember: Only particles with different spin can interact!
Theory of elastic scattering (s-wave channel)

- Schroedinger equation for relative motion

- Energy $\epsilon > 0$, asymptotic region $r \gg R_0$

 s-wave wavefunction $\Psi_0(r) \propto \sin[kr + \delta_0(k)]/r$

 $k = \sqrt{2m_r\epsilon/\hbar}$, $r = |r_1 - r_2|$, $\delta_0(k)$: s-wave phaseshift

- **s-wave scattering amplitude** $f_0(k) = \left[-k \cdot \cot\delta_0(k) + ik\right]^{-1}$

 s-wave scattering length $a = -\lim_{k \to 0} f_0 = -\lim_{k \to 0} \frac{\delta_0}{k}$

Expansion of $\delta_0(k)$

$$\Rightarrow f_0(k) = -\frac{1}{a^{-1} - k^2 R^*/2 + ik} \quad R^* : \text{effective range}$$

- For $a \to \infty$ ('unitary limit') and $k \ll 1/|R^*|$:

 universal law $f_0(k) = i/k$
Many-body problem

- Microscopic potential $V \rightarrow$ effective potential V_{eff}

Attractive square-well potential

$$V_{\text{eff}}(r) = \begin{cases}
-V_0 & (r < R_0) \\
0 & (r > R_0)
\end{cases}$$

\[a = R_0 \left[1 - \tan(K_0 R_0)/(K_0 R_0) \right] \]

\[K_0 = \sqrt{2m_r V_0/\hbar^2} \]

\[R^* = R_0 - R_0^3/3a^2 - 1/K_0^2 a \]

Regularized zero-range pseudo-potential (Huang and Yang, 1957)

$$V_{\text{eff}}(r) = g \delta(r) \frac{\partial}{\partial r} r$$

\[g = 2\pi \hbar^2 a/m_r \]

Range $R_0 = 0$, $f(k) = -[a^{-1} + ik]^{-1}$
Fano-Feshbach resonances

Take place when

\[E_{\text{open}} \approx E_{\text{closed}} \]

+ Coupling between channels
 - Open channel: scattering of the two particles
 - Closed channel: formation of weakly bound state (dimer)

Interatomic potentials

Theory of Feshbach resonances

Seminar talk 'Fermion-Fermion and Boson-Boson Interaction at low T' (M. Freudenberger)
Fano-Feshbach resonances

- If magnetic moments in open/closed channel are different:
 ⇒ 'Artificial' resonance tuned by magnetic field B
 ⇒ Selective modification of the interaction!
- Parametrization of the scattering length: $a(B) = a_{bg} \left(1 - \frac{\Delta B}{B-B_0}\right)$

- Broad ($k_F |R^*| \ll 1$) and narrow ($k_F |R^*| \gg 1$) resonances
- If $a < 0$: Attraction between fermions! ⇒ BCS-Theory
- ⇒ Feshbach resonance forms BCS-BEC crossover

Graphics reference: S. Giorgini, L. Pitaevskii, S. Stringari
BCS-BEC crossover

Seminar talk 'Molecular BECs and fermionic condensates of Cooper pairs - from BEC to BCS ' (S. Huber) - January 29, 2009
The many-body problem at equilibrium: Uniform gas

Keywords

Two-component Fermi gas, Uniform configuration \((V_{\sigma,\text{ext}} = 0)\)

- Ideal gas model provides good description of cold spin polarized Fermi gas
- For atoms occupying different spin states \(\sigma\):
 Interactions deeply affect solution of the many-body problem!

Grand canonical many-body Hamiltonian

\[
\hat{H} = \sum_{\sigma} \int d\mathbf{r} \ \hat{\Psi}^{+}_{\sigma}(\mathbf{r}) \left(-\dfrac{\hbar^2 \Delta^2}{2m_\sigma} + V_{\sigma,\text{ext}}(\mathbf{r}) - \mu_\sigma \right) \hat{\Psi}_{\sigma}(\mathbf{r}) \\
+ \int d\mathbf{r} d\mathbf{r}' \ V(\mathbf{r} - \mathbf{r}') \ \hat{\Psi}^{+}_{\uparrow}(\mathbf{r})\hat{\Psi}^{+}_{\downarrow}(\mathbf{r}')\hat{\Psi}_{\downarrow}(\mathbf{r}')\hat{\Psi}_{\uparrow}(\mathbf{r})
\]
The many-body problem at equilibrium: Uniform gas

- Uniform configuration
 - One-body potential $V_{\uparrow, \text{ext}} = V_{\downarrow, \text{ext}} = 0$ (!)
 - Number of atoms $N_{\uparrow} = N_{\downarrow} = N/2$
 - Atomic masses $m_{\uparrow} = m_{\downarrow} = m$
 - Atomic densities $n_{\uparrow} = n_{\downarrow} = \frac{1}{2} n$

- Fermi wavevector $k_F = (3\pi^2 n)^{1/3}$
- Fermi energy $E_F = \frac{\hbar^2}{2m} (3\pi^2 n)^{2/3}$

- Important cases where many-body problem for the interacting Fermi gas can be solved exactly:
 Repulsive gas, weakly attractive gas, gas of composite bosons
Interactions: Pseudo-potential, positive scattering length a

Perturbation theory with small parameter $k_F a \ll 1$ (diluteness condition of the gas)

Expansion of energy per particle ($T = 0$):

$$\frac{E}{N} = \frac{3}{5} E_F \left(1 + \frac{10}{9\pi} k_F a + \frac{4(11 - 2\log2)}{21\pi^2} (k_F a)^2 + \ldots \right)$$

(Huang and Yang (1957), Lee and Yang (1957))
Weakly attractive gas

- Interaction with negative scattering length \((k_F |a| \ll 1) \)
- Formation of bound states (Cooper pairs)
- Many-body solution: diagonalization of \(\hat{H} \) by applying Bogoliubov transformation to the Fermi field operators

- Critical temperature \(T_C \):

\[
T_C = \left(\frac{2}{e} \right)^{7/3} \frac{\gamma}{\pi} T_F e^{\pi/2k_F a} \approx 0.28 T_F e^{\pi/2k_F a}
\]

\[\gamma = e^C \approx 1.781, \ C: \text{Euler constant}\]
Weakly attractive gas

Ground-state energy per particle

\[
\frac{E}{N} = \frac{E_{\text{normal}}}{N} - \frac{3\Delta^2_{\text{gap}}}{8E_F}
\]

\[
\Delta_{\text{gap}} = \frac{\pi k_B T_C}{\gamma} \approx 1.76k_B T_C
\]

\(E_{\text{normal}}\): Perturbation expansion of 'Repulsive gas' with \(a < 0\)
Gas of composite bosons

- Tuning \((a < 0) \rightarrow (a > 0)\) through Feshbach resonance

 \[\Rightarrow \text{Formation of dimers (bosons), } \epsilon_b \simeq -\frac{\hbar^2}{ma^2}\]

- Behavior of dilute gas of dimers (BEC limit) described by theory of Bose-Einstein condensed gases

- Critical temperature \(T_C\):

 \[T_C = \frac{2\pi\hbar^2}{k_Bm} \left(\frac{n_d}{\xi(3/2)} \right)^{2/3} = 0.218 T_F\]

 \(n_d: \text{ density of dimers, } \xi(3/2) \simeq 2.612\)
Gas of composite bosons

- **Interaction between molecules:**
 - Atom-dimer scattering length $a_{ad} \simeq 1.18a$
 (Skorniakov and Ter-Martirosian (1956), Petrov (2003))
 - Dimer-dimer scattering length $a_{dd} \simeq 0.60a$
 (Petrov, Salomon and Shlyapnikov (2004))

- **Energy per dimer:**
 \[
 \frac{E}{N} = \frac{\epsilon_b}{2} + \frac{k_F a_{dd}}{6\pi} \left[1 + \frac{128}{15\sqrt{6\pi}^3} (k_F a_{dd})^{3/2} \right] E_F
 \]
 (Lee, Huang and Yang (1957), Leyronas and Combescot (2007))
Gas at unitarity

- More difficult problem: Behavior of many-body system for \(k_F |a| \gtrsim 1 \) (i.e. scattering length larger than interparticle distance)?

- Application of approximate schemes, numerical simulations
 \(\Rightarrow \) Gas stable and superfluid for \(T < T_C \)

- \(k_F |a| \rightarrow \infty \): unitary regime \((f_0(k) = i/k) \)
 - Chemical potential \((T = 0) \): \(\mu = (1 + \beta)E_F \)
 - Energy per particle: \(E/N = (1 + \beta)3E_F/5 \)
 - Pressure: \(P = (1 + \beta)2nE_F/5 \)

- Finite temperatures: Transition temperature \(T_C = \alpha T_F \)
 QMC methods: \(\alpha = 0.157(7) \) (Burovski et al., 2006)
Interacting Fermi gas in harmonic trap

Keywords
Local density approximation (LDA) ⇒ Density profiles

- Solution of many-body problem for non-uniform configurations
 ⇒ Numerical calculations

- Experimentally relevant case: \(N \approx 10^5 - 10^7 \), harmonic potential
 ⇒ Local density approximation (LDA)

- Profits of the knowledge of equation of state of uniform matter
Local density approximation at $T = 0$

- Equation of state of uniform gas provided by density dependence $\epsilon(n)$ of the energy density
- LDA: System behaves \textbf{locally} like a uniform gas

\[\epsilon(n) = n \frac{E(n)}{N} \quad \frac{E(n)}{N}: \text{energy/atom (uniform matter)}\]

- Total energy of trapped system

\[E = \int d\mathbf{r}\{\epsilon[n(\mathbf{r})] + V_{ho}(\mathbf{r})n(\mathbf{r})\}\]

\[n(\mathbf{r}) = n_{\uparrow}(\mathbf{r}) + n_{\downarrow}(\mathbf{r})\]: total density profile
Local density approximation at $T = 0$

- Value of $n(r)$ at equilibrium (implicit) determined by variational relation: $\delta(E - \mu_0 N)/\delta n(r) = 0 \Rightarrow$ Thomas-Fermi equation

$$\mu_0 = \mu[n(r)] + V_{ho}(r)$$

μ_0: Chemical potential of trapped gas
$\mu(n) = \frac{\partial \epsilon(n)}{\partial n}$: Local chemical potential

- Ideal gas: Density dependence of local chemical potential

$$\mu(n) = (3\pi^2)^{2/3} \frac{\hbar^2}{2m} n^{2/3}$$

$$n_{\sigma}(r) = \frac{8}{\pi^2} \frac{N_{\sigma}^0}{R_x^0 R_y^0 R_z^0} \left[1 - \left(\frac{x}{R_x^0} \right)^2 - \left(\frac{y}{R_y^0} \right)^2 - \left(\frac{z}{R_z^0} \right)^2 \right]^{3/2}$$
Local density approximation at $T = 0$

- Shape of density profile modified by interactions
- At unitarity: Same density dependence of equation of state like ideal gas (with dimensionless renormalization factor: $1 + \beta$)
- \Rightarrow Thomas-Fermi radii

\[R_i = (1 + \beta)^{1/4} R_i^0 = (1 + \beta)^{1/4} a_{ho} (24N)^{1/6} \frac{\omega_{ho}}{\omega_i} \]

\Rightarrow Oscillator energy of trapped gas

\[E_{ho} = (1 + \beta)^{1/2} E_{ho}^0 \]

\[E_{ho}^0 = \frac{3}{8} N E_F^{ho} \quad \text{(Ideal gas value)} \]
Local density approximation at $T = 0$

- BCS regime (small, negative scattering length)
- Calculation of first correction to non-interacting density profile via perturbation theory

$$R_i = \sqrt{\frac{2\mu_0}{m\omega_i^2}} = R_i^0 \left(1 - \frac{256}{315\pi^2} k_F^0 |a|\right)$$

- BEC limit (positive scattering length)
- Interaction between dimers: meanfield term $\mu_d = g_d n/2$ with $g_d = 2\pi \hbar^2 a_{dd}/m \Rightarrow$ inverted parabola profile (Dalfovo et al.)

$$R_i = a_{ho} \left(\frac{15}{2} N \frac{a_{dd}}{a_{ho}}\right) \frac{\omega_{ho}}{\omega_i}$$
Density profiles along BEC-BCS crossover of ^6Li
Bartenstein et al., 2004 (Univ. Innsbruck)

Very good agreement between theory and experiment at unitarity!

\[n_z^{(1)} = \int dx dy \, n(r) = \frac{N}{R_z} \frac{16}{5\pi} \left(1 - \frac{z^2}{R_z^2} \right)^{5/2} \]

\[R_z = (1 + \beta)^{1/4} R_z^0 = (1 + \beta)^{1/4} a_{ho} (24N)^{1/6} \frac{\omega_{ho}}{\omega_z} \]

\[\Rightarrow \beta = -0.73^{+0.12}_{-0.09} \]

- Most recent exp. data:
 \[\beta = -0.54(5) \]
 Partridge et al., 2006 (Rice University)
Release energy and virial theorem

- Further source of information: Release energy

\[E_{rel} = E_{kin} + E_{int} \]

\[E_{rel} = \int d\mathbf{r} \, \epsilon[n(\mathbf{r})] \quad \text{(within LDA)} \]

- Derivation of general relationship between release/potential energy using the 'virial theorem'
Release energy and virial theorem

- Virial theorem holds for polytropic dependence of energy density on the density: \(\epsilon(n) \propto n^{\gamma+1} \)
 - BEC limit: \(\gamma = 1 \)
 - Unitary limit: \(\gamma = 2/3 \)

- Theorem is derived by applying number conserving transformation
 \[n(r) \rightarrow (1 + \alpha)^3 n[(1 + \alpha)r] \]
 to density of gas at equilibrium
 \[\Rightarrow 3\gamma E_{rel} = 2E_{ho} \]

At unitarity: \(E_{rel} = E_{ho} \)
Virial theorem at unitarity in ^6Li
Thomas, Kinast and Turlapov (2005)

Thanks for your attention!

Talk based on:
'Theory of ultracold atomic Fermi gases'
Stefano Giorgini, Lev P. Pitaevskii, Sandro Stringari
(CNR-INFM BEC Center, Trento, Italy)