I. Einführung und Grundlagen: Wieso Quantenfeldtheorie?

I.1 (Relativistische) Quantenfeldtheorien

- vereinen Konzepte der
 - Quantentheorie
 - Feldtheorie
 - (speziellen Relativitätstheorie)

I.1 (Relativistische) Quantenfeldtheorien

- vereinen Konzepte der
 - Quantentheorie
 - Feldtheorie
 - (speziellen Relativitätstheorie)
- → Basis des Standardmodells der Elementarteilchenphysik
 - Konzepte finden auch Anwendung in:

Kernphysik, Atomphysik, Festkörperphysik, Astrophysik (häufig als nicht-relativistische QFT)

I.1 (Relativistische) Quantenfeldtheorien

vereinen Konzepte der

- Quantentheorie
- Feldtheorie
- (speziellen Relativitätstheorie)

→ Basis des Standardmodells der Elementarteilchenphysik

Konzepte finden auch Anwendung in:

Kernphysik, Atomphysik, Festkörperphysik, Astrophysik (häufig als nicht-relativistische QFT)

schematisch:

klass. Mechanik	$\xrightarrow{Feldtheorie}$	z.B. klass. Elektrodynamik
Quantisierung \downarrow		\downarrow
Quantenmechanik	\longrightarrow	z.B. Quanten-Elektrodynamik

Klassische Theorien

klassische Mechanik

- Punkt-Teilchen mit Fern-Wechselwirkung *F*(*r*, *r*^{*})
 z.B. Planetensystem mit Gravitationskraft, geladene Teilchen mit Coulomb-Wechselwirkung
- Potenziale $V(\vec{r}, t)$: rein technische Begriffe

Klassische Theorien

klassische Mechanik

- Punkt-Teilchen mit Fern-Wechselwirkung $\vec{F}(\vec{r},\vec{r}')$
 - z.B. Planetensystem mit Gravitationskraft,

geladene Teilchen mit Coulomb-Wechselwirkung

- Potenziale $V(\vec{r}, t)$: rein technische Begriffe
- klassische Elektrodynamik
 - ▶ geladene Teilchen wechselwirken über Felder $(\vec{E}(\vec{r}, t), \vec{B}(\vec{r}, t))$
 - *E* und *B* sind "reale" Größen, die ein "Eigenleben" führen: elektromagnet. Wellen (Licht!)
 - ▶ Potenziale $\phi(\vec{r}, t)$, $\vec{A}(\vec{r}, t)$: hängen mit \vec{E} und \vec{B} zusammen, sind aber *eichabhängig* → keine reale Bedeutung
 - Theorie ist "von Natur aus" (speziell) relativistisch

Klassische Theorien

klassische Mechanik

- Punkt-Teilchen mit Fern-Wechselwirkung $\vec{F}(\vec{r},\vec{r}')$
 - z.B. Planetensystem mit Gravitationskraft,

geladene Teilchen mit Coulomb-Wechselwirkung

• Potenziale $V(\vec{r}, t)$: rein technische Begriffe

klassische Elektrodynamik

- ▶ geladene Teilchen wechselwirken über Felder $(\vec{E}(\vec{r}, t), \vec{B}(\vec{r}, t))$
- *E* und *B* sind "reale" Größen, die ein "Eigenleben" führen: elektromagnet. Wellen (Licht!)
- ▶ Potenziale $\phi(\vec{r}, t)$, $\vec{A}(\vec{r}, t)$: hängen mit \vec{E} und \vec{B} zusammen, sind aber *eichabhängig* → keine reale Bedeutung
- Theorie ist "von Natur aus" (speziell) relativistisch
- Allgemeine Relativitätstheorie
 - klassische Feldtheorie der Gravitation
 - ► Felder: Komponenten des metrischen Tensors $g_{\mu\nu}$ → Gravitationswellen

Quantentheorien

Quantenmechanik

- ► Welle-Teilchen-Dualismus → Wellenfunktion für die Materie-Teilchen
- Wechselwirkungspotenziale werden (weitgehend) unverändert aus der klassischen Theorie übernommen.
- Bsp.: Schrödinger-Gl. für das Wasserstoff-Atom
 - (→ keine Quantisierung des Coulomb-Feldes)
 - ► relativist. QM: Widersprüche, die erst in der QFT aufgehoben werden (s.u.)

Quantentheorien

Quantenmechanik

- ► Welle-Teilchen-Dualismus → Wellenfunktion für die Materie-Teilchen
- Wechselwirkungspotenziale werden (weitgehend) unverändert aus der klassischen Theorie übernommen.
- Bsp.: Schrödinger-Gl. für das Wasserstoff-Atom
 - (→ keine Quantisierung des Coulomb-Feldes)
 - ▶ relativist. QM: Widersprüche, die erst in der QFT aufgehoben werden (s.u.)

Quantenfeldtheorie

- symmetrische Beschreibung von Materie und Wechselwirkung durch quantisierte Felder
- Welle-Teilchen-Dualismus: Wechselwirkung durch Austausch von (virtuellen) Teilchen

 Elektronen wechselwirken durch den Austausch von Photonen.

- Elektronen wechselwirken durch den Austausch von Photonen.
- Felder:
 - Elektronfeld $\psi(x)$
 - Photonfeld A^µ(x) = quantisiertes Viererpotential (Photon = "Eichboson" der QED)

t

- Elektronen wechselwirken durch den Austausch von Photonen.
- Felder:
 - ► Elektronfeld ψ(x)
 - Photonfeld A^µ(x) = quantisiertes Viererpotential (Photon = "Eichboson" der QED)
- → Das "Eichfeld" A^{μ} ist nicht bloß eine technische Hilfsgröße zur Berechnung von \vec{E} und \vec{B} , sondern hat fundamentale Bedeutung!

t

- Elektronen wechselwirken durch den Austausch von Photonen.
- Felder:
 - ► Elektronfeld ψ(x)
 - Photonfeld A^µ(x) = quantisiertes Viererpotential (Photon = "Eichboson" der QED)
- → Das "Eichfeld" A^{μ} ist nicht bloß eine technische Hilfsgröße zur Berechnung von \vec{E} und \vec{B} , sondern hat fundamentale Bedeutung!
- Die QED ist von vornherein relativistisch.

t

Vorhersage "neuer" Prozesse:

- Vorhersage "neuer" Prozesse:
 - Teilchen-Antiteilchen-Annihilation
 - z.B. $e^-e^+ \rightarrow \mu^-\mu^+$

†e⁺

P+

- Vorhersage "neuer" Prozesse:
 - Teilchen-Antiteilchen-Annihilation
 - z.B. $e^-e^+ \rightarrow \mu^-\mu^+$
 - "Licht-Licht-Streuung": $\gamma \gamma \rightarrow \gamma \gamma$

- Vorhersage "neuer" Prozesse:
 - Teilchen-Antiteilchen-Annihilation
 - z.B. $e^-e^+ \rightarrow \mu^-\mu^+$
 - "Licht-Licht-Streuung": $\gamma\gamma \rightarrow \gamma\gamma$
- > anomale magnetische Momente von Elektron und Myon:

•
$$\mu_i = g_i \, s \, \mu_B$$
, $s = \frac{1}{2}$, $\mu_B = \frac{e}{2m}$

- Vorhersage "neuer" Prozesse:
 - Teilchen-Antiteilchen-Annihilation
 - z.B. $e^-e^+ \rightarrow \mu^-\mu^+$
 - "Licht-Licht-Streuung": $\gamma\gamma \rightarrow \gamma\gamma$

- anomale magnetische Momente von Elektron und Myon:
 - $\mu_i = g_i \, s \, \mu_B$, $s = \frac{1}{2}$, $\mu_B = \frac{e}{2m}$
 - Dirac: $g_i = 2$

- Vorhersage "neuer" Prozesse:
 - Teilchen-Antiteilchen-Annihilation
 - z.B. $e^-e^+ \rightarrow \mu^-\mu^+$
 - "Licht-Licht-Streuung": $\gamma\gamma \rightarrow \gamma\gamma$

- anomale magnetische Momente von Elektron und Myon:
 - $\mu_i = g_i \, s \, \mu_B$, $s = \frac{1}{2}$, $\mu_B = \frac{e}{2m}$
 - Dirac: $g_i = 2$
 - experimentell: $\frac{g_e-2}{2} = (1, 159\,652\,180\,73\pm 0, 000\,000\,000\,28) \cdot 10^{-3}$
 - QED+: $\frac{g_e-2}{2} = (1, 159\,652\,181\,64\pm 0, 000\,000\,000\,76) \cdot 10^{-3}$

- Vorhersage "neuer" Prozesse:
 - Teilchen-Antiteilchen-Annihilation
 - z.B. $e^-e^+ \rightarrow \mu^-\mu^+$
 - "Licht-Licht-Streuung": $\gamma\gamma \rightarrow \gamma\gamma$

- anomale magnetische Momente von Elektron und Myon:
 - $\mu_i = g_i \, s \, \mu_B$, $s = \frac{1}{2}$, $\mu_B = \frac{e}{2m}$
 - Dirac: $g_i = 2$
 - experimentell: $\frac{g_{\mu}-2}{2} = (1, 165\,920\,9\,\pm 0, 000\,000\,6) \cdot 10^{-3}$
 - QED+: $\frac{g_{\mu}-2}{2} = (1, 165\,918\,0\pm0, 000\,000\,5) \cdot 10^{-3}$

- Vorhersage "neuer" Prozesse:
 - Teilchen-Antiteilchen-Annihilation
 - z.B. $e^-e^+ \rightarrow \mu^-\mu^+$
 - "Licht-Licht-Streuung": $\gamma \gamma \rightarrow \gamma \gamma$

- anomale magnetische Momente von Elektron und Myon:
 - $\mu_i = g_i \, s \, \mu_B$, $s = \frac{1}{2}$, $\mu_B = \frac{e}{2m}$
 - Dirac: $g_i = 2$
 - experimentell: $\frac{g_{\mu}-2}{2} = (1, 165\,920\,9\,\pm 0, 000\,000\,6) \cdot 10^{-3}$
 - QED+: $\frac{g_{\mu}-2}{2} = (1, 165\,918\,0\pm 0, 000\,000\,5) \cdot 10^{-3}$
 - → Physik jenseits des Standard-Modells ??? (unwahrscheinlich ...)

Standard-Modell

Beschreibung der Wechselwirkungen (ohne Gravitation) zwischen den elementaren Fermionen (Quarks und Leptonen) als Eichtheorien zu unterschiedlichen Symmetriegruppen:

Wechselwirkung	elektromagn.	schwach	stark
Eichgruppe	<i>U</i> (1)	(<i>SU</i> (2))	<i>SU</i> (3)
Eichbosonen	γ	W^+, W^-, Z^0	8 Gluonen
Theorie	QED	,	QCD
	elektroschwache WW: $U(1) \times SU(2)$		

Standard-Modell

Beschreibung der Wechselwirkungen (ohne Gravitation) zwischen den elementaren Fermionen (Quarks und Leptonen) als Eichtheorien zu unterschiedlichen Symmetriegruppen:

Wechselwirkung	elektromagn.	schwach	stark	
Eichgruppe	<i>U</i> (1)	(<i>SU</i> (2))	<i>SU</i> (3)	
Eichbosonen	γ	W^+, W^-, Z^0	8 Gluonen	
Theorie	QED	,	QCD	
elektroschwache WW: $U(1) \times SU(2)$				

- ► SU(2), SU(3): nicht-abelsche Eichgruppen
 - → Eichbosonen tragen Ladung
 - → Eichbosonen wechselwirken untereinander

Standard-Modell

Beschreibung der Wechselwirkungen (ohne Gravitation) zwischen den elementaren Fermionen (Quarks und Leptonen) als Eichtheorien zu unterschiedlichen Symmetriegruppen:

Wechselwirkung	elektromagn.	schwach	stark	
Eichgruppe	<i>U</i> (1)	(<i>SU</i> (2))	<i>SU</i> (3)	
Eichbosonen	γ	W^+, W^-, Z^0	8 Gluonen	
Theorie	QED	,	QCD	
elektroschwache WW: $U(1) \times SU(2)$				

- ► SU(2), SU(3): nicht-abelsche Eichgruppen
 - → Eichbosonen tragen Ladung
 - → Eichbosonen wechselwirken untereinander
- diese Vorlesung: hauptsächlich QED

Feynman-Diagramme

16. April 2019 | 8

Feynman-Diagramme

 nicht nur Veranschaulichung von Prozessen, sondern konkrete Rechenregeln zur Berechnung von Wirkungsquerschnitten, Zerfallsraten etc.

Feynman-Diagramme

- nicht nur Veranschaulichung von Prozessen, sondern konkrete Rechenregeln zur Berechnung von Wirkungsquerschnitten, Zerfallsraten etc.
- basieren auf einer störungstheoretischen Entwicklung:

ist von höherer Ordnung als

Ziele der Vorlesung

- Verständnis der grundlegenden Konzepte der QFT:
 - Quantisierung relativistischer Felder (Bosonen mit Spin 0, Fermionen, Photonen)
 - Symmetrien und Erhaltungsgrößen
 - wechselwirkende Felder
 - Streuprozesse (Wirkungsquerschnitt, Übergangsmatrixelemente, Streumatrix)
- Erlernen von Techniken zur Berechnung einfacher Prozesse
 - Feynman-Regeln
 - "Rechentricks"

► SI-Einheiten oft unpraktisch \rightarrow "natürliche Einheiten": $\hbar = c = 1$

► SI-Einheiten oft unpraktisch \rightarrow "natürliche Einheiten": $\hbar = c = 1$ $\Rightarrow \hbar c = 197, 33 \text{ MeV fm} = 1$

- ▶ SI-Einheiten oft unpraktisch → "natürliche Einheiten": $\hbar = c = 1$

 - $\Rightarrow \hbar c = 197,33 \text{ MeV fm} = 1$
 - \Leftrightarrow 1 MeV⁻¹ = 197, 33 fm \Leftrightarrow 1 fm⁻¹ = 197, 33 MeV

- ► SI-Einheiten oft unpraktisch \rightarrow "natürliche Einheiten": $\hbar = c = 1$ $\Rightarrow \hbar c = 197, 33 \text{ MeV fm} = 1$
 - $\Leftrightarrow \quad 1 \; \text{MeV}^{-1} = 197, 33 \; \text{fm} \quad \Leftrightarrow \quad 1 \; \text{fm}^{-1} = 197, 33 \; \text{MeV}$
- → nur eine verbleibende Einheit, z.B. 1 MeV (= $1, 6 \cdot 10^{-13} \text{ J}$)

- ► SI-Einheiten oft unpraktisch \rightarrow "natürliche Einheiten": $\hbar = c = 1$ $\Rightarrow \hbar c = 197, 33 \text{ MeV fm} = 1$
 - $\Leftrightarrow \quad 1 \; \text{MeV}^{-1} = 197, 33 \; \text{fm} \quad \Leftrightarrow \quad 1 \; \text{fm}^{-1} = 197, 33 \; \text{MeV}$
- → nur eine verbleibende Einheit, z.B. 1 MeV (= $1, 6 \cdot 10^{-13} \text{ J}$)
 - [Energie] = [Masse] = [Impuls] = 1 MeV

- ► SI-Einheiten oft unpraktisch \rightarrow "natürliche Einheiten": $\hbar = c = 1$
 - $\Rightarrow \hbar c = 197, 33 \text{ MeV fm} = 1$
 - $\Leftrightarrow \quad 1 \text{ MeV}^{-1} = 197, 33 \text{ fm} \quad \Leftrightarrow \quad 1 \text{ fm}^{-1} = 197, 33 \text{ MeV}$
- → nur eine verbleibende Einheit, z.B. 1 MeV (= 1,6 · 10⁻¹³ J)
 - [Energie] = [Masse] = [Impuls] = 1 MeV
 - [Länge] = [Zeit] = 1 MeV⁻¹

- ► SI-Einheiten oft unpraktisch \rightarrow "natürliche Einheiten": $\hbar = c = 1$
 - $\Rightarrow \hbar c = 197, 33 \text{ MeV fm} = 1$
 - $\Leftrightarrow \quad 1 \text{ MeV}^{-1} = 197,33 \text{ fm} \quad \Leftrightarrow \quad 1 \text{ fm}^{-1} = 197,33 \text{ MeV}$
- → nur eine verbleibende Einheit, z.B. 1 MeV (= 1,6 · 10⁻¹³ J)
 - [Energie] = [Masse] = [Impuls] = 1 MeV
 - [Länge] = [Zeit] = 1 MeV⁻¹
 - [Geschwindigkeit] = $\left[\frac{\text{Länge}}{\text{Zeit}}\right] = 1$ (vgl. c = 1)
I.2 Maßeinheiten

- ► SI-Einheiten oft unpraktisch \rightarrow "natürliche Einheiten": $\hbar = c = 1$
 - $\Rightarrow \hbar c = 197, 33 \text{ MeV fm} = 1$
 - $\Leftrightarrow \quad 1 \text{ MeV}^{-1} = 197,33 \text{ fm} \quad \Leftrightarrow \quad 1 \text{ fm}^{-1} = 197,33 \text{ MeV}$
- → nur eine verbleibende Einheit, z.B. 1 MeV (= 1,6 · 10⁻¹³ J)
 - [Energie] = [Masse] = [Impuls] = 1 MeV
 - [Länge] = [Zeit] = 1 MeV⁻¹
 - [Geschwindigkeit] = $\left[\frac{\text{Länge}}{\text{Zeit}}\right] = 1$ (vgl. c = 1)
 - [Wirkung] = [Energie · Zeit] = 1 (vgl. \hbar = 1)

I.2 Maßeinheiten

- ► SI-Einheiten oft unpraktisch \rightarrow "natürliche Einheiten": $\hbar = c = 1$
 - $\Rightarrow \hbar c = 197, 33 \text{ MeV fm} = 1$
 - $\Leftrightarrow \quad 1 \text{ MeV}^{-1} = 197,33 \text{ fm} \quad \Leftrightarrow \quad 1 \text{ fm}^{-1} = 197,33 \text{ MeV}$
- → nur eine verbleibende Einheit, z.B. 1 MeV (= 1,6 · 10⁻¹³ J)
 - [Energie] = [Masse] = [Impuls] = 1 MeV
 - [Länge] = [Zeit] = 1 MeV⁻¹
 - [Geschwindigkeit] = $\left[\frac{\text{Länge}}{\text{Zeit}}\right] = 1$ (vgl. c = 1)
 - [Wirkung] = [Energie · Zeit] = 1 (vgl. \hbar = 1)
 - ► [Wirkungsquerschnitt] = [Fläche] = [Länge]² = 1 MeV⁻²

I.2 Maßeinheiten

- ► SI-Einheiten oft unpraktisch \rightarrow "natürliche Einheiten": $\hbar = c = 1$
 - $\Rightarrow \hbar c = 197, 33 \text{ MeV fm} = 1$
 - $\Leftrightarrow \quad 1 \text{ MeV}^{-1} = 197,33 \text{ fm} \quad \Leftrightarrow \quad 1 \text{ fm}^{-1} = 197,33 \text{ MeV}$
- → nur eine verbleibende Einheit, z.B. 1 MeV (= 1, 6 · 10⁻¹³ J)
 - [Energie] = [Masse] = [Impuls] = 1 MeV
 - [Länge] = [Zeit] = 1 MeV⁻¹
 - [Geschwindigkeit] = $\left[\frac{\text{Länge}}{\text{Zeit}}\right] = 1$ (vgl. c = 1)
 - [Wirkung] = [Energie · Zeit] = 1 (vgl. \hbar = 1)
 - ► [Wirkungsquerschnitt] = [Fläche] = [Länge]² = 1 MeV⁻²
 - Ladungen sind i.A. dimensionslose "Kopplungskonstanten" (s. später)

► z.B. Coulomb-Potential
$$\phi = \frac{Q}{4\pi r} \Rightarrow [Q] = [\phi r] = 1$$

Umrechnung in physikalische Einheiten

► Am Ende der Rechnung führt man ggf. entsprechende Potenzen von ħ und c ein, um zu den gewünschten physikalischen Einheiten zurückzukommen.

Beispiel:

 $\sigma = a \text{MeV}^{-2} = a \text{MeV}^{-2} (\hbar c)^2 = a \text{MeV}^{-2} (197, 33 \text{ MeV fm})^2 = a (197, 33)^2 \text{ fm}^2$

•
$$x \equiv (x^{\mu}) = \begin{pmatrix} x^{0} \\ \vec{x} \end{pmatrix} = \begin{pmatrix} t \\ \vec{x} \end{pmatrix}$$
 (griechische Indizes: $\mu = 0, ..., 3$)

•
$$x \equiv (x^{\mu}) = \begin{pmatrix} x^{0} \\ \vec{x} \end{pmatrix} = \begin{pmatrix} t \\ \vec{x} \end{pmatrix}$$
 (griechische Indizes: $\mu = 0, ..., 3$)
 $\vec{x} = (x^{i}) = \begin{pmatrix} x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}$ (lateinische Indizes: $i = 1, 2, 3$)

•
$$x \equiv (x^{\mu}) = \begin{pmatrix} x^{0} \\ \overline{x} \end{pmatrix} = \begin{pmatrix} t \\ \overline{x} \end{pmatrix}$$
 (griechische Indizes: $\mu = 0, ..., 3$)
 $\vec{x} = (x^{i}) = \begin{pmatrix} x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}$ (lateinische Indizes: $i = 1, 2, 3$)
• $(x_{\mu}) = \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} x^{0} \\ -x^{1} \\ -x^{2} \\ -x^{3} \end{pmatrix} = \begin{pmatrix} x^{0} \\ -\overline{x} \end{pmatrix} = \begin{pmatrix} t \\ -\overline{x} \end{pmatrix}$

•
$$x \equiv (x^{\mu}) = \begin{pmatrix} x^{0} \\ \overline{x} \end{pmatrix} = \begin{pmatrix} t \\ \overline{x} \end{pmatrix}$$
 (griechische Indizes: $\mu = 0, ..., 3$)
 $\vec{x} = (x^{i}) = \begin{pmatrix} x^{1} \\ x^{2} \\ x^{3} \end{pmatrix}$ (lateinische Indizes: $i = 1, 2, 3$)
• $(x_{\mu}) = \begin{pmatrix} x_{0} \\ x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{pmatrix} x^{0} \\ -x^{1} \\ -x^{2} \\ -x^{3} \end{pmatrix} = \begin{pmatrix} x^{0} \\ -\overline{x} \end{pmatrix} = \begin{pmatrix} t \\ -\overline{x} \end{pmatrix}$
• $x_{\mu} = \sum_{\nu} g_{\mu\nu} x^{\nu} \equiv g_{\mu\nu} x^{\nu}$, metrischer Tensor: $(g_{\mu\nu}) = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{pmatrix}$

("Westcoast-Konvention")

Lorentz-Transformationen (Boosts, Rotationen, Raum- und Zeitspiegelung):

 $x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}, \quad x'{}_{\mu} = \Lambda_{\mu}{}^{\nu} x_{\nu}$

Lorentz-Transformationen (Boosts, Rotationen, Raum- und Zeitspiegelung):

 $x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}, \quad x'{}_{\mu} = \Lambda_{\mu}{}^{\nu} x_{\nu}$

kontravarianter (kovarianter) Vierervektor:

4-komponentige Größe, die sich genauso transformiert wie x^{μ} (x_{μ})

Lorentz-Transformationen (Boosts, Rotationen, Raum- und Zeitspiegelung):

$$x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}, \quad x'{}_{\mu} = \Lambda_{\mu}{}^{\nu} x_{\nu}$$

- kontravarianter (kovarianter) Vierervektor:
 4-komponentige Größe, die sich genauso transformiert wie x^μ (x_μ)
- Ableitungen:

$$\begin{array}{l} (\partial_{\mu}) \equiv \left(\frac{\partial}{\partial x^{\mu}}\right) = \left(\begin{array}{c} \frac{\partial}{\partial t} \\ \vec{\nabla} \end{array}\right) & \text{transformiert sich kovariant!} \\ (\partial^{\mu}) \equiv \left(\frac{\partial}{\partial x_{\mu}}\right) = \left(\begin{array}{c} \frac{\partial}{\partial t} \\ -\vec{\nabla} \end{array}\right) & \text{transformiert sich kontravariant!} & (\rightarrow \ddot{U}\text{bung}) \end{array}$$

Lorentz-Transformationen (Boosts, Rotationen, Raum- und Zeitspiegelung):

$$x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}, \quad x'{}_{\mu} = \Lambda_{\mu}{}^{\nu} x_{\nu}$$

- kontravarianter (kovarianter) Vierervektor:
 4-komponentige Größe, die sich genauso transformiert wie x^μ (x_μ)
- Ableitungen:

$$\begin{array}{l} (\partial_{\mu}) \equiv \left(\frac{\partial}{\partial x^{\mu}}\right) = \begin{pmatrix} \frac{\partial}{\partial t} \\ \vec{\nabla} \end{pmatrix} \quad \text{transformiert sich kovariant!} \\ (\partial^{\mu}) \equiv \left(\frac{\partial}{\partial x_{\mu}}\right) = \begin{pmatrix} \frac{\partial}{\partial t} \\ -\vec{\nabla} \end{pmatrix} \quad \text{transformiert sich kontravariant!} \quad (\rightarrow \ddot{U} \text{bung}) \end{array}$$

Skalarprodukt: $a \cdot b \equiv a_{\mu} b^{\mu} = g_{\mu\nu} a^{\mu} b^{\nu}$ Lorentz-invariant

Lorentz-Transformationen (Boosts, Rotationen, Raum- und Zeitspiegelung):

$$x^{\mu} \rightarrow x'^{\mu} = \Lambda^{\mu}{}_{\nu} x^{\nu}, \quad x'{}_{\mu} = \Lambda_{\mu}{}^{\nu} x_{\nu}$$

- kontravarianter (kovarianter) Vierervektor:
 4-komponentige Größe, die sich genauso transformiert wie x^μ (x_μ)
- Ableitungen:

$$\begin{aligned} (\partial_{\mu}) &\equiv \left(\frac{\partial}{\partial x^{\mu}}\right) = \begin{pmatrix} \frac{\partial}{\partial t} \\ \vec{\nabla} \end{pmatrix} & \text{transformiert sich kovariant!} \\ (\partial^{\mu}) &\equiv \left(\frac{\partial}{\partial x_{\mu}}\right) = \begin{pmatrix} \frac{\partial}{\partial t} \\ -\vec{\nabla} \end{pmatrix} & \text{transformiert sich kontravariant!} & (\rightarrow \ddot{U}\text{bung}) \end{aligned}$$

Skalarprodukt: $a \cdot b \equiv a_{\mu} b^{\mu} = g_{\mu\nu} a^{\mu} b^{\nu}$ Lorentz-invariant insbesondere: $x'_{\mu} x'^{\mu} \stackrel{!}{=} x_{\mu} x^{\mu} \Rightarrow \Lambda_{\mu}{}^{\alpha} \Lambda^{\mu}{}_{\beta} = g^{\alpha}{}_{\beta} = \delta_{\alpha\beta}$ (\rightarrow Übung)

I.4 Kurzrückblick auf relevante physikalische Grundlagen

• *n* Punktmassen mit generalisierten Koordinaten $q_k(t)$

- *n* Punktmassen mit generalisierten Koordinaten $q_k(t)$
- Lagrange-Funktion; $L(q_k, \dot{q}_k) = T V$

- *n* Punktmassen mit generalisierten Koordinaten $q_k(t)$
- Lagrange-Funktion; $L(q_k, \dot{q}_k) = T V$

• Wirkung:
$$S = \int_{t_1}^{t_2} dt L(q_k(t), \dot{q}_k(t))$$

- *n* Punktmassen mit generalisierten Koordinaten $q_k(t)$
- Lagrange-Funktion; $L(q_k, \dot{q}_k) = T V$

• Wirkung:
$$S = \int_{t_1}^{t_2} dt L(q_k(t), \dot{q}_k(t))$$

• Hamilton'sches Prinzip: $\delta S = 0$

$$\Rightarrow \quad \frac{d}{dt}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = 0 \quad \text{(Euler-Lagrange-Gleichungen)}$$

- *n* Punktmassen mit generalisierten Koordinaten $q_k(t)$
- Lagrange-Funktion; $L(q_k, \dot{q}_k) = T V$

• Wirkung:
$$S = \int_{t_1}^{t_2} dt L(q_k(t), \dot{q}_k(t))$$

• Hamilton'sches Prinzip: $\delta S = 0$

$$\Rightarrow \quad \frac{d}{dt}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = 0 \quad \text{(Euler-Lagrange-Gleichungen)}$$

► kanonisch konjugierte Impulse: $p_k = \frac{\partial L}{\partial \dot{q}_k}$

- *n* Punktmassen mit generalisierten Koordinaten $q_k(t)$
- Lagrange-Funktion; $L(q_k, \dot{q}_k) = T V$

• Wirkung:
$$S = \int_{t_1}^{t_2} dt L(q_k(t), \dot{q}_k(t))$$

• Hamilton'sches Prinzip: $\delta S = 0$

$$\Rightarrow \quad \frac{d}{dt}\frac{\partial L}{\partial \dot{q}_k} - \frac{\partial L}{\partial q_k} = 0 \quad \text{(Euler-Lagrange-Gleichungen)}$$

► kanonisch konjugierte Impulse: $p_k = \frac{\partial L}{\partial \dot{q}_k}$

• Hamilton-Funktion:
$$H = \sum_{k} p_k \dot{q}_k - L$$

► Viererpotenzial:
$$(A^{\mu}) = \begin{pmatrix} \phi \\ \vec{A} \end{pmatrix}$$

- Viererpotenzial: $(A^{\mu}) = \begin{pmatrix} \phi \\ \vec{A} \end{pmatrix}$
- Feldstärketensor: $F^{\mu\nu} = \partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu}$

- Viererpotenzial: $(A^{\mu}) = \begin{pmatrix} \phi \\ \vec{A} \end{pmatrix}$
- Feldstärketensor: $F^{\mu\nu} = \partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu}$

elektrische und magnetische Felder: $F^{0i} = -E^i$, $F^{ij} = -\epsilon^{ijk}B^k$

mit $\epsilon^{ijk} = \begin{cases} +1 & \text{für } (i, j, k) & \text{zyklische Permutation von } (1, 2, 3) \\ -1 & \text{antizykl.} \\ 0 & \text{sonst} \end{cases}$

- Viererpotenzial: $(A^{\mu}) = \begin{pmatrix} \phi \\ \vec{A} \end{pmatrix}$
- Feldstärketensor: $F^{\mu\nu} = \partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu}$

elektrische und magnetische Felder: $F^{0i} = -E^i$, $F^{ij} = -\epsilon^{ijk}B^k$

mit $\epsilon^{ijk} = \begin{cases} +1 & \text{für } (i, j, k) & \text{zyklische Permutation von } (1, 2, 3) \\ -1 & \text{antizykl.} \\ 0 & \text{sonst} \end{cases}$

► Vierer- (Ladungs-) Strom: $(j^{\mu}) = \left(\frac{\rho}{j}\right)$

- Viererpotenzial: $(A^{\mu}) = \begin{pmatrix} \phi \\ \vec{A} \end{pmatrix}$
- Feldstärketensor: $F^{\mu\nu} = \partial^{\mu}A^{\nu} \partial^{\nu}A^{\mu}$

elektrische und magnetische Felder: $F^{0i} = -E^i$, $F^{ij} = -\epsilon^{ijk}B^k$

mit $e^{ijk} = \begin{cases} +1 & \text{für } (i, j, k) & \text{zyklische Permutation von } (1, 2, 3) \\ -1 & \text{antizykl.} \\ 0 & \text{sonst} \end{cases}$

► Vierer- (Ladungs-) Strom: $(j^{\mu}) = \left(\begin{array}{c} \rho \\ \overline{j} \end{array}\right)$

• Maxwell-Gleichungen: $\partial_{\mu}F^{\mu\nu} = j^{\nu}, \quad \partial_{\mu}\tilde{F}^{\mu\nu} = 0$

• "dualer Feldstärketensor": $\tilde{F}^{\mu\nu} = \epsilon^{\mu\nu\rho\sigma} F_{\rho\sigma}$

•
$$\epsilon^{\mu\nu\rho\sigma}$$
 anlog zu ϵ^{ijk} mit ϵ^{0123} = +1

• Welle-Teilchen-Dualismus:

ebene Welle $\psi(t, \vec{r}) \sim e^{i(\vec{k} \cdot \vec{r} - \omega t)}$

 $\hat{=}$ Teilchen mit Impuls $\vec{p} = \hbar \vec{k} \equiv \vec{k}$ und Energie $\vec{E} = \hbar \omega \equiv \omega$

• Welle-Teilchen-Dualismus:

- $\hat{=}\,$ Teilchen mit Impuls \vec{p} = $\hbar\vec{k}\equiv\vec{k}$ und Energie \vec{E} = $\hbar\omega\equiv\omega$
- → hermitesche Operatoren: $\hat{\vec{p}} = \frac{\hbar}{i} \vec{\nabla} \equiv -i \vec{\nabla}$, $\hat{E} = i \hbar \frac{\partial}{\partial t} \equiv i \frac{\partial}{\partial t}$

• Welle-Teilchen-Dualismus:

- $\hat{=}\,$ Teilchen mit Impuls \vec{p} = $\hbar\vec{k}\equiv\vec{k}$ und Energie \vec{E} = $\hbar\omega\equiv\omega$
- → hermitesche Operatoren: $\hat{\vec{p}} = \frac{\hbar}{i}\vec{\nabla} \equiv -i\vec{\nabla}$, $\hat{E} = i\hbar\frac{\partial}{\partial t} \equiv i\frac{\partial}{\partial t}$
- ▶ nichtrelativistische Energie-Impuls-Beziehung: $E = \frac{\vec{p}^2}{2m} + V$

• Welle-Teilchen-Dualismus:

- $\hat{=}$ Teilchen mit Impuls $\vec{p} = \hbar \vec{k} \equiv \vec{k}$ und Energie $\vec{E} = \hbar \omega \equiv \omega$
- → hermitesche Operatoren: $\hat{\vec{p}} = \frac{\hbar}{i}\vec{\nabla} \equiv -i\vec{\nabla}$, $\hat{E} = i\hbar\frac{\partial}{\partial t} \equiv i\frac{\partial}{\partial t}$
- ▶ nichtrelativistische Energie-Impuls-Beziehung: $E = \frac{\vec{p}^2}{2m} + V$
- → Schrödinger-Gleichung: $\hat{H}\psi(t,\vec{r}) \equiv \left(-\frac{1}{2m}\vec{\nabla}^2 + V\right)\psi(t,\vec{r}) = i\frac{\partial}{\partial t}\psi(t,\vec{r})$

• Welle-Teilchen-Dualismus:

- $\hat{=}$ Teilchen mit Impuls $\vec{p} = \hbar \vec{k} \equiv \vec{k}$ und Energie $\vec{E} = \hbar \omega \equiv \omega$
- → hermitesche Operatoren: $\hat{\vec{p}} = \frac{\hbar}{i} \vec{\nabla} \equiv -i \vec{\nabla}$, $\hat{E} = i \hbar \frac{\partial}{\partial t} \equiv i \frac{\partial}{\partial t}$
- ► nichtrelativistische Energie-Impuls-Beziehung: $E = \frac{\vec{p}^2}{2m} + V$
- → Schrödinger-Gleichung: $\hat{H}\psi(t,\vec{r}) \equiv \left(-\frac{1}{2m}\vec{\nabla}^2 + V\right)\psi(t,\vec{r}) = i\frac{\partial}{\partial t}\psi(t,\vec{r})$
 - etwas formaler:
 - Hilbert-Raum-Zustand $|\psi(t)\rangle$

• Welle-Teilchen-Dualismus:

- $\hat{=}$ Teilchen mit Impuls $\vec{p} = \hbar \vec{k} \equiv \vec{k}$ und Energie $\vec{E} = \hbar \omega \equiv \omega$
- → hermitesche Operatoren: $\hat{\vec{p}} = \frac{\hbar}{i}\vec{\nabla} \equiv -i\vec{\nabla}$, $\hat{E} = i\hbar\frac{\partial}{\partial t} \equiv i\frac{\partial}{\partial t}$
- ▶ nichtrelativistische Energie-Impuls-Beziehung: $E = \frac{\vec{p}^2}{2m} + V$
- → Schrödinger-Gleichung: $\hat{H}\psi(t,\vec{r}) \equiv \left(-\frac{1}{2m}\vec{\nabla}^2 + V\right)\psi(t,\vec{r}) = i\frac{\partial}{\partial t}\psi(t,\vec{r})$
- etwas formaler:
 - Hilbert-Raum-Zustand $|\psi(t)\rangle$
 - ► Ortsraum-Darstellung: $\psi(t, \vec{x}) = \langle \vec{x} | \psi(t) \rangle$, wobei $\hat{\vec{x}} | \vec{x} \rangle = \vec{x} | \vec{x} \rangle$ (Impulsraumdarstellung analog)

• Welle-Teilchen-Dualismus:

- $\hat{=}\,$ Teilchen mit Impuls \vec{p} = $\hbar\vec{k}\equiv\vec{k}$ und Energie \vec{E} = $\hbar\omega\equiv\omega$
- → hermitesche Operatoren: $\hat{\vec{p}} = \frac{\hbar}{i}\vec{\nabla} \equiv -i\vec{\nabla}$, $\hat{E} = i\hbar\frac{\partial}{\partial t} \equiv i\frac{\partial}{\partial t}$
- ▶ nichtrelativistische Energie-Impuls-Beziehung: $E = \frac{\vec{p}^2}{2m} + V$
- → Schrödinger-Gleichung: $\hat{H}\psi(t,\vec{r}) \equiv \left(-\frac{1}{2m}\vec{\nabla}^2 + V\right)\psi(t,\vec{r}) = i\frac{\partial}{\partial t}\psi(t,\vec{r})$
 - etwas formaler:
 - Hilbert-Raum-Zustand $|\psi(t)\rangle$
 - ► Ortsraum-Darstellung: $\psi(t, \vec{x}) = \langle \vec{x} | \psi(t) \rangle$, wobei $\hat{\vec{x}} | \vec{x} \rangle = \vec{x} | \vec{x} \rangle$ (Impulsraumdarstellung analog)
 - ► kanonische Quantisierung: $[\hat{x}_m, \hat{p}_n] = i\hbar \delta_{mn} \equiv i\delta_{mn}$

► Observable $\leftrightarrow \langle \psi_1 | \hat{\mathcal{O}} | \psi_2 \rangle$, $\hat{\mathcal{O}}$ = hermitescher Operator

- ► Observable $\leftrightarrow \langle \psi_1 | \hat{\mathcal{O}} | \psi_2 \rangle$, $\hat{\mathcal{O}}$ = hermitescher Operator
- Schrödinger-Bild:
 - Operatoren zeitunabhängig
 - Zustände zeitabhängig

- ► Observable $\leftrightarrow \langle \psi_1 | \hat{\mathcal{O}} | \psi_2 \rangle$, $\hat{\mathcal{O}}$ = hermitescher Operator
- Schrödinger-Bild:
 - Operatoren zeitunabhängig
 - Zustände zeitabhängig
 - Bewegungs-Gleichung: $H|\psi(t)\rangle = i\frac{\partial}{\partial t}|\psi(t)\rangle$

- ► Observable $\leftrightarrow \langle \psi_1 | \hat{\mathcal{O}} | \psi_2 \rangle$, $\hat{\mathcal{O}}$ = hermitescher Operator
- Schrödinger-Bild:
 - Operatoren zeitunabhängig
 - Zustände zeitabhängig
 - Bewegungs-Gleichung: $H|\psi(t)\rangle = i\frac{\partial}{\partial t}|\psi(t)\rangle$

 $\Rightarrow |\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle \quad \Rightarrow \quad \langle\psi_1(t)|\,\hat{\mathcal{O}}\,|\psi_2(t)\rangle = \langle\psi_1(0)|e^{iHt}\,\hat{\mathcal{O}}\,e^{-iHt}|\psi_2(0)\rangle$

- ► Observable $\leftrightarrow \langle \psi_1 | \hat{\mathcal{O}} | \psi_2 \rangle$, $\hat{\mathcal{O}}$ = hermitescher Operator
- Schrödinger-Bild:
 - Operatoren zeitunabhängig
 - Zustände zeitabhängig
 - Bewegungs-Gleichung: $H|\psi(t)\rangle = i\frac{\partial}{\partial t}|\psi(t)\rangle$

 $\Rightarrow |\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle \quad \Rightarrow \quad \langle\psi_1(t)|\,\hat{\mathcal{O}}\,|\psi_2(t)\rangle = \langle\psi_1(0)|e^{iHt}\,\hat{\mathcal{O}}\,e^{-iHt}|\psi_2(0)\rangle$

- Heisenberg-Bild:
 - ► Zustände zeitunabhängig: $|\psi_H\rangle = |\psi_S(0)\rangle$
 - Operatoren zeitabhängig: $\hat{O}_H(t) = e^{iHt} \hat{O}_S e^{-iHt}$

- ► Observable $\leftrightarrow \langle \psi_1 | \hat{\mathcal{O}} | \psi_2 \rangle$, $\hat{\mathcal{O}}$ = hermitescher Operator
- Schrödinger-Bild:
 - Operatoren zeitunabhängig
 - Zustände zeitabhängig
 - Bewegungs-Gleichung: $H|\psi(t)\rangle = i\frac{\partial}{\partial t}|\psi(t)\rangle$

 $\Rightarrow |\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle \quad \Rightarrow \quad \langle\psi_1(t)|\,\hat{\mathcal{O}}\,|\psi_2(t)\rangle = \langle\psi_1(0)|e^{iHt}\,\hat{\mathcal{O}}\,e^{-iHt}|\psi_2(0)\rangle$

- Heisenberg-Bild:
 - ► Zustände zeitunabhängig: $|\psi_H\rangle = |\psi_S(0)\rangle$
 - Operatoren zeitabhängig: $\hat{O}_H(t) = e^{iHt} \hat{O}_S e^{-iHt}$
 - ► Bewegungsgleichung: $i\frac{d}{dt}\hat{O}_{H}(t) = [\hat{O}_{H}(t), H]$

- I.4.4 Relativistische Quantenmechanik
- i) Klein-Gordon-Gleichung (Spin 0)

▶ relativistische Energie-Impuls-Beziehung für freie Teilchen: $E^2 = \vec{p}^2 + m^2$

- ► relativistische Energie-Impuls-Beziehung für freie Teilchen: $E^2 = \vec{p}^2 + m^2$
- Ersetzung durch Operatoren: $E \rightarrow i \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow -i \vec{\nabla}$

- ▶ relativistische Energie-Impuls-Beziehung für freie Teilchen: $E^2 = \vec{p}^2 + m^2$
- Ersetzung durch Operatoren: $E \rightarrow i \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow -i \vec{\nabla}$

 $\Rightarrow (\partial_{\mu}\partial^{\mu} + m^2) \Phi(x) = 0$ (Klein-Gordon-Gleichung)

- ► relativistische Energie-Impuls-Beziehung für freie Teilchen: $E^2 = \vec{p}^2 + m^2$
- Ersetzung durch Operatoren: $E \rightarrow i \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow -i \vec{\nabla}$

 $\Rightarrow \quad (\partial_{\mu}\partial^{\mu} + m^2) \Phi(x) = 0 \quad (\text{Klein-Gordon-Gleichung})$

► Lösungen: $\Phi(x) \sim e^{-ip \cdot x} = e^{-i(Et - \vec{p} \cdot \vec{x})}$ mit $E^2 = \vec{p}^2 + m^2$

- ▶ relativistische Energie-Impuls-Beziehung für freie Teilchen: $E^2 = \vec{p}^2 + m^2$
- Ersetzung durch Operatoren: $E \rightarrow i \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow -i \vec{\nabla}$

 $\Rightarrow \quad \left(\partial_{\mu}\partial^{\mu} + m^{2}\right)\Phi(x) = 0 \quad (\text{Klein-Gordon-Gleichung})$

- ► Lösungen: $\Phi(x) \sim e^{-ip \cdot x} = e^{-i(Et \vec{p} \cdot \vec{x})}$ mit $E^2 = \vec{p}^2 + m^2$
- enhaltener Viererstrom: $\partial_{\mu}j^{\mu} = 0$ mit $j^{\mu} = \frac{i}{2m} (\Phi^* \partial^{\mu} \Phi \Phi \partial^{\mu} \Phi^*)$

- ▶ relativistische Energie-Impuls-Beziehung für freie Teilchen: $E^2 = \vec{p}^2 + m^2$
- Ersetzung durch Operatoren: $E \rightarrow i \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow -i \vec{\nabla}$

 $\Rightarrow \quad \left(\partial_{\mu}\partial^{\mu} + m^{2}\right)\Phi(x) = 0 \quad (\text{Klein-Gordon-Gleichung})$

- ► Lösungen: $\Phi(x) \sim e^{-ip \cdot x} = e^{-i(Et \vec{p} \cdot \vec{x})}$ mit $E^2 = \vec{p}^2 + m^2$
- enhaltener Viererstrom: $\partial_{\mu}j^{\mu} = 0$ mit $j^{\mu} = \frac{i}{2m} (\Phi^* \partial^{\mu} \Phi \Phi \partial^{\mu} \Phi^*)$
- Probleme:

- ► relativistische Energie-Impuls-Beziehung für freie Teilchen: $E^2 = \vec{p}^2 + m^2$
- Ersetzung durch Operatoren: $E \rightarrow i \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow -i \vec{\nabla}$

 $\Rightarrow \quad \left(\partial_{\mu}\partial^{\mu} + m^{2}\right)\Phi(x) = 0 \quad (\text{Klein-Gordon-Gleichung})$

- ► Lösungen: $\Phi(x) \sim e^{-ip \cdot x} = e^{-i(Et \vec{p} \cdot \vec{x})}$ mit $E^2 = \vec{p}^2 + m^2$
- erhaltener Viererstrom: $\partial_{\mu}j^{\mu} = 0$ mit $j^{\mu} = \frac{i}{2m} (\Phi^* \partial^{\mu} \Phi \Phi \partial^{\mu} \Phi^*)$
- Probleme:

• $E = \pm \sqrt{\vec{p}^2 + m^2}$, d.h. auch negative Energien erlaubt

⇒ Stabilitätsproblem (Spektrum nicht nach unten beschränkt)!

- ► relativistische Energie-Impuls-Beziehung für freie Teilchen: $E^2 = \vec{p}^2 + m^2$
- Ersetzung durch Operatoren: $E \rightarrow i \frac{\partial}{\partial t}, \quad \vec{p} \rightarrow -i \vec{\nabla}$

 $\Rightarrow \quad \left(\partial_{\mu}\partial^{\mu} + m^{2}\right)\Phi(x) = 0 \quad (\text{Klein-Gordon-Gleichung})$

- ► Lösungen: $\Phi(x) \sim e^{-ip \cdot x} = e^{-i(Et \vec{p} \cdot \vec{x})}$ mit $E^2 = \vec{p}^2 + m^2$
- enhaltener Viererstrom: $\partial_{\mu}j^{\mu} = 0$ mit $j^{\mu} = \frac{i}{2m} (\Phi^* \partial^{\mu} \Phi \Phi \partial^{\mu} \Phi^*)$
- Probleme:

• $E = \pm \sqrt{\vec{p}^2 + m^2}$, d.h. auch negative Energien erlaubt

- ⇒ Stabilitätsproblem (Spektrum nicht nach unten beschränkt)!
- ▶ $\rho = j^0 < 0$ für $E < 0 \Rightarrow$ keine Wahrscheinlichkeitsinterpretation!

Ansatz: partielle Dgl. 1. Ordnung in Ort- und Zeit

- Ansatz: partielle Dgl. 1. Ordnung in Ort- und Zeit
- Fordere Konsistenz mit relativist. Energie-Impuls-Beziehung

- Ansatz: partielle Dgl. 1. Ordnung in Ort- und Zeit
- ► Fordere Konsistenz mit relativist. Energie-Impuls-Beziehung
- $\rightarrow (i\gamma^{\mu}\partial_{\mu} m)\psi(x) = 0 \quad \text{(Dirac-Gleichung)}$

- Ansatz: partielle Dgl. 1. Ordnung in Ort- und Zeit
- Fordere Konsistenz mit relativist. Energie-Impuls-Beziehung
- $\rightarrow (i\gamma^{\mu}\partial_{\mu} m)\psi(x) = 0 \quad \text{(Dirac-Gleichung)}$
 - γ^{μ} : antikommutierende 4 × 4-Matrizen, $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$

- Ansatz: partielle Dgl. 1. Ordnung in Ort- und Zeit
- Fordere Konsistenz mit relativist. Energie-Impuls-Beziehung

$$\rightarrow \quad (i\gamma^{\mu}\partial_{\mu} - m) \psi(x) = 0 \quad (\text{Dirac-Gleichung})$$

•
$$\gamma^{\mu}$$
: antikommutierende 4 × 4-Matrizen, $\{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$
• $\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix}$ ("Dirac-Spinoren")

- Ansatz: partielle Dgl. 1. Ordnung in Ort- und Zeit
- Fordere Konsistenz mit relativist. Energie-Impuls-Beziehung

$$\rightarrow (i\gamma^{\mu}\partial_{\mu} - m)\psi(x) = 0 \quad \text{(Dirac-Gleichung)}$$

$$\gamma^{\mu}: \text{ antikommutierende } 4 \times 4 \text{-Matrizen,} \quad \{\gamma^{\mu}, \gamma^{\nu}\} = 2g^{\mu\nu}$$

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \\ \psi_3 \\ \psi_4 \end{pmatrix} \quad (\text{,,Dirac-Spinoren''})$$

Auch hier gibt es Lösungen negativer Energie!

- physikalisches Vakuum ("Dirac-See"):
 - alle Zustände mit E > 0 unbesetzt
 - alle Zustände mit E < 0 besetzt</p>

- physikalisches Vakuum ("Dirac-See"):
 - alle Zustände mit E > 0 unbesetzt
 - alle Zustände mit E < 0 besetzt</p>
 - → Übergang von zusätzlichen Teilchen in E < 0-Zustände Pauli-verboten!
 - → stabiler Grundzustand

- physikalisches Vakuum ("Dirac-See"):
 - alle Zustände mit E > 0 unbesetzt
 - alle Zustände mit E < 0 besetzt</p>
 - → Übergang von zusätzlichen Teilchen in E < 0-Zustände Pauli-verboten!
 - → stabiler Grundzustand
- Energie und Ladung des Vakuums = $-\infty$ (für e^-)

- physikalisches Vakuum ("Dirac-See"):
 - alle Zustände mit E > 0 unbesetzt
 - alle Zustände mit E < 0 besetzt</p>
 - → Übergang von zusätzlichen Teilchen in E < 0-Zustände Pauli-verboten!
 - → stabiler Grundzustand
- Energie und Ladung des Vakuums = $-\infty$ (für e^-)
 - → Definiere E_{phys} und Q_{phys} relativ zum gefüllten Dirac-See.

- physikalisches Vakuum ("Dirac-See"):
 - alle Zustände mit E > 0 unbesetzt
 - alle Zustände mit E < 0 besetzt</p>
 - → Übergang von zusätzlichen Teilchen in E < 0-Zustände Pauli-verboten!
 - → stabiler Grundzustand
- Energie und Ladung des Vakuums = $-\infty$ (für e^-)
 - → Definiere E_{phys} und Q_{phys} relativ zum gefüllten Dirac-See.
- Anregung eines Fermions aus dem See in einen Zustand mit E > 0:

- physikalisches Vakuum ("Dirac-See"):
 - alle Zustände mit E > 0 unbesetzt
 - alle Zustände mit E < 0 besetzt</p>
 - → Übergang von zusätzlichen Teilchen in E < 0-Zustände Pauli-verboten!
 - → stabiler Grundzustand
- Energie und Ladung des Vakuums = $-\infty$ (für e^-)
 - → Definiere E_{phys} und Q_{phys} relativ zum gefüllten Dirac-See.
- Anregung eines Fermions aus dem See in einen Zustand mit E > 0:
 - = Erzeugung eines Teilchen-Antiteilchen-Paars!

- physikalisches Vakuum ("Dirac-See"):
 - alle Zustände mit E > 0 unbesetzt
 - alle Zustände mit E < 0 besetzt</p>
 - → Übergang von zusätzlichen Teilchen in E < 0-Zustände Pauli-verboten!
 - → stabiler Grundzustand
- Energie und Ladung des Vakuums = $-\infty$ (für e^-)
 - → Definiere E_{phys} und Q_{phys} relativ zum gefüllten Dirac-See.
- Anregung eines Fermions aus dem See in einen Zustand mit E > 0:
 - = Erzeugung eines Teilchen-Antiteilchen-Paars!
- Die Löchertheorie ist automatisch eine (∞ -) Vielteilchentheorie.

- physikalisches Vakuum ("Dirac-See"):
 - alle Zustände mit E > 0 unbesetzt
 - alle Zustände mit E < 0 besetzt</p>
 - → Übergang von zusätzlichen Teilchen in E < 0-Zustände Pauli-verboten!
 - → stabiler Grundzustand
- ► Energie und Ladung des Vakuums = -∞ (für e⁻)
 - → Definiere E_{phys} und Q_{phys} relativ zum gefüllten Dirac-See.
- ► Anregung eines Fermions aus dem See in einen Zustand mit *E* > 0:
 - = Erzeugung eines Teilchen-Antiteilchen-Paars!
- Die Löchertheorie ist automatisch eine (∞ -) Vielteilchentheorie.
- Sie funktioniert nicht für Bosonen (kein Pauli-Prinzip).

16. April 2019 | 21

- Elementarteilchenphysik:
 - ▶ kleine Distanzen → Quantentheorie
 - ► hohe Energien → spezielle Relativitätstheorie

- Elementarteilchenphysik:
 - ▶ kleine Distanzen → Quantentheorie
 - ► hohe Energien → spezielle Relativitätstheorie
- Relativistische QM besitzt Inkonsistenzen, z.B. negative Energien

- Elementarteilchenphysik:
 - ► kleine Distanzen → Quantentheorie
 - ► hohe Energien → spezielle Relativitätstheorie
- Relativistische QM besitzt Inkonsistenzen, z.B. negative Energien
- ► Beschreibung von Vielteilchenprozessen notwendig: Unschärferelation: Δx klein $\Rightarrow \Delta p$ groß $\Rightarrow \Delta E$ groß
 - → Energie reicht aus, virtuell neue Teilchen zu erzeugen.

- Elementarteilchenphysik:
 - ▶ kleine Distanzen → Quantentheorie
 - ► hohe Energien → spezielle Relativitätstheorie
- Relativistische QM besitzt Inkonsistenzen, z.B. negative Energien
- ► Beschreibung von Vielteilchenprozessen notwendig: Unschärferelation: Δx klein $\Rightarrow \Delta p$ groß $\Rightarrow \Delta E$ groß
 - → Energie reicht aus, virtuell neue Teilchen zu erzeugen.
- Die ursprüngliche QM lässt solche Prozesse nicht zu.

- Elementarteilchenphysik:
 - ▶ kleine Distanzen → Quantentheorie
 - ► hohe Energien → spezielle Relativitätstheorie
- Relativistische QM besitzt Inkonsistenzen, z.B. negative Energien
- ► Beschreibung von Vielteilchenprozessen notwendig: Unschärferelation: Δx klein $\Rightarrow \Delta p$ groß $\Rightarrow \Delta E$ groß
 - → Energie reicht aus, virtuell neue Teilchen zu erzeugen.
- Die ursprüngliche QM lässt solche Prozesse nicht zu.
- klassische E-Dynamik: Abstrahlung elektromagnetischer Wellen
Fazit: Warum Quantenfeldtheorie?

- Elementarteilchenphysik:
 - ► kleine Distanzen → Quantentheorie
 - ► hohe Energien → spezielle Relativitätstheorie
- Relativistische QM besitzt Inkonsistenzen, z.B. negative Energien
- ► Beschreibung von Vielteilchenprozessen notwendig: Unschärferelation: Δx klein $\Rightarrow \Delta p$ groß $\Rightarrow \Delta E$ groß
 - → Energie reicht aus, virtuell neue Teilchen zu erzeugen.
- Die ursprüngliche QM lässt solche Prozesse nicht zu.
- klassische E-Dynamik: Abstrahlung elektromagnetischer Wellen
 - (→ nach Quantisierung: Erzeugung von Photonen)

Fazit: Warum Quantenfeldtheorie?

- Elementarteilchenphysik:
 - ► kleine Distanzen → Quantentheorie
 - ► hohe Energien → spezielle Relativitätstheorie
- Relativistische QM besitzt Inkonsistenzen, z.B. negative Energien
- ► Beschreibung von Vielteilchenprozessen notwendig: Unschärferelation: Δx klein $\Rightarrow \Delta p$ groß $\Rightarrow \Delta E$ groß
 - → Energie reicht aus, virtuell neue Teilchen zu erzeugen.
- Die ursprüngliche QM lässt solche Prozesse nicht zu.
- klassische E-Dynamik: Abstrahlung elektromagnetischer Wellen
 - (→ nach Quantisierung: Erzeugung von Photonen)
- Die nichtrel. Vielteilchenphysik bedient sich QFT-ähnlicher Methoden ("2. Quantisierung": Erzeugungs- und Vernichtungsoperatoren)

► Erzeuge Teilchen am Ort \vec{x}_0 und messe nach Zeit *t* am Ort \vec{x} . gm-Wahrscheinlichkeitsamplitude: $U(t) = \langle \vec{x} | e^{-iHt} | \vec{x}_0 \rangle$

Erzeuge Teilchen am Ort \vec{x}_0 und messe nach Zeit *t* am Ort \vec{x} .

qm-Wahrscheinlichkeitsamplitude: $U(t) = \langle \vec{x} | e^{-iHt} | \vec{x}_0 \rangle$

freies nichtrelativistisches Teilchen:

$$\begin{aligned} U(t) &= \langle \vec{x} | e^{-i\frac{\vec{p}^{2}}{2m}t} | \vec{x}_{0} \rangle = \int \frac{d^{3}p}{(2\pi)^{3}} \langle \vec{x} | e^{-i\frac{\vec{p}^{2}}{2m}t} | \vec{p} \rangle \langle \vec{p} | \vec{x}_{0} \rangle \\ &= \int \frac{d^{3}p}{(2\pi)^{3}} e^{-i\frac{\vec{p}^{2}}{2m}t} e^{i\vec{p} \cdot (\vec{x} - \vec{x}_{0})} \\ &= \left(\frac{m}{2\pi i t}\right)^{3/2} e^{im\frac{(\vec{x} - \vec{x}_{0})^{2}}{2t}} \neq 0 \ \forall t, \vec{x} \end{aligned}$$

Erzeuge Teilchen am Ort \vec{x}_0 und messe nach Zeit *t* am Ort \vec{x} .

qm-Wahrscheinlichkeitsamplitude: $U(t) = \langle \vec{x} | e^{-iHt} | \vec{x}_0 \rangle$

freies nichtrelativistisches Teilchen:

$$U(t) = \langle \vec{x} | e^{-i\frac{\vec{p}^{2}}{2m}t} | \vec{x}_{0} \rangle = \int \frac{d^{3}p}{(2\pi)^{3}} \langle \vec{x} | e^{-i\frac{\vec{p}^{2}}{2m}t} | \vec{p} \rangle \langle \vec{p} | \vec{x}_{0} \rangle$$
$$= \int \frac{d^{3}p}{(2\pi)^{3}} e^{-i\frac{\vec{p}^{2}}{2m}t} e^{i\vec{p} \cdot (\vec{x} - \vec{x}_{0})}$$
$$= \left(\frac{m}{2\pi i t}\right)^{3/2} e^{im\frac{(\vec{x} - \vec{x}_{0})^{2}}{2t}} \neq 0 \ \forall t, \vec{x}$$

relativistische Rechnung: qualitativ ähnliches Resultat

→ Kausalitätsverletzung! $(|\vec{x} - \vec{x}_0| > t \Leftrightarrow v > c)$

Erzeuge Teilchen am Ort \vec{x}_0 und messe nach Zeit *t* am Ort \vec{x} .

qm-Wahrscheinlichkeitsamplitude: $U(t) = \langle \vec{x} | e^{-iHt} | \vec{x}_0 \rangle$

freies nichtrelativistisches Teilchen:

$$U(t) = \langle \vec{x} | e^{-i\frac{\vec{p}^{2}}{2m}t} | \vec{x}_{0} \rangle = \int \frac{d^{3}p}{(2\pi)^{3}} \langle \vec{x} | e^{-i\frac{\vec{p}^{2}}{2m}t} | \vec{p} \rangle \langle \vec{p} | \vec{x}_{0} \rangle$$
$$= \int \frac{d^{3}p}{(2\pi)^{3}} e^{-i\frac{\vec{p}^{2}}{2m}t} e^{i\vec{p} \cdot (\vec{x} - \vec{x}_{0})}$$
$$= \left(\frac{m}{2\pi i t}\right)^{3/2} e^{im\frac{(\vec{x} - \vec{x}_{0})^{2}}{2t}} \neq 0 \ \forall t, \bar{x}_{0}$$

- relativistische Rechnung: qualitativ ähnliches Resultat
 - → Kausalitätsverletzung! $(|\vec{x} \vec{x}_0| > t \Leftrightarrow v > c)$
- QFT löst dieses Problem, indem sich Teilchen- und Antiteilchenamplituden für raumartige Abstände gegenseitig auslöschen.