Rechenmethoden

Priv.-Doz. Dr. M. Buballa M. Schramm

Sommersemester 2016

13. Übungsblatt

6./8. Juli 2016

Aufgabe P33:

Lösen Sie die folgenden homogenen Differenzialgleichungen mit der Methode Trennung der Variablen

a)
$$y' + ax^2 = 0$$
, $y(0) = b$.

b)
$$y' + ay^2 = 0$$
, $y(0) = b$.

Diese Differenzialgleichung ist zwar nicht linear, die Methode funktioniert aber trotzdem.

c)
$$y' + axy = 0$$
, $y(0) = b$.

Dabei ist $y' = \frac{dy}{dx}$.

Überprüfen Sie jeweils Ihre Ergebnisse durch Einsetzen in die ursprüngliche Gleichung.

Aufgabe P34:

Ein Ball mit Masse m wird zum Zeitpunkt t=0 mit der Anfangsgeschwindigkeit \vec{v}_0 in die Luft geworfen. Anschließend bewegt er sich unter dem Einfluss der auf ihn wirkenden Kraft \vec{F} gemäß des 2. Newton'schen Gesetzes $\vec{F}=m\dot{\vec{v}}$. Die Kraft \vec{F} setzt sich aus der Schwerkraft \vec{F}_G und der Reibungskraft \vec{F}_R durch den Luftwiderstand zusammen, wobei letztere proportional zur Momentangeschwindigkeit sei

$$\vec{F} = \vec{F}_G + \vec{F}_R, \qquad \vec{F}_G = -mg\vec{e}_z, \qquad \vec{F}_R = -k\vec{v}.$$

Dabei sind die Schwerebeschleunigung g und der Reibungskoeffizient k Konstanten.

- a) Bestimmen Sie die Geschwindigkeit \vec{v} des Balls als Funktion der Zeit t. *Hinweis*: Beseitigen Sie die Inhomogenität der Differenzialgleichung durch eine geeignete Substitution.
- b) Wo befindet sich der Ball zur Zeit t, wenn er zur Zeit t = 0 am Koordinatenursprung abgeworfen wurde?

Aufgabe H38: (5 Punkte)

Lösen Sie die folgenden homogenen Differenzialgleichungen mit der Methode Trennung der Variablen

a)
$$y' + y \sin x = 0$$
, $y(\pi) = 1$.

b)
$$y' + \frac{y}{x} = 0$$
, $y(1) = 1$.

c)
$$y'y-2x=0$$
, $y(0)=1$.

Dabei ist $y' = \frac{dy}{dx}$.

Überprüfen Sie jeweils Ihre Ergebnisse durch Einsetzen in die ursprüngliche Gleichung.

Aufgabe H39: (4 Punkte)

Lösen Sie die inhomogenen Differenzialgleichung

$$y' + y\cos x = \cos x, \qquad y(0) = 0.$$

Suchen Sie dazu zunächst die allgemeine Lösung der zugehörigen homogenen Differenzialgleichung und ersetzen Sie dann die Integrationskonstante durch eine *x*-Abhängige Funktion (*Variation der Konstanten*).

Aufgabe H40: (4 Punkte)

Wiederholen Sie Aufgabe P34 a) für die z-Komponente der Geschwindigkeit unter Verwendung der Methode Variation der Konstanten.

Aufgabe H41: (2 Punkte)

Bei radioaktivem Zerfall ist die Änderung dN der Anzahl der Atomerne N(t) in einem infinitesimalen Zeitintervall dt direkt proportional zur Anzahl der vorhandenen Kerne mit einem Proportionalitätsfaktor α .

Stellen Sie die Diffenzialgleichung auf und lösen Sie diese unter der Annahme, dass zum Zeitpunkt $t=0\ N_0$ Kerne vorhanden sind. Wie groß ist die Halbwertszeit $t_{1/2}$, nach der nur noch die Hälfte der Kerne vorhanden sind?