Heavy-quark and quarkonia production

TECHNISCHE UNIVERSITÄT DARMSTADT

Outlook

- Heavy quarks in pp collisions
 - Charmonium
 - Bottomonium
 - Open Charm/Beauty
- Heavy-Ion collisions
 - Charmonium R_{AA}
 - Heavy Quark energy loss
 - Elliptic Flow
 - \bullet J/ ψ in ultra-peripheral collisions

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 3

Heavy quarks in pp

- charm (≈ 1.5 GeV/c²)
- bottom (\approx 5 GeV/c²)
- top (≈ 175 GeV/c²)
- heavy quark pairs produced in hard partonic scattering
 → perturbative QCD

- to get production cross sections, convolute three terms:
 - 1. parton distribution function of incoming protons
 - 2. partonic hard scattering cross sections (perturbative QCD)
 - 3. hadronization into specific hadron \rightarrow nonperturbative models

Heavy quarks in pp

Quarkonium production models

- CSM: QQ pair in color-singlet state with same quantum numbers as quarkonium. → Successful at low energies, large corrections needed at higher, infrared divergences for P (and higher)-wave quarkonia
- CEM: QQ pair evolves to quarkonium if invariant mass less than threshold for pair of open-flavor mesons. Probability for specific state energy and momentum independent. → Rough description of data
- **NRQCD factorization**: most sound theoretically and most successful phenomenologically. Probability for QQ to evolve to quarkonium as matrix elements of NRQCD operators (expansion in α_s and v) \rightarrow many successes in describing data, remaining discrepancies
- Fragmentation functions: convolution of parton production cross section and light-cone fragmentation functions.

Charmonium

S. Eidelman et al., Review of Particle Physics, Phys. Lett. B592:1+, 2004

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 5

J/ψ decay modes

- mass below threshold for production of two D mesons
- hadronic decay modes strongly suppressed due to OZI rule
- \rightarrow narrow width: 93 keV/c²
- → electromagnetic decays become relevant
- BR J/ ψ → e+e-/ μ + μ : 6% each

J/ψ in ALICE

dielectron channel at midrapiditydimuon channel at forward rapidity

electron identification:

- mass spectrum of oppositely charged electrons
- background description
 - Iike-sign pairs
 - track rotation
 - event mixing
 - fitting

J/ψ →μμ

- mass spectrum of oppositely charged muons
- background description
 - Iike-sign pairs
 - track rotation
 - event mixing
 - fitting

Efficiencies and uncertainties

4 5 € p_{_} [GeV/c]

Channel	e^+e^-		$\mu^+\mu^-$	
Signal extraction	8.5		7.5	
Acceptance input	1.5		5	
Trigger efficiency	0		4	
Reconstruction efficiency	11		3	
R factor	-		3	
Luminosity	4		5.5	
B.R.			1	
Polarization	$\lambda = -1$	$\lambda = 1$	$\lambda = -1$	$\lambda = 1$
CS	+19	-13	+31	-15
HE	+21	-15	+22	-10

- take efficiencies into account to extract inclusive cross section
- systematic errors mainly due to unknown J/ ψ polarization

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 11

Sources of inclusive J/ ψ

- Prompt
 - Direct production: 50-60%
 - Feed-down from heavier charmonia
 (ψ(2s), χ_c): 30-40%
- Non-prompt
 - B meson decay: ~10%, p_T dependent

(numbers for LHC energies)

B mesons

- mesons with 1 b (anti-) quark and one light quark
- masses > 5280 MeV/c²
- weak decay to charmonium
- $c\tau \approx 450 500 \,\mu m \rightarrow \text{can}$ be used to disentangle prompt from non-prompt J/ ψ 's \overline{C}

J/ψ from B decay

- for each J/ ψ candidate:
 - find primary vertex and J/ ψ decay vertex, connect by vector \vec{L}
 - project on J/ ψ p_T \rightarrow $L_{xy} = \frac{\vec{L} \cdot \vec{p}_T}{p_T}$
 - \rightarrow pseudoproper decay length $l_{J/\psi}$

 $h_{I\psi} = \frac{c \cdot L_{xy} \cdot m_{J/\psi}}{p_T}$

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 15

- fit simultaneously mass spectrum and $l_{J/\psi}$ distribution by log-likelihood function $\ln L = \sum_{i=1}^{N} \ln F(l_{J/\psi}, m_{II})$
- contributions from signal and background
- signal $l_{J/\psi}$ shape: $F_{Sig}(l_{J/\psi}) = f_B \cdot F_B(l_{J/\psi}) + (1 - f_B) \cdot F_p(l_{J/\psi})$ $F_p(l_{J/\psi})$: resolution function $F_p(l_{J/\psi})$: res. fnc. + true $l_{J/\psi}$ distribution

J/ψ from B decay

- consistent results from different LHC experiments
- amount of J/ψ from B decay rises with transverse momentum

TECHNISCHE UNIVERSITÄT DARMSTADT

- obtain prompt cross section
- comparison with models shows importance of color octet contributions

Higher charmonia states

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 18

• BR $\chi_{c1} \rightarrow \gamma J/\psi$: 35%

 χ_{cJ}

- BR $\chi_{c2} \rightarrow \gamma J/\psi$: 20%
- mass difference between J/ ψ and χ_{cJ} : 500 MeV/c² → low momentum γ
- mass difference between
 χ_{c1} and χ_{c2}: 45 MeV/c²
 → high momentum resolution
 necessary to distinguish states
- often used: conversion $\gamma \rightarrow e^+e^-$

 χ_{cJ}

Eur. Phys. J. C 72 (2012) 2251

ψ**(2S)**

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 21

Bottomonium

THE BOTTOMONIUM SYSTEM

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 22

Υ**(nS)**

- as for J/ψ , relatively large BR to dilepton channel: ~5% for $\Upsilon(1S)$
- $\Upsilon(nS) \rightarrow \Upsilon(1S) + \pi^+\pi^-$

• ...

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 24

• $D^+ = c \,\overline{d}$, $D^0 = c \,\overline{u}$, $D^0 = \overline{c} \,u$, $D^- = \overline{c} \,d$ $c\tau \approx 120 - 310 \,\mu m$

• B similar $c\tau \approx 450 - 500 \,\mu m$

 measurement: either electrons from semileptonic decays: measure inclusive electron spectrum, subtract electrons from other sources

Open heavy flavor in pp Semileptonic decays

• $D^+ = c \,\overline{d}$, $D^0 = c \,\overline{u}$, $D^0 = \overline{c} \,u$, $D^- = \overline{c} \,d$ $c\tau \approx 120 - 310 \,\mu m$

• B similar $c\tau \approx 450 - 500 \,\mu m$

- measurement: either electrons from semileptonic decays: measure inclusive electron spectrum, subtract electrons from other sources
- agreement with FONLL calculations

b and c

 use impact parameter to disentangle feed-down from beauty

b and c

- use impact parameter to disentangle feed-down from beauty
- high resolution in ALICE:

Open heavy flavor in pp Hadronic decays

- measurement: or reconstruction of decay products from hadronic decays
- require minimum impact parameter to reduce background

JHEP 1201 (2012) 128

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 28

Total charm cross section

TECHNISCHE UNIVERSITÄT DARMSTADT

 divide cross section for measured D mesons by fragmentation ratio to obtain total charm cross section

TECHNISCHE

UNIVERSITÄT DARMSTADT

indirect search for physics beyond the standard modelprobes CP violation

B meson reconstruction

Heavy quarks in heavy-ion collisions

- heavy quarks are produced early on in the collision ($m_c \gg T_c \rightarrow$ thermal production strongly suppressed)
- maintain their identity throughout all stages of the collision
- → ideal probe for the medium created in the collision

Charmonium suppression

Quantified by nuclear modification factor:

$$R_{AA} = \frac{d^2 N_{AA} / dp_T dy}{\langle N_{coll} \rangle d^2 N_{pp} / dp_T dy}$$

- compare yield in heavy-ion and proton-proton collisions
- hard probes → scale by mean number of collisions for given centrality → Glauber Monte Carlo calculations

Ann.Rev.Nucl.Part.Sci. 57 (2007) 205-243

Charmonia melting & (re)combination

- potential between c and c quark is screened by free color charges in QGP → "melting" of charmonia states with increasing T
- at higher (LHC) energies, cc are abundantly produced → (re)combination to charmonia at phase boundary (Statistical Hadronization Model) or continuous creation and dissociation during hot phase (transport models)

SPS + RHIC

- agreeing results
- BUT: at RHIC less suppression at midrapidity → hint for (re)combination?

ALICE measurements

- J/ $\psi \rightarrow ee$
- reminder: in pp: S/B ~ 1

ALICE measurements

- **J/**ψ →μμ
- reminder: in pp: S/B ~ 2-3

$J/\psi~R_{_{AA}}$ at LHC energies

 \bullet less suppression in central collisions and at low p_{τ} than at RHIC

J/ψ $R_{_{AA}}$ at LHC energies: models

technische

UNIVERSITÄT DARMSTADT

- data reasonably well described by models
- models based on very different physical assumptions perform comparably well in describing the data

Higher charmonia states

 different models make different predictions for R_{AA} of higher mass charmonia with respect to J/ψ

 measurements can help to discriminate between competing models

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 40

Heavy quark energy loss

- smaller loss expected than for light quarks → dead cone effect: gluon radiation suppressed at θ₀<m/E
- measurements in favor of this assumptions
 - (**Caution**: different p_T and y ranges)

Elliptic flow

- anisotropic (almond shaped) overlap region in non-central collisions →(interaction in medium) → momentum anisotropy
- non-zero elliptic flow seen in both charmonium and open charm

J/ψ in ultra-peripheral collisions

- impact parameter larger than size of nuclei
- strong electromagnetic field between heavy-ion nuclei
- exclusive vector meson production: exchange of two gluons with no net color transfer
- either coherent: photon couples to whole nucleus or incoherent: photon couples to single nucleon

J/ψ in ultra-peripheral collisions

- select event with \leq 10 tracks
- two tracks compatible with being dilepton pair

J/ψ in ultra-peripheral collisions

TECHNISCHE

UNIVERSITÄT DARMSTADT

- allows investigation of gluon distribution at Bjorken-x around 10-3
- model predictions wide spread, mainly differ in how they treat nuclear effects (gluon shadowing)

Summary and Conclusion

- Heavy quarks are important tool
 - in pp to test pQCD
 - In heavy-ion collisions to investigate deconfined medium
- Charmonium no longer "thermometer" for QGP, but it remains an important probe
 - either for medium itself (transport models),
 - or for phase transition (statistical hadronization model)
- Ultra-peripheral collisions can be used to investigate gluon distributions in nuclei

Backup

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 46

NLO corrections

Real Emission Diagrams

+ ••••

February 6, 2014 | TU Darmstadt | Relativistische Schwerionenphysik | Steffen Weber | 47

Charmonia melting

potential between c and c quark is screened by presence of free color charge in QGP

melting", if screening length smaller than size of hadron

Sequential suppression

- Charmonia states have different radii, they melt at different temperatures
- $\hfill \label{eq:stars}$ $\hfill \hfill \hfill$
 - \rightarrow stepwise decline of J/ ψ yield
 - \rightarrow thermometer for the QGP

SPS

• NA38, NA50, NA51, NA60: fixed target experiments, $\sqrt{S_{NN}} \approx 20 \, GeV$

- agreement between NA50 and NA60 in common region
- "anomalous suppression" beyond cold nuclear matter effects
- compatible with melting of χ_c and ψ(2S), i.e. sequential suppression scenario

Higher energies: (Re)combination

 at higher energies, cc pairs are abundantly produced → can recombine to charmonia

Statistical hadronization:

- no charmonia production before QGP
- c,c quarks distributed to hadrons according to thermal model at hadronization
- alternative: continuous destruction and recreation of charmonia in QGP

most
central AASPS
(20GeV)RHIC
(200GeV)LHC
(2.76TeV) N_{cc} /event~0.2~10~60

\mathbf{R}_{AA} vs. \mathbf{p}_{T}

- R_{AA} p_T dependence very different from RHIC
- at low p_T suppression is significantly reduced

LHC: expectation

■ another order of magnitude increase in $\sqrt{S_{NN}}$ → further suppression or (re)combination?

 different detectors cover different kinetic regions → complementary measurements

Open heavy flavor in Heavy-Ion collisions

 do heavy quarks take part in collective motion in deconfined stage → elliptic flow

Elliptic Flow

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{t}dp_{t}dy} \left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos\left[n\left(\phi - \psi_{R}\right)\right]\right) \qquad v_{1} \quad \text{directed flow}$$

$$v_{2} \quad \text{elliptic flow}$$

Ultra-peripheral

