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Abstract
In this thesis the location of the tricritical point (TCP) and critical endpoint (CEP) in the QCD phase diagram

is investigated within a simple Nambu-Jona-Lasinio model (NJL) for the case of two-flavor quark matter.

Applying the Ginzburg-Landau analysis for the grand thermodynamic potential with constituent mass M as

order parameter in the chiral limit and also for a nonzero current quark mass determines exactly the TCP and

CEP. Expanding the resulting Ginzburg-Landau coefficients αn(T, µ;M) through a Taylor series expansion

at µ = 0 leads to approximations of the critical points. In particular, the critical points in the NJL model

are focused since the determined locations could be a useful estimation for similar expansions in lattice QCD.

However, it is not clear yet which quantities are comparable to the Ginzburg-Landau coefficients.

Zusammenfassung
In dieser Arbeit wird die Lage des trikritischen Punkts und des kritischen Endpunkts im QCD Phasendia-

gramm im Rahmen eines einfachen Nambu-Jona-Lasinio-Modell (NJL) für den Fall von Zwei-Flavour Quark

Materie untersucht. Durch Anwendung der Ginzburg-Landau Analyse für das großkanonische thermodynamis-

che Potential mit Ordnungsparameter M im chiralen Limes sowie für nicht verschwindende Quarkmasse

werden trikritischer Punkt und kritischer Endpunkt exakt bestimmt. Die Entwicklung der sich ergebenden

Ginzburg-Landau Koeffizienten αn(T, µ;M) in einer Taylor-Reihe um µ = 0 führt zu einer Approximation

der kritischen Punkte. Insbesondere die kritischen Punkte im NJL-Modell stehen im Fokus der Arbeit, da

die Bestimmung von dessen Positionen eine nützliche Näherung für ähnliche Entwicklungen innerhalb der

QCD Gitterrechnungen sein könnten, wobei bislang nicht klar ist, welche Größe mit den Ginzburg-Landau

Koeffizienten vergleichbar ist.
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1 Introduction

The quantum field theory which describes the fundamental physics of strong interaction between quarks and

gluons is called quantum chromodynamics (QCD). The first formulation of this theory goes back to the 1970s

and relates to the experimental confirmation that nucleons indeed consist of smaller particles. Therefore,

the QCD describes quarks as main component of the nucleons, together with the gluons which occur as the

corresponding interaction particles like the photons in quantum electrodynamics. In general, there exist six

different flavors of quarks. Instead of an electric charge for the quarks, the theory deals with so called color

charge. More specific, QCD is a non-abelian gauge theory with symmetry group SU(3) due to the three

possible quark colors red, green and blue. Especially the fact, that also gluons carry a color charge leads to

an interaction between gluons themselves and makes the theory more complicated. Moreover, the color force

between the components of a nucleon is responsible for the nuclear force which stick together the nucleus. The

QCD is defined by the Lagrangian of the form

LQCD = ψ̄(iγµDµ − m̂)ψ − 1
4F

a
µνF

a µν (1.1)

with the quark fields ψ and ψ̄ = ψ†γ0 of six flavors f = (u, d, s, c, b, t) and possible colors from c = {r, g, b}.
Furthermore, the m̂ = diagf (mu,md,ms,mc,mb,mt) denotes the mass matrix in flavor space and F a

µν is

the gluon field strength tensor

F a
µν = ∂µA

a
ν − ∂νAaµ + gfabcAbµA

c
ν (1.2)

for the gluon field Aaµ to which the quark fields are coupled by the covariant derivative

Dµ = ∂µ −
ig

2 A
a
µλ

a (1.3)

with Gell-Mann matrices λa, antisymmetric structure constants fabc and g as QCD coupling constant [1].

One particular property of the QCD is the color confinement which states that unbound color charged particles

could not be observed directly in the nature but only in a ’colorless’ confinement. This means that under normal

conditions quarks appear only in a special combination, the color neutral hadrons: Quark and antiquark with

anticolor as mesons or three quarks with all three colors as baryons. The second important QCD property is the

asymptotic freedom that results in a vanishing coupling constant for high energies and very strongly confined

interactions in the low energy scale. For high energies, i.e. at a high temperature or density, the hadrons must

overlap so strongly that they are not individual anymore. Thus, the quarks and gluons get deconfined and form

the so called quark-gluon plasma (QGP) which is the focus of several experimental investigations at heavy ion

colliders like at CERN or GSI. Natural occurrence of the QGP is suspected in the dense center of neutron stars
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but surely it appeared in the early universe at the high temperatures directly after the Big Bang.

Special interest of experimental and theoretical physicists lies on the investigation of the phase transition be-

tween the confined hadronic phase and the QGP. For this reason, the QCD phase diagram which illustrates the

different phases of quarks at given chemical potential and temperature is studied. A really simplified QCD

phase diagram containes only one phase boundary that separates the area of confined quarks at low temper-

atures and chemical potentials from the QGP, such that both phases are in equilibrium at the boundary. In

particular, one can think of more detailed phase diagrams containing a first order phase boundary that ends

at a point called critical endpoint (CEP) where the phase transition is of second order. An example of such a

qualitative phase diagram is shown in figure 1.1.

Figure 1.1: Schematic illustration of a simple QCD phase diagram with QGP, CEP, hadronic phase and crossover
area taken from [2]. Note: The diagram shows the relation of temperature over density such that
there is a finite area for the phase transition corresponding to a strict phase boundary line in case of
temperature over chemical potential.

A famous non-perturbative approach to QCD is the lattice QCD that uses a discrete set of spacetime points for

a simplified numerical calculation of the occurring path integrals. This approach is often used for investiga-

tions of the QCD phase diagram at high temperatures, however, there is a so called sign problem due to the

fermions such that an analysis at non-vanishing chemical potentials is not possible. Hence, other methods like

effective models such as the Nambu-Jona-Lasinio (NJL) or quark-meson (QM) model as well as a Taylor series

expansion of the grand canonical potential at chemical potential µ = 0 must be used for a deeper analysis of

possible phase transitions and the location of the critical endpoint.
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In this work the QCD phase diagram will be analyzed within the effective NJL-model for two-flavor quark

matter that already provides the essential phenomenon of chiral symmetry breaking and allows calculations

with non-vanishing chemical potentials. For this, the Ginzburg-Landau analysis will be applied for determin-

ing the location of the critical and tricritical point as well as the second order phase boundary in the chiral limit,

i.e. for zero quark mass. Furthermore, the expansion of the resulting Ginzburg-Landau coefficients in a Taylor

series will lead to an approximation of TCP and CEP which will be discussed with regard to the possibilities

of other physical quantities in Taylor series expansions.

First, this work will start with an introduction to the NJL model and the corresponding Lagrangian with its sym-

metries in the second chapter, where special emphasis lies on deriving an expression for the thermodynamic

potential. In chapter three, the method of Ginzburg-Landau will be developed to investigate the phase diagram

with its critical endpoint. Afterwards, the chapter makes use of the introduced method within a Ginzburg-

Landau analysis of the derived thermodynamic potential with constituent massM as order parameter. Then, in

the fourth chapter a Taylor series expansion at vanishing chemical potential is applied to make an approxima-

tion of the exact determined location of the TCP in the chiral limit and the CEP for finite bare mass. Finally,

the results and the obtained approximation will be discussed in the last chapter together with a short outlook.
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2 The Nambu-Jona-Lasinio model
The origin of the Nambu-Jona-Lasinio model goes back to two papers by Y. Nambu and G. Jona-Lasinio

in 1961 about the dynamical mass generation for nucleons [3, 4]. The great idea was, that they developed

the model analogous to the construction of Cooper pairs in the BCS theory of superconductivity such that

it describes the nucleon-nucleon interaction. Indeed, this model was invented before quarks and QCD were

known, such that the concept of color charge is not included in the NJL model. Moreover, the two QCD

properties of asymptotic freedom and confinement are not covered through the NJL Lagrangian. Nevertheless,

the model has been reinterpreted as low energy effective theory for QCD since the chiral symmetry of the

strong interaction is reflected very well. In many problems, chiral symmetry is the important feature to study,

for instance pions can be explained as Goldstone bosons of the spontaneous chiral symmetry breaking. The

so-called color superconductivity is another field of application where the NJL model is very useful but which

is not discussed in this work. In case of using the original Lagrangian of the NJL model one has to deal with

nucleonic fields instead of the quark fields.

2.1 The NJL Lagrangian

This thesis will restrict to a simple form of the NJL model with quark fields of two flavors and three color

degrees of freedom. Instead of gluon exchange, the strong interaction is given through terms of scalar-isoscalar

and pseudoscalar-isovector four-point interactions. The corresponding NJL Lagrangian density is given as

follows

LNJL = ψ̄(i/∂ −m)ψ +G
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2

]
(2.1)

with the 3 + 1 dimensional Dirac spinors ψ and ψ̄ = ψ†γ0 for the quark and anti quark fields with Nf = 2
flavors and Nc = 3 colors. Therefore, one has to deal in total with 4NfNc components. The Pauli matrices in

isospin space are denoted by ~τ and the expression m = diag(mu,md) is the bare mass matrix in flavor space

containing the masses of up and down quark. However, in the following the bare quark masses will assumed

to be degenerate, i.e. m ≡ mu = md, since they are nearly the same compared to the corresponding hadron

masses. The first part of the Lagrangian is the free Dirac field which leads to the Dirac equation. The second

term corresponds to the four-point interaction and consists of a scalar (ψ̄ψ) and pseudoscalar (ψ̄iγ5~τψ) term.

The scalar coupling constant for the interaction is G. Because of the four-point interaction, the NJL model

cannot be renormalized. Further, the occurrence of divergent integrals leads to a regularisation in the concrete

calculations later on [5].
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The important property of the stated NJL Lagrangian lies behind the common symmetries with QCD [6].

Starting with the most general symmetry, the Lagrangian is invariant under global U(1)V phase transformation

given by

ψ → exp(−iα)ψ and ψ̄ → ψ̄ exp(iα) (2.2)

for a α ∈ R. According to Noether’s theorem this transformation results in the conservation of the baryon

number. Second, there is an invariance under a vector SU(2)V transformation due to the assumption of equal

quark masses m. The transformation is given by

ψ → exp
(
− i2

~θ~τ

)
ψ and ψ̄ → ψ̄ exp

(
i

2
~θ~τ

)
(2.3)

with ~θ ∈ R3 and results in the conservation of isospin. Third, the unitary axial transformation

ψ → exp
(
− i2γ5~θ~τ

)
ψ and ψ̄ → ψ̄ exp

(
− i2γ5~θ~τ

)
(2.4)

with ~θ ∈ R3 lets the Lagrangian invariant. These SU(2)A axial transformations do not form a group. Instead,

considering the latter two transformations together one gets the group Schiral = SU(Nf )L × SU(Nf )R =
SU(2)V ×SU(2)A which is known as chiral symmetry. Chirality describes a phenomenon that is not identical

to its mirror image. For example, the spin of a particle defines a helicity or handedness such that chirality is

a conserved property for particles with zero mass. Since the NJL Lagrangian is not invariant under SU(2)A
transformations in the case of nonzero bare mass m the chiral symmetry is explicit broken. This is due to the

term ψ̄mψ in the free Dirac part. Furthermore, the chiral symmetry is spontaneously broken in the chiral limit

m → 0 which will be an important characteristics of the NJL model for the following investigations. The

spontaneous chiral symmetry breaking corresponds to a Goldstone boson with zero mass in the chiral limit.

However, explicit symmetry breaking is indicated by a Goldstone boson with finite mass, the pion. Altogether

the NJL model has the symmetry of the form

SNJL = SU(2)V × SU(2)A × U(1)V (2.5)

which includes Schiral and coincides with the QCD symmetries such that LQCD approximately satisfies this

in the case of small equal masses. It should be said that in a classical sense the QCD Lagrangian in the limit of

massless quarks is also invariant under a global axial transformation U(1)A given through

ψ → exp(iαγ5)ψ and ψ̄ → ψ̄ exp(iαγ5) (2.6)

with α ∈ R. Since this symmetry is broken on the quantum level it is not seen as real for QCD and hence not

considered in the following.

2.2 Gap equation

The aim of this section is the derivation of an expression for the effective quark mass which exists due to the

interactions terms of the effective theory. Starting with a single quark of current or bare quark mass m the

2.2 Gap equation 7



coupling to itself in the scalar and pseudoscalar channel of the NJL Lagrangian leads to the quark self-energy.

This self-energy in turn shifts the quark mass and results in the effective mass that is also called constituent

quark mass and will be denoted by M . Through calculations of the self-energy in Hartree approximation the

corresponding self-consistency equation, the Dyson equation, can be obtained [7]. This equation describes the

propagation of quarks with ’dressed’ massM in relation to quarks with ’bare’ massm. Hence, the correspond-

ing Feynman propagators as the typical fermionic propagators with their respective masses will be considered

first [8, 9]. Together with the Feynman rules this yields the bare propagator for a quark with momentum p and

mass m

iS0(p) = i
/p+m

p2 −m2 + iε
(2.7)

as well as the appropriate dressed quark propagator which is the same with constituent quark mass M :

iS(p) = i
/p+M

p2 −M2 + iε
(2.8)

Writing the self-energy Σ as a real quantity, it can be related to the propagators by directly plugging in the

expressions into the Dyson equation through

iS(p) = iS0(p) + iS0(p)(−iΣ)iS(p). (2.9)

The self-consistency equation can be viewed also in a diagrammatic way in figure 2.1.

S(p)
=
S0(p)

+
S0(p) S(p)

Σ

Figure 2.1: Diagrammatic form of the Dyson equation for the dressed (bold) and bare (thin) quark propagator,
containing a loop for the self-energy contribution.

For an explicit expression of the self-energy, the sum of the outer products of each interaction must be calcu-

lated. Moreover, an integration over the momentum k of the loop for the dressed propagator takes place. All

in all, it states

Σ = 2G

1 ∫ d4k

(2π)4 Tr [1 iS(k)] + iγ5τa

∫
d4k

(2π)4 Tr [iγ5τa iS(k)]︸ ︷︷ ︸
=0


= 2Gi

∫
d4k

(2π)4
1

k2 −M2 + iε
Tr [γµkµ +M ]

= 2Gi
∫

d4k

(2π)4
1

k2 −M2 + iε
NfNc 4M

=: 8GNfNcMI(M)

(2.10)

where the fact is used that traces of Pauli and odd numbers of gamma matrices disappear. Formally, the

occuring traces have to been evaluated in Dirac, color and flavor space. Thus, the trace of the unit matrix is

evaluated to the factor 4NfNc due to the color and flavor degeneracy. Multiplying the Dyson equation 2.9 from

2.2 Gap equation 8



the left and right side with the inverse of the propagators leads to an equivalent expression for the constituent

quark mass:

S−1
0 (p) = S−1(p) + Σ

⇔ /p−m = /p−M + Σ

⇔ M = m+ 8GNfNcMI(M)

(2.11)

The equation in the last step is often called the gap equation since it allows non-trivial constituent masses

M 6= m as solution which on the other hand produces a gap of ∆E = 2M in the quark spectrum. Often, the

mass which minimizes the vacuum energy is searched. Especially, the evaluation of the integral

I(M) = i
∫

d4k

(2π)4
1

k2 −M2 + iε
(2.12)

is important for finding the right solutions of the gap equation. The given integral 2.12 is in the vacuum

case where the residue theorem is applied, however, in cases where already finite temperatures and chemical

potentials play a role, the integral gets modified by the Matsubara formalism.

2.2.1 The integral I(M) in the vacuum case

For zero temperature and chemical potential the integral I(M) can be rewritten first with aid of the single

particle energy E~k ≡
√
~k2 +M2. Furthermore, a factorization of the denominator is applied before the

residue theorem can be used:

I(M) = i
∫

d3k

(2π)3

∫
dk0

2π
1

k2
0 − E2

~k
+ iε

= i
∫

d3k

(2π)3

∫
dk0

2π
1

k0 + E~k − iε′
· 1
k0 − E~k + iε′︸ ︷︷ ︸

= lim
ε→0

1
2π ·

2πi
−E~k−E~k+2iε′

=
∫

d3k

(2π)3
1

2E~k

= 1
4π2

∞∫
0

dk
k2

E~k

(2.13)

where the infinitesimal quantity ε′ = ε
2E~k

is rescaled (ε′2 is neglected) and spherical coordinates are taken

for simplifying the expression in the last step. The residue theorem is applied for the k0-integration with a

semicircle in the upper complex half plane as appropriate integration contour that contains only the shifted

pole k0 = −E~k + iε′. Certainly, the final term obtained for the integral is divergent and since the NJL model

is also non-renormalizable, a sort of regularisation scheme must be used for ending up with a finite value.

Commonly, all regularisation schemes apply a special cut-off parameter Λ which is chosen in such a way that

the model reproduces the correct results for well known properties of some particles.

2.2 Gap equation 9



For instance, one can work with the pion decay constant and pion mass in vacuum. In the given case a sharp

3-momentum cut-off will be taken as scheme. The idea is to bound the upper integral limit by restricting the

absolute value of the momentum to values k ≤ Λ smaller than the cut-off, for example

∞∫
0

d3k f(~k)→
Λ∫

0

d3k f(~k) (2.14)

for a function f with divergent integral. The main advantage of this method is a possible analytically solvable

integral at the end, though the scheme breaks the Lorentz invariance. For the considered integral, one can make

use of this advantage and obtains the following analytic expression:

I(M) = 1
4π2

Λ∫
0

dk
k2√

~k2 +M2
= 1

8π2

[
Λ
√
Λ2 +M2 −M2 arsinh

(
Λ

M

)]
(2.15)

Together with this result, the effective mass solution of the gap equation can be found. Therefore, the parame-

ters of the model must be fixed and the value of the cut-off has to be determined suitable. Concrete values and

the parameter choice will be given later with some numerical results.

2.2.2 The integral I(M) for nonzero temperature and chemical potential

The main purpose is to study the phase transitions and the critical endpoint in the phase diagram and therefore

it is necessary to evaluate the quark loop in the gap equation at finite temperatures and chemical potentials.

That means the integral I(M) is considered in medium where the framework of a thermal field theory, the

Matsubara formalism, is applied [10]. There, one sums over discrete imaginary frequencies, the so-called

Matsubara frequencies, such that the energy-integration is replaced. Then, the integral can be written with the

substitution

i
∫

d4k

(2π)4 f(k)→ −T
∑
n

∫
d3k

(2π)3 f(iωn + µ,~k) (2.16)

where ωn = (2n + 1)πT with n ∈ Z denote the fermionic Matsubara frequencies. By that, one obtains

an integral depending also on T and µ besides the constituent mass M which leads to the notation for the

medium Imed(M) ≡ I(T, µ,M). An analytical simplification of the expression is started with a partial

fraction decomposition:

Imed(M) = −T
∑
n

∫
d3k

(2π)3
1

(iωn + µ)2 − E2
~k

=
∫

d3k

(2π)3
1

2E~k

[
−T

∑
n

(
1

iωn + µ− E~k
− 1
iωn + µ+ E~k

)] (2.17)

Further, a double use of the residue theorem is necessary to receive the right integral form. It starts with a

conversion of the Matsubara frequencies sum into an integral, using the residue theorem backwards. For this

reason, an auxiliary function with poles at the Matsubara frequencies with residue −T is introduced.

2.2 Gap equation 10



That leads to the following expression:

Imed(M) =
∫

d3k

(2π)3
1

2E~k
1

2πi

∫
C
dz

1
1 + e

z
T

(
1

z + µ− E~k
− 1
z + µ+ E~k

)

=
∫

d3k

(2π)3
1

2E~k
−
∫

d3k

(2π)3
1

2E~k

 1

1 + exp
(
E~k
−µ
T

) + 1

1 + exp
(
E~k

+µ
T

)


(2.18)

In the last step, the integration contour in the complex plane is deformed analogous to [11] and afterwards the

residue theorem is used as usual for the integration around the two poles z1/2 = ±E~k−µ as depicted in figure

2.2. The final result consists of the vacuum integral in the first part and a contribution which can be identified

as terms of quark and antiquark occupation numbers due to the Fermi-Dirac distribution:

nk(T, µ) = 1

1 + exp
(
E~k
−µ
T

) and n̄k(T, µ) = 1

1 + exp
(
E~k

+µ
T

) (2.19)

The two results differ only in the sign of the quark chemical potential which is an indication of the charge

symmetry.

Re(z)

Im(z)

C

Re(z)

Im(z)
C′

Re(z)

Im(z)

C′′

Figure 2.2: Transformation of the integration contour from left to right of the integral Imed(M). The poles are
indicated by small red (imaginary) and blue (real) dots.

To sum it all up, the following representation of the integral I(M) was derived in this section:

Imed(M) =
∫

d3k

(2π)3
1

2E~k
[1− nk − n̄k] (2.20)

Putting this result inside the gap equation 2.11 yields a relation for the constituent mass M(T, µ) which is a

function of temperature and chemical potential then.

2.3 Mean-field approximation

The results of the previous sections led to an formulation of the gap equation for vacuum and medium case that

can be solved for the constituent mass M . Commonly, finding a stable constituent mass is related to the mini-

mization problem for the thermodynamic potential. In order to calculate the latter, a mean-field approximation

is considered. That means the Lagrangian will be linearized for simplification of the occurring functional in-

tegral. To this end, the interaction terms must be expanded around the expectation values of the quark fields.

2.3 Mean-field approximation 11



The expectation value of ψ̄ψ yields an expression that is referred to as chiral or quark condensate and which is

closely related to the constituent mass. For the quark condensate it holds

〈ψ̄ψ〉 = −i
∫

d4k

(2π)4 Tr [S(k)]

= −M −m2G

(2.21)

where the equality follows directly from the gap equation 2.11 with the corresponding expression for the self-

energy 2.10. For the expansion around the expectation one writes ψ̄ψ = 〈ψ̄ψ〉+ δ(ψ̄ψ). Since the interaction

term appears squared in the Lagrangian, the expansion result can be squared too with substituting the remaining

δ term by terms of the original expression itself:

(ψ̄ψ)2 ≈ 〈ψ̄ψ〉2 + 2 〈ψ̄ψ〉 δ(ψ̄ψ) = 2 〈ψ̄ψ〉 (ψ̄ψ)− 〈ψ̄ψ〉2 (2.22)

For this approximation the quadratic fluctuation term δ(ψ̄ψ)2 is omitted. The same procedure can be carried

out for the pseudo-scalar interaction but this will lead to a vanishing expectation value due to the fact that it

still holds Tr [iγ5τaS(k)] = 0 as in the equations of 2.10. That means that only the condensate from the scalar

interaction will be treated since the one from the pseudoscalar interaction is seen as vanishing within the scope

of this work. Inserting the results of the mean-field approximation (MF), the Lagrangian can be expressed in

terms of the quark condensate by

LNJL ≈ ψ̄(i/∂ −m)ψ +G
(
〈ψ̄ψ〉 (ψ̄ψ)− 〈ψ̄ψ〉2

)
= ψ̄

(
i/∂ −

(
m− 2G 〈ψ̄ψ〉

)
︸ ︷︷ ︸

=M

)
ψ −G 〈ψ̄ψ〉2 (2.23)

where the interaction part is absorbed in the introduced effective mass term M = m− 2G 〈ψ̄ψ〉. Finally, the

effective mass can be used for rewriting the Lagrangian once again which results in the form of a free quark

with mass M in an effective potential:

LMF
NJL = ψ̄(i/∂ −M)ψ − (M −m)2

4G (2.24)

The second term must not be dropped because there the dependence of the constituent mass M is included.

2.4 The thermodynamic potential

The linearized Lagrangian LMF
NJL in 2.24 will be used for the thermodynamic potential which describes the

system. This is important since then further thermodynamic quantities for studying the chiral symmetry break-

ing can be derived. For this, it is typical to work with the grand canonical potential due to the varying number

of particles that should not be limited for fixed temperature and chemical potential. According to statistical

physics, the grand potential can be obtained through a relation with the partition function denoted by Z and

the inverse temperature β = 1
T .
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This relation is given in the following way:

Ω = − 1
βV

ln (Z ) (2.25)

Moreover, it is familiar that the partition function for a grand canonical ensemble, which is quantum mechanical

and discrete, can be written as the trace of the Boltzmann factor. In the given case, it holds

Z = Tr
[
e−β(H−µN)

]
(2.26)

where strictly speaking the partition function depends on µ and T . Here, the Hamilton operatorH =
∫
d3xH ,

defined through a Hamilton densityH , and the total quark number operator N =
∫
d3x ψ̄ψ appear. Next, the

trace can be transformed into a functional integral for the partition function

Z =
∫
Dψ̄Dψ exp

{
−

∫
[0,β]×V

d4x (LE − µN )
}

(2.27)

considered in the Euclidian space x = (τ, ~x) with imaginary time τ = it. Further, LE is the corresponding

Euclidian Lagrangian from LMF
NJL with imaginary time and N the particle density. Starting from this, the

grand potential can be obtained together with equation 2.25 by a long calculation analogous to [10] which is

not discussed in detail here. In the end, the mean-field grand potential for the Nambu-Jona-Lasinio model is

given by:

ΩNJL(T, µ;M) = (M −m)2

4G − 2NfNc
4π

(2π)3


Λ∫

0

dk k2E~k

+
∞∫

0

dk k2T

[
ln
(

1 + exp
(
−
E~k − µ
T

))
+ ln

(
1 + exp

(
−
E~k + µ

T

))]
(2.28)

The potential consists of a M -dependent term from the Lagrangian in the front and the free quark gas con-

tribution which in turn consists of the zero-point energy term from the vacuum and the medium part with

quark and antiquark contribution, noticeable due to the different sign of the chemical potential. The pre-factor

2NfNc
4π

(2π)3 is a result of spin, flavor and color degeneracy as well as the factors from the spherical integral

in momentum space. To the expression of the potential one can also add any constant which would not change

the associated physics. For the divergent first integral, describing the vacuum contribution, a regularization

through the 3-momentum cut-off as in example 2.14 is applied. Since the second integral is convergent, there

is no cut-off necessary for the calculations.

2.4.1 Behavior of the grand potential ΩNJL(M)

The derived thermodynamic potential gives rise to the condition ∂ΩNJL
∂M = 0 for finding effective masses M

which leads to extrema of the potential. One can show, that this condition is equivalent to the gap equation

2.11. Thus, searching for solutions of the obtained condition is a rational criterion for the correct masses.

Though, only the constituent mass corresponding to the global minimum of the grand potential is the stable

mass. For this reason, the next step is to investigate the behavior of the potential ΩNJL(M) as function of

2.4 The thermodynamic potential 13



the constituent mass. The two cases of a nonzero current quark mass and the chiral limit with m = 0 will be

compared. Therefore, an appropriate set of parameters for the used regularization scheme is necessary. For the

course of this work the following parameters will be used:

G = 2.44Λ2, Λ = 587.9 MeV and m = 5.6 MeV (2.29)

These parameters originate from [7] where they were determined by fitting them to proper values for the pion

mass mπ = 135 MeV, the pion decay constant fπ = 92.4 MeV and the quark condensate 〈ψ̄ψ〉1/3 =
−240.8 MeV in the vacuum. First, the shape of the thermodynamic potential is considered for points along

the T -axis and afterwards along the µ-axis.
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Figure 2.3: Thermodynamic potential as function of the constituent mass M for several temperatures T in MeV
for zero chemical potential µ = 0. The purple curve in the chiral limit case corresponds to the
point at the second order phase boundary. The potential is shifted by a constant value of Ωoff =
1.97 · 1010 MeV4 such that the TCP has its global minimum with value zero.

In the left picture of figure 2.3 the different forms of the grand potential for points along the T -axis, that means

µ = 0, are shown. In the case of zero quark mass m = 0, the potential is symmetric around the trivial so-

lution M = 0 of the gap equation which is due to the chiral symmetry. Starting with two local minima near

M = ±400 MeV in the vacuum case, the central maximum decreases continuously while the two minima

move towards each other for increasing temperatures. The two minima are at the same height for every tem-

perature. Finally, at the second order phase boundary with T = 185.3 MeV, the three stationary points merge

and form a global minimum. This can be observed by the purple curve in the left figure. For temperatures in the

restored phase, given by the brown curve, the global minimum decreases further. Hence, the stable constituent

mass M changes continuously for zero chemical potential which accords to the definition of a second order

phase transition.

Turning away from the chiral limit to the finite bare quark mass m = 5.6 MeV a different overall picture

of the thermodynamic potential is shown in part (b) of figure 2.3. Here, ΩNJL(M) keeps its general shape,

however, the whole form is skewed to the right side. That means that chiral symmetry is explicit broken by
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the finite quark mass since one cannot exchange M and −M . Moreover, the potential has higher values for

negative masses with the main consequence that the trivial solution M = 0 from the chiral limit gets replaced

by M < 0. Further, the skewed form leads to the existence of a global minimum for all temperatures along the

axis. All in all, the general trend that there exist only three stationary points along the T -axis which merge all

into the global minimum for high temperatures is similar. However, for nonzero current quark masses the well

defined second order phase boundary of the chiral limit turns into a smooth crossover to the chirally restored

region. At the crossover transition the mass varies smoothly from high to low values.
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Figure 2.4: Thermodynamic potential as function of the constituent mass M for several chemical potentials µ
in MeV in the zero temperature limit T = 0. The green and purple curves correspond to points
on the left and right spinodal, respectively. The potential is shifted by a constant value of Ωoff =
1.97 · 1010 MeV4.

The graphics of figure 2.4 picture the different behavior of the potential in the special case of a zero temper-

ature limit T = 0 for different chemical potentials. In particular, the position of the extrema gives rise to a

comparison of the changing potential shapes which will be an important basis for the Ginzburg-Landau analy-

sis in the next chapter. For this, it is useful to consider also the so-called spinodals in the following. In contrast

to points along the T -axis, the thermodynamic potential for zero temperature changes in a way that for some

points in the phase diagram five stationary points exist. For increasing chemical potentials, the central maxi-

mum decreases and forms a minimum in a way that besides two new maxima arise. The points in the phase

diagram that correspond to the thermodynamic potential in a form where one of the outer minima just merge

with an arised maxima to a saddle point determine the spinodals. Clearly, this can appear in two cases since

the potential consists of a right and a left minimum. Thus, one can imagine two lines in the phase diagram, on

both sides of the first order phase boundary, which form the spinodals and which will further intersect in the

critical endpoint. A deeper discussion will follow in chapter 3. In the displayed figure, the green and purple

lines correspond to the grand potential for vanishing temperatures at the left and right spinodal, respectively.

While the situation in the chiral limit is again completely symmetric, the right figure gives a better view on the

arising saddle points. Furthermore, the grand potential where the central minimum is at the same height as the

right minimum corresponds to points directly on the first order phase boundary. In such a case, the potential
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has five extrema and hence up to three possible solutions for the effective masses as values for the minima. This

is especially visible in the red curves in figure 2.4 since these ones correspond to a point in the phase diagram

between the spinodals which is not exactly located on the phase boundary. Since the central maximum turn

to a minimum that decreases for increasing chemical potential, the global minimum is given first by the right

minimum and after the first order boundary by the central minimum. Here, the stable constituent mass changes

discontinuously due to the occurrence of the additional maxima along the µ-axis.
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Figure 2.5: Thermodynamic potential as function of the constituent mass M at different points in the phase di-
agram with T and µ in MeV. The critical points are given by the red lines Tc = 112.8 MeV and
µc = 266 MeV in the chiral limit and Tc = 82.2 MeV and µc = 322 MeV for m = 5.6 MeV. The
potential is shifted by a constant value of Ωoff = 1.97 · 1010 MeV4.

Finally, the figure 2.5 shows the behavior of the thermodynamic potential ΩNJL(M) for different points in the

phase diagram. In particular, the red curves show the flat shape of the potential for the critical points. These

are given for the temperature and chemical potential combination where all five stationary points merge into

one global minimum. Moreover, the spinodals meet at the critical points.

2.5 Solutions of the gap equation for zero chemical potential and zero temperature

After the previous discussion of the thermodynamic potential 2.28 the obtained results so far can be put into

relation to a first analysis of the possible massesM . Therefore, this section provides the solutions of the derived

gap equation 2.11 in the special cases of zero chemical potential and zero temperature limit, respectively. In

the course of the subsequent introduction to Ginzburg-Landau analysis in chapter 3, the mass function will be

considered also for nonzero combinations of temperature and chemical potential. Here, the solutions of the

gap equation were determined numerically by searching the roots of

∂ΩNJL(T, µ;M)
∂M

!= 0 (2.30)

which states an equivalent formulation of the problem. This equation can be solved with an algorithm using

the Newton methods for a defined starting point and a variant of the secant method for predefined solution

intervals.
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Figure 2.6: Comparison of the constituent mass M as function of the temperature T for µ = 0 and as function
of the chemical potential in the limit T = 0 for zero and nonzero quark mass m in MeV.

In figure 2.6 the results of the numerical calculations for the gap equation are depicted. The left picture shows

the situation for zero chemical potential where in the case of the chiral limit symmetric solutions for the con-

stituent mass in addition to the trivial solution M = 0 exist. These solutions correspond to the minima closely

around M = ±400 visible in the course of the grand potential in figure 2.4. From that point onwards, the

absolute values of the masses falls off and tend to zero for increasing temperatures where they finally reach

the trivial solution as global minimum of the grand potential at the second order phase transition along the

T -axis. This is called a second order phase transition since the function M is continuous but discontinuous

in its derivative with respect to T . After the transition, only the zero solution exists corresponding to the area

of restored chiral symmetry in the phase diagram. Due to the chiral symmetry the behavior of the effective

masses is completely symmetric. For that reason, the case of finite bare mass does not have this symmetry.

One can see negative solutions of the gap equation between the negative and trivial solution of the chiral limit.

These solutions correspond to the two extrema of the grand potential in the negative half of figure 2.4 which

are a result of the skewed course. For higher temperatures these solutions combine which gives the closed form

when the left minimum merges the central maximum of the grand potential. The positive solution of the gap

equation in this case starts right next to the chiral limit solution and falls off similar approaching the finite bare

mass m asymptotically. This can be observed through the integral 2.20 in the gap equation 2.11 where the fac-

tor (1− nk − n̄k) goes to zero for the limit of large temperatures. Moreover, this corresponds to the transition

from the phase with broken chiral symmetry into the phase with approximately restored chiral symmetry. Since

the constituent massM is a continuous and smooth differentiable function of T , this is the crossover transition.

The right diagram of the figure shows the behavior of the constituent mass in the zero temperature limit.

Actually, for the numerical calculations of the occurring integrals and equations the small finite value

T = 0.75 MeV is used but indicated in the plots as zero. Otherwise, there would be many small fluctua-

tions as solutions by using Newton methods which yield in turn to more small humps on the curves. Starting
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with the blue curve for the chiral limit, the symmetric course of the solutions can be observed directly. Begin-

ning at chemical potential of approximately µ = 335.5 MeV there are up to five solutions of the gap equation.

This fact corresponds to the observation that the thermodynamic potential has five extrema within the region

of the spinodals. Furthermore, points on the spinodals can be obtained straightforwardly since there one has a

saddle point instead of two extrema which means at least one solution less. In the graphic, the left spinodal is at

µ = 335.5 MeV where exactly three solutions for the effective mass exist, instead of five possible values when

going to higher potentials. The right spinodal for zero temperature is close to µ = 397 MeV because again

the phenomenon occurs that only three solutions exist. Going to lower potentials, the saddle points become

extrema such that one gets five masses. The results are the same as in the discussion of the spinodals through

the grand potential in figure 2.4 and thus consistent.

In case of quark mass m = 5.6 MeV there are similar changes as in the case of zero chemical potential in the

left figure. Here, the trivial solution M = 0 of the chiral limit moves into the negative area due to the skewed

grand potential. For the positive solution the behavior for small chemical potentials is nearly the same as in the

chiral limit. The positive effective masses are a little bit higher in the left picture since they are shifted by the

bare mass. Again, the spinodals with saddle points of the grand potential in the second diagram of figure 2.4

can be obtained as the values of the chemical potential where just one positive constituent mass exists near to

the area of three possible solutions. This is at the tips or humps of the curve which gives µ = 361.3 MeV for

the left and µ = 408.7 MeV for the right spinodal at T = 0.
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3 Ginzburg-Landau analysis
The Ginzburg-Landau (GL) theory is a mathematical physical continuum description of phase transitions,

named after V. Ginzburg and L. Landau. Originally, it was used for describing superconductivity through

macroscopic properties of the superconductor by applying general thermodynamic theorems. The main idea

was the expansion of the free energy F in terms of an order parameter field that is nonzero below the focused

phase transition [12]. Now, this basic idea will be applied in the situation of the phase transitions within the

considered NJL model. For this, the chiral limit and finite bare mass cases were distinguished and for both of

them a GL analysis will be developed. Moreover, this chapter will focus on the exact phase diagrams together

with the position of the critical points which can be calculated by the analyzed GL coefficients of the expansion

concept. The word ’exact’ in this context has to be seen in relation to the used NJL model and not as exact in

the sense of QCD since the NJL model is only an effective theory approach for that.

3.1 The Ginzburg-Landau theory

For the critical behavior of thermodynamical observables near phase transitions it is often not necessary to

know all microscopic details or the exact form of the interaction. Therefore, it can be thought of a macro-

scopic continuum description for the phase transitions. To obtain this, one starts with the Landau theory

which expands the free energy F = −T ln(Z ) as a polynomial function of an order parameter φ near the

phase boundary [13]. The order parameter φ is an appropriate macroscopic quantity which changes during the

transition at the phase boundary in a characteristic way. Moreover, it describes the favored state for a given

temperature. This quantity could be the magnetization for a ferromagnetic transition or the volume for the

condensation of a gas but the choice of this quantity is in general not unique. The order parameter describes

the changes at the phase transition such that it holds

φ̄ =

 0 T ≥ Tc

6= 0 T < Tc
(3.1)

where φ̄ is the mean value of the order parameter. Since φ̄ is continuous at the boundary for T = Tc it is

possible to expand the free energy F in a neighborhood of the critical temperature Tc in powers of φ. The

Ginzburg-Landau theory is a meaningful generalization of the Landau theory which leads to the Ginzburg-

Landau ansatz by allowing a spatial dependence of the order parameter φ = φ(~x). The main idea is to include

also spatial fluctuations of the order parameter because the crucial fluctuations for the physical system become

more and more long-waved near the critical point such that the corresponding correlation length ξ diverges.

Therefore, the Ginzburg-Landau model is justified especially near the critical point. The free energy in the GL

theory is a functionalF [φ(~x)] of the order parameter field. Hence, the minimum of the functional is searched

with respect to all functions φ(~x) that yields the necessary condition δF = 0. Moreover, it is possible to find
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an expression for the partition function Z of the physical system [14]. The representation is given by a path

integral over all possible configurations Dφ(~x) of the order parameter and has the form:

Z =
∫
Dφ(~x) e−βF [φ(~x)] (3.2)

According to statistical physics, the free energy can be written as a volume integral of the free energy density

that is given by the value of the thermodynamic potential Ω. Turning now back to the aim of analyzing phase

diagrams within the two-flavor NJL model, the grand potential can be seen as a functional of the effective mass.

In the sense of Ginzburg-Landau, the effective mass is the order parameter field which depends in general on

the spatial position, i.e. it holds M = M(~x). The central idea of the theory is to look at the expansion of the

functional in terms of the order parameter and which results in the general expression

ΩNJL[M ] = Ω[M0] + 1
V

∫
d3x

(
α1δM(~x) + . . .+ α4,aδM

4(~x) + α4,b(∇δM(~x))2 + . . .) (3.3)

if a combined gradient expansion is considered [15]. There, the gradients were treated in the same order as the

magnitude of the order parameter. Further, the coefficients are functions of T and µ and the constituent mass

was written as M(~x) = M0 + δM(~x) for a constant part M0 and a small varying δM(~x).

For the remaining course of the work, the expansion gets simplified since the main interest lies in constituent

masses that don’t depend on the spatial position since this would correspond to the analysis of inhomogeneous

phases. Thus, the integral cancel against the volume and only a sum of terms without position dependence as

well as without gradient terms remains. Then, the expansion takes the form

ΩNJL[M ] =
∑
n∈N0

αn(T, µ) · (M −M0)n (3.4)

where the Ginzburg-Landau coefficients αn with T and µ dependence are obtained by the partial derivative of

the grand potential with respect to the constituent mass:

αn(T, µ) = 1
n!
∂nΩNJL(T, µ;M)

∂Mn

∣∣∣∣∣
M=M0

(3.5)

The potential gets expanded around the fixed effective mass M0 that should correspond to a stationary point

in the following analysis. Therefore, M0 can be obtained as solution of the gap equation. In the next step, the

behavior of the GL coefficients around the phase boundary will be investigated for the two cases of chiral limit

and finite bare mass. This will lead to mathematical conditions which allow for a numerically calculation of

the exact position of the TCP and CEP.

3.2 Analysis in the chiral limit

In the chiral limit m = 0, the position of the TCP can be calculated a little bit more easily as in the case

of a nonzero current quark mass. This is due to a simplified expression of the expansion 3.4 since the trivial

solution M0 = 0 can be chosen as evaluation point for the GL coefficients. Also, this can be seen directly

in figure 2.6 where the trivial solution of the gap equation is displayed together with the symmetric course of
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the positive and negative mass. For the reason of chiral symmetry, all odd GL coefficients vanish and only the

even ones remain such that the expansion finally takes the form

ΩNJL(T, µ;M) =
∑
n∈N0

α2n(T, µ) ·M2n (3.6)

in this section. Additionally, it is assumed that all corrections of higher orders than four are generally positive.

A profound investigation of the coefficients α2 and α4 will lead to the needed condition for the TCP.

3.2.1 The Ginzburg-Landau coefficients

The first step of the analysis is the determination of the Ginzburg Landau coefficients up to order four according

to the made assumption. For order zero it holds

α0(T, µ) = −C

Λ4

4 +
∞∫

0

dk k2T

[
ln
(

1 + exp
(
−k − µ

T

))
+ ln

(
1 + exp

(
−k + µ

T

))] (3.7)

which is the same as ΩNJL(T, µ;M = 0) and acts as offset at M = 0 for fixed T and µ. Here, the constant

C ≡ 6/π2 was introduced as the pre-factor of the integral terms in the grand potential 2.28. Indeed, the

coefficients α2 and α4 play the major role such that it is sufficient to focus on them. One yields the relation

α2(T, µ) = 1
4G −

C

2

Λ2

2 −
∞∫

0

dk k

 1
1 + exp

(
k−µ
T

) + 1
1 + exp

(
k+µ
T

)
 (3.8)

for the second coefficient which has also a pure analytical representation using the dilogarithm such that it

holds:

α2(T, µ) = 1
4G + T 2 + 3(2µ2 − Λ2)

2π2 + 3T 2

π2

[
Li2

(
−e−

µ
T

)
+ Li2

(
−e

µ
T

)]
(3.9)

Nevertheless, it is used the integral expression for applying numerically methods in the same way as for α4

that has the following form:

α4(T, µ) = −C4!

3−
Λ∫

0

dk
3
k

+
∞∫

0

dk
3
k

 1
1 + exp

(
k−µ
T

) + 1
1 + exp

(
k+µ
T

)
 (3.10)

Despite, the first integral in the relation for α4 is infrared divergent, the integrals can be solved numerically

since together with the second integral one has in total a convergent expression. In the improper integrals often

terms like
(
1 + exp

(
k−µ
T

))−1
appear. These correspond to the quark occupation numbers for zero constituent

mass in the energy relation. Next, the qualitative behavior of the thermodynamic potential for different regions

within the phase diagram will be considered. From that behavior, sign restrictions for the coefficients α2 and

α4 can be derived by the presumption of only positive high order coefficients. The different occurring forms

of the potential are displayed in figure 3.1. In the case where all coefficients are positive, the restored phase

with global minimum M = 0 is obtained. For the combinations of µ and T where α4 is positive and it holds

α2 < 0, nontrivial solutions M 6= 0 are favored. This gives just the broken phase with the two minima on

the same height and a central maximum. For vanishing α2 the solutions M = 0 are favored again and yield
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the second order phase transition. Going on to cases of negative GL coefficients α4, the first order phase

transition becomes possible for α2 > 0 with a grand potential form containing five stationary points. At

the TCP the first order phase boundary meets the second order phase boundary which results in the distinct

condition α2 = α4 = 0.
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(a) α2, α4 > 0
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Ω

(b) α2 < 0, α4 > 0
 0

M

Ω

(c) α2 = 0, α4 > 0
 0

M

Ω

(d) α2 > 0, α4 < 0
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Figure 3.1: Different qualitative forms of the grand potential ΩNJL as function of the constituent mass order
parameter M in the chiral limit, taken from [16]. The behavior corresponds to (a) restored phase, (b)
broken phase, (c) second order phase transition, (d) first order phase transition and (e) TCP.

Altogether, the analysis of the different characteristic shapes of the grand potential as function of the constituent

mass leads to the condition

TCP: α2(T, µ) = α4(T, µ) = 0 (3.11)

for the tricritical point. This allows a numerical calculation of the exact position of the TCP such that the next

part will deal with the exact phase diagram in the chiral limit.

3.2.2 Phase diagram with TCP

The results of the previous analysis can be evaluated now using concrete values for the parameters given

by the set 2.29 as well as an adaptive algorithm for the numerically computation of the occurring integrals.

The searched roots of the Ginzburg-Landau coefficient functions can be calculated by using Newton and se-

cant methods again. The left graphic in figure 3.2 shows the course of the solutions for α2(T, µ) = 0 and

α4(T, µ) = 0 which intersect in the TCP since this is exactly the statement of the condition 3.11. There-

fore, the TCP can be calculated exactly within numerical uncertainties and under the assumption of positive

higher order GL coefficients. The TCP values are Tc = 112.78 MeV for the critical temperature as well as

µc = 266.04 MeV as critical chemical potential. The part of α2 = 0 on the left side of the TCP corresponds

to the second order phase transition as discussed before in figure 3.1. Moreover, the solutions below the TCP

yield the left spinodal since there is exactly a saddle point given by α2 = 0 as the left minimum just merges

the central maximum of the grand potential. The right spinodal can be calculated in the same way, however, it

is necessary to use a different evaluation point M0 in the relation 3.5. Therefore, one obtains the right spinodal

by solving the equations

α1(T, µ;M0 6= 0) = α2(T, µ;M0 6= 0) = 0 (3.12)
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Figure 3.2: Chiral limit phase diagram with TCP as intersection of the GL coefficients and second order phase
boundary by the α2=0 curve.

for constituent masses M0 6= 0. That means, one has to search all the α2 = 0 curves in the phase diagram.

Here, α1 can be nonzero since a different mass for evaluation is used. The statement α1(T, µ) = 0 is therefore

in general equivalent to the gap equation 2.11. The effective masses M on the right spinodal turn thus from

high values around M = 400 MeV to zero at the TCP where both spinodals intersect. At this point also the

first order phase boundary joins which corresponds to such points in the phase diagram where both minima of

the grand potential within the spinodal region are at equal height. Hence, the boundary can be calculated with

a solution M0 of the gap equation, given by α1 = 0, which also solves the equation

ΩNJL(T, µ;M0)− ΩNJL(T, µ;M = 0) = 0 (3.13)

which means that both minima lead to the same value of the potential. The obtained tuples (T, µ) represent the

first order phase boundary displayed as green curve in the right picture of figure 3.2. Next, the expression for

the GL coefficient α1 will be investigated directly and the possible constituent masses in the chiral limit can be

analyzed for points away from the vacuum.

3.2.3 Constituent mass functions

Often, it can be useful to take a closer look on the exact behavior of the gap equation solutions. That means the

constituent masses can be seen as functions over the chemical potential if temperature is fixed. From the shape

of the resulting mass functions the TCP and also the spinodals can be identified directly. For that purpose, a

concrete expression for the general α1 without evaluation point is needed. The calculation of the first derivative

is straightforward and yields

α1(T, µ;M) = ∂ΩNJL
∂M

= M

2G − C

 Λ∫
0

dk
k2M

E~k
−
∞∫

0

dk
k2M

E~k
(nk + n̄k)

 (3.14)

which is equivalent to the gap equation 2.11 in the case of α1(T, µ;M) = 0. Solutions of this equation were
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Figure 3.3: Constituent mass as function of the chemical potential in the chiral limit for different fixed temperatures.

already discussed in the cases T = 0 and µ = 0 in section 2.5. Now, also different fixed temperatures

were taken to investigate changes of the shape of the mass function. The results are displayed in figure 3.3.

The general shape for temperatures below the TCP is the same but turn more and more to lower chemical

potentials. Simultaneously, the number of possible solutions shrink from up to five back to three above the

TCP. Moreover, the solutions for zero chemical potentials become lower, since the two minima of the grand

potential move to the center for a global minimum. For the case with T = 200 MeV only the trivial solution

M = 0 remains. The tips of the curves for low temperatures indicate the points where a saddle point arises and

therefore they correspond to the spinodals. These peaks disappear continuously and for the curve at the critical

temperature Tc = 112.8 Mev only a vertical line at the front, intersecting the µ-axis at the critical chemical

potential µc = 266 Mev, remains. For higher temperatures, the shape continues to an increasingly round form

at the right front. Thus, an accurate analysis of the mass functions already enables to find the critical area and

therefore the temperature and potential at the TCP.

3.3 Analysis for nonzero quark mass

For finite bare masses m 6= 0 away from the chiral limit, the situation is more complicated since there is

no exactly restored phase. The zero solution is not a solution of the gap equation in this case and therefore,

the grand potential should be expanded around another stationary point of the potential. That means first a

solution M0 of α1(T, µ;M0) = 0 is needed for the constituent mass which will be used as evaluation point

for the coefficients in relation 3.5. Further, all Ginzburg-Landau coefficients remain in the expansion since

the argument of symmetric solutions due to chiral symmetry does not hold anymore as one can see directly

in figure 2.5. It will be seen that again a suitable condition for the critical endpoint can be derived applying a

deeper analysis of the Ginzburg-Landau coefficients α1, α2 and α3.
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3.3.1 The Ginzburg-Landau coefficients

Now, it is necessary to investigate the qualitative behavior of the first three GL coefficients to determine a

condition for the exact position of the CEP. For the sake of clarity, the individual expressions for the αn are not

stated explicitly since the occurring derivatives lead to many terms. Instead, the resulting forms of the grand

potential as function of the constituent mass in different areas of the phase diagram are displayed in figure

3.4. From this, one can again derive the varying sign restrictions for the Ginzburg-Landau coefficients. The

constituent massM0 denotes therefore a stationary point of the grand potential such that the first GL coefficient

α1 vanishes and a function M0(T, µ) can be derived from α1(T, µ;M0) = 0.

M
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Figure 3.4: Different qualitative forms of the grand potential ΩNJL as function of the constituent mass order
parameter M for finite bare mass, taken from [16]. The behavior corresponds to (a) first order phase
boundary, (b) CEP, (c) left spinodal and (d) right spinodal.

In the first picture, the first order phase boundary yields a grand potential with two degenerate minima beside a

central maximum. Moving along this boundary to the critical endpoint, the three stationary points merge into

one global minimum such that there the additional condition α2 = 0 holds. Another way to reach the CEP is

by going along the spinodals. Since there one has a saddle point, the conditions α2 = 0 and α3 < 0 for the

left and α3 > 0 for the right spinodal hold, respectively. The two spinodals meet at the CEP such that at this

point α3 = 0 is also a necessary requirement. In summary, the searched condition for the critical endpoint is

given by

CEP: α1(T, µ;M0) = α2(T, µ;M0) = α3(T, µ;M0) = 0 (3.15)

in the case of finite quark masses for an Ginzburg-Landau expansion around a stationary pointM0 of the grand

potential. Now, one can again turn to the exact phase diagram for which the CEP can be calculated numerically

with the obtained condition.

3.3.2 Phase diagram with CEP

Applying the same numerical methods as in the chiral limit case together with the parameter set 2.29 for the

previously derived condition 3.15 allows a nearly exact computation of the critical endpoint. The solution of

the system of equations is a temperature of Tc = 82.19 MeV and a chemical potential of µc = 322.02 MeV.

For the constituent mass at the CEP one obtains M0 = 186.61 MeV. The phase diagram can be calculated

also in this case from the GL coefficients as functions of T and µ. Since there is always a solution of the gap
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equation α1 = 0 for the expansion needed, one can think about using the negative masses M0 as well. For that

reason, the left graphic in figure 3.5 shows also solutions of setting α2(T, µ;M0) and α3(T, µ;M0) to zero for

an expansion with negative mass M0 indicated by dotted lines. Though, the qualitative shape of the α2 = 0
and α3 = 0 curves for negative constituent masses does not show anything revealing for the underlying phase

diagram. Especially, the two curves do not intersect. However, the CEP turns out as expected as intersection of

the α3 = 0 curve with the spinodals which correspond to the α2 = 0 curves for positive masses M0 obtained

by solving the equations 3.12.
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Figure 3.5: Finite bare mass phase diagram with CEP as intersection of the spinodals as well as the GL coeffi-
cients set to zero and evaluated for positive and negative solutions of the gap equation.

The right picture in figure 3.5 shows the pure phase diagram with the two spinodals as well as the first order

phase boundary. The latter one is calculated again by searching for points in the phase diagram where the right

and central minimum of the grand potential ΩNJL(T, µ;M0) are at equal height. Above the CEP, a smooth

crossover between the chirally broken and restored phase follows instead of the second order phase transition

in the chiral limit. This crossover is, however, not depicted explicitly.

3.3.3 Constituent mass functions

Finally, it is again useful to consider the solutions of the gap equation as functions of the chemical potential

for different fixed temperatures. The first Ginzburg-Landau coefficient defines the gap equation and gets one

additional term due to the nonzero quark mass which states:

α1(T, µ;M) = ∂ΩNJL
∂M

= M −m
2G − C

 Λ∫
0

dk
k2M

E~k
−
∞∫

0

dk
k2M

E~k
(nk + n̄k)

 (3.16)

The resulting solutions for the constituent mass are shown in figure 3.6. In comparison to figure 3.3 the

solutions are not symmetric anymore and the positive solutions move asymptotically down and would approach

the current quark mass for high chemical potentials if the second integral in equation 3.16 had the same cut-off.
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The solution curves in the negative half are closed and correspond to the central and left stationary point of the

grand potential that is skewed for nonzero quark masses.
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Figure 3.6: Constituent mass as function of the chemical potential for quark mass m = 5.6 MeV with different
fixed temperatures.

In the area of high chemical potentials the figure allows the approximately determination of the spinodals and

the critical endpoint by the change in the number of possible constituent mass solutions. Therefore, one has to

consider the curves in the positive half for chemical potentials in the area of three solutions. Going to lower and

higher potentials yield a point at the tip where exactly two positive solutions remain. Moving further, only one

positive mass is possible. At this tip point, two stationary points of the grand potential merge and the saddle

point at the corresponding spinodal remains. The critical endpoint, according to the green curve, is given for

the solution where the two tips are at equal chemical potential, merging in one point with vertical line. Turning

to higher temperatures than Tc = 82.19 MeV leads to curves where for every chemical potential only one

positive solution is possible. For very high temperatures, for instance T = 200 MeV, there exists no negative

constituent mass as solution.

3.3 Analysis for nonzero quark mass 27



4 Taylor series approximation of TCP and CEP

In the previous chapter, it was shown that the Ginzburg-Landau analysis enables the numerical calculation of

the exact position of the TCP and CEP in the NJL model in mean-field approximation. Therefore, two criteria

for the Ginzburg-Landau coefficients at the critical points were derived in 3.11 and 3.15 by an analysis of

the sign restriction for different points in the phase diagram. However, the main purpose of this work is to

check how good an approximation of the critical points can be within using the GL coefficients as underlying

quantity. Often an exact calculation is not possible, for example in the lattice QCD where one can work only

with zero chemical potential. Nevertheless, information for finite µ can be obtained by a classical Taylor series

expansion around µ = 0 which are practicable around up to order eight [17]. This was also done as attempt

to approximately identify the critical endpoint by a Taylor series of the pressure p in [18]. The main idea

results from the fact that the pressure p is a quantity which can be handled also in lattice QCD by an expansion.

Unfortunately, the results in [18] show that the approximation is nearly exact for a range of up to µ = 100 MeV

and then the solution goes away from the second order phase boundary, such that an approximation of the CEP

is not possible. Now, the Ginzburg-Landau coefficients represent a new kind of physical quantity which can

be used for an Taylor series expansion. In the Nambu-Jona-Lasinio model where the exact phase diagram is

calculated for comparison, the Ginzburg-Landau coefficients will be expanded next in Taylor series expansions

of the form

αn(T, µ) =
∑
k

cn,k(T ) · µk (4.1)

where for the k-th Taylor coefficient cn,k of the n-th GL coefficient it holds:

cn,k(T ) = 1
k!
∂kαn(T, µ)

∂µk

∣∣∣∣∣
µ=0

(4.2)

In the following sections, the TCP and CEP will be calculated for different orders of the Taylor polynomial by

using the conditions of the Ginzburg-Landau analysis and finally the approximated values will be compared to

the exact results. This will show, how good such an Ginzburg-Landau and Taylor series attempt for approxima-

tions of critical points in future calculations will be. For the reason of the trivial solution M = 0 as evaluation

point in the chiral limit, it can be already imagined that the Taylor coefficients for m = 0 are slightly easier to

calculate and that the computations are noticeably faster. This will result in a somewhat better approximation

of the TCP than the CEP by the Taylor approach.

4.1 Approximation of the TCP

For an approximation of the tricritical point a Taylor series for both, the GL coefficient α2 and α4, in the chiral

limit m = 0 with constituent mass M = 0 is needed. First, the coefficient α2(T, µ) is considered with an
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approximation by the Taylor polynomial Pn,k(T, µ) of order k = 2. Taylor polynomials of odd order do not

improve the approximation since these coefficients vanish due to the chemical potential ΩNJL which is an

even function in µ. The figure 4.1 shows in the first picture the approximation of the α2 = 0 curve through the

solutions of P2,2 = 0. As one can see, the approximation of the Taylor polynomial of second order P2,2 = 0
already gives a perfect solution for the α2 = 0 curve. Therefore, one can expand this GL coefficient 3.9 into

the Taylor polynomial that is given by the expression:

P2,2(T, µ) = 1
4G −

3Λ2

2π2 + T 2

2 + 3µ2

2π2 (4.3)

This result will be used for the following calculations of the TCP approach. In the next step, the α4 coefficient

will be expanded into Taylor series up to order 34. Again, the odd Taylor coefficients vanish due to the

argument of the even function ΩNJL(µ) = ΩNJL(−µ).
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Figure 4.1: Taylor series approximation of the GL coefficients α2 = 0 and α4 = 0 for different orders k of Pn,k.

The right picture of figure 4.1 shows clearly how higher orders of the Taylor expansion come closer to the

originally α4 = 0 curve. For the polynomial of order 34, the TCP is nearly exactly approximated, however, the

shape of the curves have no accordance for low temperatures, going apart at around T = 90 MeV. Nevertheless,

the Taylor polynomial approach is satisfactory and already in the same magnitude for the lower orders. The

polynomial of order ten has its tip at a chemical potential of µ = 262.9 MeV which is close to µc. Moreover,

it can be seen in the picture, that the Taylor polynomials of order k ≡ 0 mod 4 leads to curves with different

shape which approximate the overall α4 = 0 curve from the right side instead of the better curve approximation

from the left side for orders k ≡ 2 mod 4. Despite this, the approximation of the TCP is also very good for

these polynomials such that the intersection with the second Ginzburg-Landau coefficient will be calculated

for all of the depicted Taylor polynomials. The corresponding Taylor coefficients for the expansion of α4 in

equation 3.10 can be expressed by integrals over hyperbolic functions in the following way:

c4,0(T ) = −C24

3−
Λ∫

0

dk
3 tanh

(
k

2T

)
k

+
∞∫
Λ

dk
6

k + ke
k
T

 (4.4)
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c4,2(T ) = −C48

 ∞∫
0

dk
12 csch3

(
k
T

)
sinh4

(
k

2T

)
kT 2

 (4.5)

For the second one and for the fourth coefficient it holds

c4,4(T ) = − C

576

 ∞∫
0

dk
3
(
cosh

(
k
T

)
− 5

)
sech4

(
k

2T

)
tanh

(
k

2T

)
4kT 4

 (4.6)

where C = 6/π2 is again the integral pre-factor from the previous chapter. For the sake of clarity, only the

first three coefficients up to order four are stated explicitly.

Table 4.1: Results for the Taylor series approximation of the TCP by P2,2(T, µ) = P4,k(T, µ) = 0 for different
Taylor orders k of the fourth Ginzburg-Landau coefficient. The exact tricritical point is located at the
values µc = 266.04 MeV and Tc = 112.78 MeV in the phase diagram.

Order k Approximated critical potential µkc in MeV Approximated critical temperature T kc in MeV

2 226.33 136.61
4 240.38 131.56
6 252.46 121.90
8 261.39 117.85
10 260.40 116.71
34 266.03 112.79
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Figure 4.2: Exact and approximated TCP in the chiral limit given as solution of the systems α2 = α4 = 0 and
P2,2 = P4,10 = 0, respectively.

In the next step, the intersections of the P2,2 = 0 curve with different curves by the Taylor polynomials

P4,k = 0 were calculated. Solving the system of equations with the mentioned numerical methods yields

the approximated tricritical points which are listed in table 4.1. Comparison with the exact TCP values

4.1 Approximation of the TCP 30



Tc = 112.78 MeV and µc = 266.04 MeV from the Ginzburg-Landau analysis leads to the result that or-

der k = 34 gives nearly the exact result. Nevertheless, the approximated values for low orders move quickly

in the direction of the TCP such that order k = 10 and k = 8 yield also suitable results in the same magnitude

of the exact TCP. Moreover, the low orders have an much easier analytic expression and can be calculated faster.

Finally, one can display the results of this section in figure 4.2 where the situation for the exact Ginzburg-

Landau coefficient with TCP is compared to the approach by the Taylor polynomials of order two and ten

together with the approximated TCP. The figure shows, that the Taylor series attempt yields at least a useful

approximation of the tricritical point in the chiral limit and that one can work likely with the polynomial

P4,10(T, µ) for any approximation.

4.2 Approximation of the CEP

In this section, the more complicated case of a finite quark mass m = 5.6 from the parameter set 2.29 is

considered. Therefore, the Taylor series expansion 4.1 is needed for the first three Ginzburg-Landau coef-

ficients α1, α2 and α3 since they all contribute to the Ginzburg-Landau expansion of the grand potential in

3.4. The CEP can be calculated by the criterion 3.15 which is the origin of the difficulty in this case. First,

one has to solve the gap equation α1(T, µ) = 0 as Taylor polynomial approximation. That yields resulting

constituent masses M ′0 which differ from the actual ones and the scale of the difference depends on the order

of the series expansion. The constituent mass M ′0 is then needed as evaluation point for the second and third

Ginzburg-Landau polynomial, such that the results of these GL coefficients in turn differ due to the shifts in

the constituent mass solutions M0. Solving all three equations together leads to the critical endpoint, but the

quality of the approximated solution for low orders will be not as good as in the chiral limit case.

The Taylor coefficients for the finite quark mass case were not stated explicitly at this point, since these are

lengthly expressions without further insides, already for low orders. For the derivative of the Ginzburg-Landau

coefficients with respect to µ, only the second integral in the expression of the grand potentialΩNJL in relation

2.28 has to be considered due to the occurrence of the chemical potential. Moreover, the expressions get quickly

unwieldy and thus the computation for higher orders than k = 8 and k = 10 depending on the coefficient n is

not possible or takes several hours. For this reason, the Taylor series expansion Pn,k(T, µ) is proceeded up to

order k1 = 10 for α1 and up to order k2 = k3 = 8 for the coefficients α2 and α3. The increasing quality of the

Taylor approximation for the first GL coefficient is depicted in figure 4.3. There, one can see the approximation

up to order k1 = 10 of α1(M) as function of the constituent mass M at the CEP. It is shown well, that the

fluctuations in the depicted area get less for higher orders and the Taylor polynomial curves come closer to the

shape of α1. For the Taylor expansion P1,2 there are also negative masses as zeros of the function which are

not present in the exact GL coefficient. For the highest order k1 = 10, there are still three zeros but they are

all located directly next to the unique zero of α1(M). The situation for the chirally broken and restored phase

in the pictures below is much better.
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Figure 4.3: Taylor polynomials P1,k1(M) as functions of the constituent mass M for the Ginzburg-Landau coef-
ficient α1 at the CEP and for two other points in the phase diagram for different Taylor orders k1.
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Figure 4.4: Second order Taylor series approximation of the Ginzburg-Landau coefficients α2 and α3 by Pn,2(M)
as functions of the constituent mass M at the critical endpoint Tc = 82.19 MeV and µc =
322.02 MeV. Note: Higher orders of the Taylor series approximation were not shown due to the
especially long computation time.
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Next to the better overall approximation of the curves, the zero of α1(M) is already approximated well for

low orders. In figure 4.4, the situation at the CEP for the GL coefficients α2(M) and α3(M) as functions of

the effective mass is displayed for an approximation of second order Pn,2. The computation for the higher

order plots is aborted after a half day due to the long computation time already for order four. However, the

approximation for the third coefficient reproduces already the overall shape and the vague position of the zeros.

The Taylor series expansion of order two for the second GL coefficient has also the same shape but one gets

four instead of two zeros for α2(M) = 0. Finally, it seems to make sense using a high Taylor order for the

first GL coefficient since this yields the constituent mass solution and further to use order six or eight for the

approximation of α2(T, µ) and α3(T, µ).

Table 4.2: Results for the Taylor series approximation of the CEP by P1,k1 = P2,k2 = P3,k3 = 0 for different
Taylor orders k1, k2 and k3 of the first three Ginzburg-Landau coefficients. The exact critical endpoint
is located at the values µc = 322.02 MeV and Tc = 82.19 MeV in the phase diagram for a constituent
mass of M0 = 186.61 MeV.

Order k1 Order k2 Order k3 Approx. µ′c in MeV Approx. T ′c in MeV Approx. M ′0 in MeV

2 2 2 287.53 118.63 158.23
4 2 2 266.86 122.28 136.41
4 4 4 292.45 98.00 200.39
6 2 2 271.47 121.30 141.95
6 4 4 299.07 97.72 208.37
6 6 6 314.66 79.59 247.57
8 2 2 270.16 121.56 140.43
8 4 4 302.14 97.69 211.82
8 6 6 323.15 80.46 256.00
8 8 8 304.38 97.92 146.41
10 2 2 270.36 121.52 140.66
10 4 4 299.77 97.71 209.17
10 6 6 325.98 80.80 258.77
10 8 6 307.42 92.36 179.73
10 8 8 302.42 98.28 145.94

After the calculation of the Taylor coefficients, it is possible to apply the results on the GL criterion P1,k1 =
P2,k2 = P3,k3 = 0 for finding the critical endpoint. Using the Taylor polynomials leads to approximated values

for the temperature, chemical potential and constituent mass. The system of equations is solved numerically by

a variant of the secant method for different orders of the polynomials in a location of the exact critical endpoint.

The obtained results are listed in table 4.2. First of all, one can see that the results are slightly varying for the

choice of the Taylor orders, however, the rough position of the critical endpoint is already visible in the first line

for an approach with order two for all coefficients. Moreover, it is clearly recognizable that the approximation

improves stepwise for higher orders k1 of the Taylor polynomial P1,k1 . Then, again within a block the approach

gets better by taking higher orders k2 and k3. The biggest fluctuations compared to the exact solution triple

is given by the values of the constituent masses M ′0 which are varying quickly in a range of 136.41 MeV to

258.77 MeV. The best solution for the constituent mass is given by M ′0 = 179.73 MeV through the Taylor
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orders k1 = 10, k2 = 8 and k3 = 6. For the temperature, the best solution is T ′c = 80.80 MeV by the the

combination k1 = 10 and k2 = k3 = 6. For the Taylor combination of k1 = 8 and k2 = k3 = 6, one

obtains the best approximation of the chemical potential with µ′c = 323.15 MeV. All in all, the results for

solving the equation set 3.15 with P1,10 and orders k2, k3 ≥ 4 for the other polynomials lead to satisfying

results for the CEP approach. Using these Taylor orders, the maximal distance of approximated and exact

values is ∆µc = 22.25 MeV, ∆Tc = 16.09 MeV as well as ∆M0 = 72.16 MeV which is less than a 20%
deviation from the two relevant quantities µc and Tc. The best approximations for the critical temperature

and chemical potential as tuple is obtained by k1 = 8, 10 and k2 = k3 = 6 with (323.15, 80.46) MeV and

(325.98, 80.80) MeV, respectively. Hence, these results of the Taylor series expansion fulfill the objective of

this work and remain as a successful CEP approach.

4.2.1 Constituent mass functions for the Taylor polynomials

Next, one can have again a look on the behavior of the constituent mass functions for different Taylor orders at

fixed temperatures. These plots reveal the information of the spinodals and CEP position due to the number of

possible effective masses M0.
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Figure 4.5: Constituent masses M as functions of the chemical potential for m = 5.6 MeV and different fixed
temperatures T in MeV by the Taylor polynomials P1,k1(T, µ) = 0 of order k1 = 2, 4, 6, 8.
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Therefore, one can already estimate the location of the CEP by analyzing the plots for different temperatures

as it is done for the exact Ginzburg-Landau coefficient α1 in figure 3.6. In this section, the equation P1,k1 = 0
will be solved for M0 for different orders k1 of the Taylor polynomial and the results are depicted in fig-

ure 4.5. Low temperatures are not considered here because the approximation is bad in that case due to the

evaluation around µ = 0. The overall shape of the solution curves for the Taylor polynomials up to order

two and four are similar to the exact ones in figure 3.6. One can see, how the shape transforms for higher

temperatures to curves with only one positive constituent mass for every given chemical potential. Despite

this, the transition from up to three possible solutions for M ′0 to only one is shifted to higher temperatures

and lies in the range between T = 110 MeV and T = 120 MeV for P1,2. For the fourth Taylor polyno-

mial of GL coefficient α1, one gets already an approximation of the CEP temperature between T = 90 MeV

and T = 95 MeV just by analyzing the corresponding plot. For both Taylor approximations, the range for

the chemical potential at the CEP is roughly given between µ = 260 MeV and µ = 300 MeV. Also, the be-

havior for high temperatures up to T = 200 MeV is similar to the exact case since the negative solutions vanish.

For the higher Taylor polynomials, it is more difficult and time-consuming to calculate solutions of the equation

P1,k1 = 0. Thus, the showed plots are more focused on the area of temperatures which are relevant for the

CEP approximation. For order k1 = 6, 8 there are additional solutions for the constituent mass in the positive

and negative area for high chemical potentials. These solutions have not a perfect resolution but one can see

the general behavior. Nevertheless, one has to keep in mind that the kinks in the curves of the order k1 = 8, 10
solutions have their origin in the calculation, where not as much points could be computed as for lower orders

or in the exact case. Clearly, it is a big disadvantage of the higher orders, that additional solutions come up

for the constituent masses due to extra zeros in the course of the P1,k1(M) function. The general behavior

of the first two orders fits better to the exact calculation in figure 3.6. However, searching again the area of

the approximated CEP gives a range between T = 75 MeV and T = 85 MeV and µ = 300 MeV till

µ = 320 MeV for the sixth order as well as a range between T = 85 MeV and T = 90 MeV and again

µ = 300 MeV till µ = 320 MeV for Taylor order k1 = 8. These results are closer to the exact value for both,

the temperature and the chemical potential, although the course of the solution curves is more different to the

exact case. Hence, it was possible to find already an approximated range for the CEP values by analyzing the

constituent mass functions for the Taylor polynomials.
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5 Conclusion and outlook

This work focused on the determination of the position of the critical endpoint and tricritical point in the QCD

phase diagram for a simplified two-flavor Nambu-Jona-Lasinio model [7]. Therefore, first the NJL Lagrangian

was considered before the thermodynamic potential ΩNJL was derived in mean-field approximation. The be-

havior of the grand potential for different points in the phase diagram was depicted in the figures 2.5 and 2.4

where the chiral symmetry is clearly visible and the phase boundaries can be imagined by the change of the

stationary points. Together with the gap equation 2.11 the possible constituent mass solutions could be investi-

gated in the chiral limit and for nonzero current quark mass in figure 2.6. It was worked with the parameter set

2.29 and m = 5.6 MeV since a sharp 3-momentum cut-off was necessary due to the occurrence of divergent

integrals.

In the next step, the Ginzburg-Landau theory was introduced as method to describe and analyze phase transi-

tions through expanding the grand potential ΩNJL in an order parameter field M around a solution M0 of the

gap equation in relation 3.4. An analysis of the sign restriction for the Ginzburg-Landau coefficients αn at dif-

ferent points in the phase diagram and on the boundary led to two conditions for calculating the exact position

of TCP and CEP [15]. In the chiral limit, the TCP can be determined by solving α2(T, µ) = α4(T, µ) = 0 and

for the critical endpoint in the case of finite bare masses the solution of α1(T, µ) = α2(T, µ) = α3(T, µ) = 0
is needed. Solving these systems of equations numerically with Newton and secant methods leads to the exact

tricritical point with TTCP = 112.78 MeV and µTCP = 266.04 MeV as well as to the exact critical endpoint

at m = 5.6 MeV with values TCEP = 82.19 MeV, µCEP = 322.02 MeV and MCEP = 186.61 MeV. More-

over, the exact phase diagrams with spinodals and first as well as second order phase boundary in the chiral

limit could be calculated and the results were shown in the figures 3.2 and 3.5. The approximate position of

the TCP and CEP as well as the spinodals are already apparent from the plots of the constituent mass functions

in the figures 3.3 and 3.6.

The main purpose of this work is the approach of the critical points through applying Taylor series expansions

as it was already done in [18] for the pressure p. Since the results in [18] were not satisfactory, the idea of

expanding another quantity come up, such that the Ginzburg-Landau coefficients were used for an expansion

with respect to µ. The evaluation point µ = 0 is based on the fact that Taylor expansions of certain quantities

around µ = 0 are also possible in lattice QCD. Starting in the chiral limit with trivial solution M = 0, it was

possible to derive an exact polynomial expression of second order for the α2 coefficient in equation 4.3. The

fourth GL coefficient was expanded to order k = 34 and this led to nearly the exact TCP values. However,

the expansion up to order k = 10 gave already a satisfactory approximation with T ′TCP = 116.71 MeV and

µ′TCP = 260.40 MeV. The situation for the finite massm = 5.6 MeV was much more complicated since Tay-
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lor series expansions for the first three coefficients were needed and the evaluation point for the coefficients α2

and α3 is a nontrivial solution M0 of the gap equation. Nevertheless, an expansion up to order k1 = 8, 10 for

the first coefficient allowed a satisfactory approximation of the CEP, especially by using the Taylor expansion

up to order k2 = k3 = 6, 8 for the other coefficients. The best result is therefore through Taylor orders k1 = 8
and k2 = k3 = 6 with values T ′CEP = 80.46 MeV and µ′CEP = 323.15 MeV but a little bit less good result

for the constituent mass M ′0 = 256 MeV which is varying quickly in the region around the CEP. Going to

higher orders for α2 and α3 improves the constituent mass solution but decreases the quality for potential and

temperature approximation.

Finally, the Taylor series expansion of the Ginzburg-Landau coefficients allows an estimation of the critical

points. These approximations can be improved by calculating higher Taylor orders and the NJL model should

include vector interactions as well as a third quark flavor and non-degenerate quark masses. It remains to

investigate the situation for different parameter sets and other finite bare masses thanm = 5.6 MeV. Hopefully,

the quality of the approaches will be similar to the approximations of this work. If this also leads to a good

estimation of the CEP, one could think about a comparable quantity for lattice QCD to proceed such a Taylor

expansion around µ = 0. Actually, it is not clear which quantity could correspond to the Ginzburg-Landau

coefficients but all in all, the results are much better than Taylor expansions of physical quantities like the

pressure p in [18]. Nevertheless, the approaches of lattice QCD and NJL model are very different.
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