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Abstract
In this work the Tolman-Oppenheimer-Volkoff equations are used to calculate mass-radius rela-
tions of neutron stars. We consider different equations of state and assume a phase transition to
the deconfined quark phase at high densities. For the quark matter a constant speed of sound
equation of state is used. A first-order phase transition could lead to a third stable sequence of
compact stars. These "third family" stars can exist beside the two known families of compact
objects, the white dwarfs and the neutron stars. We will classify the mass-radius relations and
analyze the occurrence of "third family" stars according to the phase transition parameters. In
this process we will focus on those types which contain "third family" stars. In case of a phase
transition at low transition pressure and large energy density discontinuities, "third family" stars
can occur. Furthermore, the general observables like mass and radius of "third family" stars will
be analyzed. We find out that "third family" stars and neutron stars can have the same mass.
These non-identical stars are called "neutron star twins". We analyze the structure of these twins
and explain why "neutron star twins" give a possible signature for a phase transition. At last we
give up the assumption of a sharp first-order phase transition and calculate the mass-radius rela-
tions for an equation of state using a smooth interpolation between the two phases. Therefore,
we will investigate the effects of smoothening the equation of state on the occurrence of "third
family" stars.
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1 Introduction and motivation
Since the discovery of the atomic nucleus in 1911 by Rutherford et al., it is one of the major goals
of nuclear physics to explore the properties of matter at nuclear densities and beyond. Hence
in the recent years, larger and more expensive facilities were build (like the LHC at CERN or
FAIR), to push our experimental knowledge of hot dense matter. In astrophysics, neutron stars
provide a unique laboratory to study the structure and interaction of matter at high densities
and low temperatures.

Most of the observed neutron stars attain masses of 1.4M� and have radii of about 10 km [1].
Due to the large compactness, the gravity binds and compresses matter up to ten times of the
nuclear saturation density n0 = 0.16 fm−3 [2]. The matter inside a neutron star is described
by the equation of state (EoS). Using different approaches to the particle interactions lead to
various equations of state (EoSs). The masses of the recently observed pulsars J1614-2230
(M = (1.97± 0.04)M� [3]) and J0348+0432 (M = (2.01± 0.04)M� [4]) can be reproduced
by a sufficiently stiff equation of state (dP/dε is large). Since cold matter at densities above
≈ 2 n0 can not be reproduced by particle accelerators, there is no direct experimental data for
matter at low temperature and high densities to adapt the equation of state. At these densities,
the EoS is not known well and there exist various approaches for it.

The strong interactions of matter at high densities is described by the theory of quantum chro-
modynamics (QCD). However an exact solution for the cold neutron star matter is not pos-
sible within QCD. The densities are too low to apply perturbative QCD [5] and lattice QCD

Figure 1.1: Scetch of the QCD phase diagram in the
T-µ plane. For low temperatures we distinguish be-
tween the hadron/nuclear phase at low µ and the
color superconductive phase at high µ. For high tem-
peratures the quark gluon plasma occurs [6].

is stymied by the numerical sign prob-
lem [7]. Nevertheless we will assume
a phase transition at densities above
n0 from the confined hadronic matter
to the deconfined quark matter with
regard to the QCD phase diagram in
Figure 1.1. The neutron star mat-
ter is found at low temperatures in
the hadron phase and maybe overlaps
overlaps with the color superconduc-
tive quark matter phase. In this re-
gion the phase change is assumed to
be first-order [8] but the exact mat-
ter configurations in compact stars are
still unknown [9]. For this reason we
will construct both, hybrid EoSs (con-
sisting of a hadronic and quark phase)
using a first-order phase transition and
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hadron-quark crossover to interpolate the transition region.

Figure 1.2: MR relations of compact ob-
jects containing the two stable families
white dwarfs and neutron stars. The cen-
tral density of some characteristic stars is
denoted by units of [ρc] = g/cm3 [10].

Compact objects like white dwarfs and neu-
tron stars emerge at the end of the stellar evo-
lution. The mass of the dying star is the
crucial factor whether a white dwarf, a neu-
tron star or a black hole arises. It is ex-
pected that for stars with a maximal mass of
4M�, a white dwarf occurs [11]. White dwarfs
have masses up to the Chandrasekhar limit of
1.4 M� and are stabilized by the pressure of
degenerated electrons [12]. They form one
stable sequence of compact objects for large
(R≈ 104 km) radii [10]. The mass-radius re-
lation for compact objects is shown in Fig-
ure 1.2. For higher central densities than
3× 109 g/cm3, the white dwarf destabilizes and
collapses.

The second stable sequence of compact objects oc-
curs at higher densities and lower radii. Neu-
tron stars form this stable branch. The stars
are stable due to the nucleon Fermi pressure and
the repulsion between nucleons at short range
[12]. They originate from stars more massive
than 4M� [11] and destabilize at densities above
3× 1015 g/cm3.

Nearly 50 years ago Gerlach found out, that a third
sequence of stable equilibrium configurations of
compact objects at even higher densities is not forbidden by general relativity [13]. Therefore
"third family" stars could exist beside the two known families white dwarfs and neutron stars.
The necessary condition for their existence is a sufficiently large discontinuity in the speed
of sound c2

s = dP/dε. Wheeler and collaborators [14] demonstrated that for rather smooth
EoSs, "third family" stars can not occur. However Glendenning and Kettner [15] found that
a first-order phase transition to deconfined quark matter with sufficiently high energy density
discontinuity satisfies Gerlach’s necessary condition of "third family" stars and can indeed lead
to "third family" stars. In this process the deconfinement softens the EoS due to the loss of the
repulsion between nucleons at short range. According to the Pauli principle the Fermi pressure
is shared among a higher number of quarks, which will further reduce the pressure at a given
energy density [12]. This softened EoS will destabilize the star first. At high densities this EoS
will somehow lead to a stable star configuration containing a quark matter core.
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In this thesis we investigate the necessary conditions of the phase transition to obtain "third
family" stars. For this purpose we use different hadronic EoSs and assume a constant speed of
sound for the quark matter. Considering a first-order phase transition, we analyze the depen-
dency on mass-radius relations with reference to the transition pressure and the energy density
discontinuity. In this process we calculate the range of values of the transition parameters for
which stable third branches of compact objects can occur. In dependency on these transition pa-
rameters, general properties like the minimal/maximal mass and radius will be discussed. Since
the mass regions of "third family" and neutron stars partially overlap, we can find non-identical
stars with the same mass. The structure of these "neutron star twins" will be compared and we
argue that the observation of such twin stars provides a signature for phase transitions in the
interior of neutron stars. In contrast to the work of Glendenning and Kettner, we also construct
a smooth transition by a crossover and analyze the changes for mass-radius relations and the
occurrence of "third family" stars.

We will structure this thesis as follows:
In Chapter 2 we present the necessary physical and mathematical background to understand
neutron stars. First we give a short introduction about the structure of neutron stars. Then
the ordinary differential equations, the Tolman-Oppenheimer-Volkoff equations, will be derived
from general relativity. These equations describe the equilibrium solutions of the interior of
static stars. This gives us the possibility to describe observables like mass and radius in de-
pendency on the EoS and the central pressure. The used equation of state as well as their
mass-radius relations will be presented and discussed.

Chapter 3 deals with the mass-radius relations considering a first-order phase transition. At first
we summarize characteristics of first-order phase transitions and introduce the constant speed
of sound (CSS) parametrization. For a given hadronic and quark EoS, the overall EoS contain-
ing a phase transition is determined by two parameters. According to these two parameters we
can derive a generic condition for stable hybrid stars. After that we present four possible types
of mass-radius relations and visualize the regions of their occurrence in a "phase" diagram as a
function of the transition parameters. Two of the four types contain a "third family" branch. For
these two regions we will analyze the observables of the "third family" stars. Finally we compare
the structure of "neutron star twins" and discuss why their existence gives a possible hint for a
phase transition in the interior of a neutron star.

In Chapter 4 we give up the assumption of a sharp phase transition and introduce a smooth in-
terpolation between hadron and quark matter. The consequences of this new equation of state
on the mass-radius relations will be investigated. We analyze the occurrence of "third family"
stars according to the crossover region which indicates the smoothness of the EoS. Therefore
we can see how smooth an EoS can be to satisfy the necessary condition of Gerlach.

In the last Chapter we summarize the results and provide an outlook for further research.
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2 Neutron stars, general relativity and the
equation of state

In this chapter we discuss the physical background of this thesis. First of all we concentrate on
neutron stars in general. We will discuss their structure and the theoretical framework which is
necessary to compute this structure. This section is used to establish the Tolman-Oppenheimer-
Volkoff equations, which give us the possibility to describe neutron stars in dependence of the
central pressure and the equation of state. Finally we present different equations of state and
their influence on observables like mass and radius of neutron stars.

2.1 Neutron stars in general

At the end of the evolution of stars more massive than (5−8)M�, their cores undergo a gravita-
tional collapse, during which their outer pre-supernova layers, are blown away in a shockwave
[11]. A compact star called neutron star (NS) remains which is in hydrostatical equilibrium
between Fermi pressure, the repulsion between nucleons at short range and the gravitational at-
traction. These superdense objects have masses of (1−2)M� at radii about R≈ 10 km. This leads
to an average mass density ρ ≈ 7× 1014 g cm−3 = (2− 3)ρ0, where ρ0 = 2.8× 1014 g cm−3 de-
notes the nuclear density [2]. In the center the density is even larger, reaching up to 10ρ0 [9].
The perinatal temperature is very high (T > 1010 K) but drops rapidly due to neutrino emission.
A month after the collapse the temperature fell to T ≈ 108 K (kBT ≈ 10 keV) [10], which can be
considered as cold compared to the high energy densities in the interior of the star. Therefore
we will consider cold (T = 0) neutron stars in this work. For properties like mass and radius
this assumption is even justifiable in the crust [12].

2.1.1 Structure of neutron stars

Towards current theories a neutron star can be divided into 5 regions, the atmosphere, the en-
velope, the crust, the outer and inner core. These regions are shown in Figure 2.1 and differ in
thickness, mass density and internal structure. The core of NSs holds up to 99% of the mass.

The atmosphere differs in thickness from a few millimetres (in cold NSs) up to centimetres (in
hot NSs) and has wide influence on the emitted radiation. Out of the spectrum of radiation we
can get useful information about the radius or mass. The atmosphere is still not fully under-
stood. The surface can even be liquid or solid in very cold or ultramagnetized NSs [2].

The release of thermal energy to the surface is influenced by the envelope [17]. It consists of
ions and electrons and is a couple of hundred metres thick. The electrons produce the principle
part of the pressure in this region. This pressure fully ionize the atoms. Near the atmosphere
there exists a non-degenerate electron gas which becomes degenerated, nearly ideal and ultra-
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Figure 2.1: The structure of a neutron stars with the five pictured regions: the atmosphere, the
envelope, the crust and the outer/inner core [16].

relativistic in deeper layers with a density of ρ ≈ 106 g cm−3[2].

Extending to a depth of 1-2 kilometres, the crust contains especially nuclei. The nuclei
range from 56Fe at layers next to the envelope, to nuclei with A ≈ 200 at mass densities of
ρ ≈ (0.3− 0.5)ρ0 near the core-crust interface [17]. Since the electron Fermi energy increases
with rising densities ρ, the electron capture is elicited. Therefore neutron rich nuclei appear.
At a density of ρdr ≈ 4.3× 1011 g cm−3 the neutron drip is reached. This determines the point
where the binding energy of neutrons inside nuclei is zero. The neutrons start to escape the
nuclei and produce a free neutron gas [10] between the lattice ions.

The outer core is a few kilometres thick and the density ranges from 0.5ρ0 to 2ρ0. The matter
is in a npeµ composition, which means that the matter consists mainly of neutrons alongside
with small percentages of protons, electrons and muons [2]. All particles are strongly degener-
ated and their concentrations range due to the electrical neutrality [12] and the equilibrium of
β-decay (n� p++e−+νe). The neutrinos are not taken into cosideration as they will leave the
star directly [10].

Only in high-mass stars the fifth region occurs: the inner core. The densities rise up from 2ρ0
to the central density of 10ρ0 within a few kilometres. There are different theories and models
about the matter configuration in this region like hyperonizaton, pion or kaon condensation and
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a phase transition to a deconfined phase of quark matter. In this thesis we will focus on the last
hypothesis. Stars in which the hadrons are converted to quark matter due to high pressure are
called hybrid stars [12, 2].

2.2 General relativity

Einstein’s theory of gravitation and spacetime, general relativity (GR), was published and intro-
duced in three papers in 1915 [18, 19, 20]. This theory is the foundation of our understanding
of dense objects like neutron stars. These objects could also be described in Newton’s theory of
gravity, but they would have very different characteristics. Goal of this section is a derivation
of the Tolman-Oppenheimer-Volkoff (TOV) equations which describe the structure of relativistic
stars. A deeper understanding and further information about GR can be obtained by [21]. In
this thesis we will use the same notations and statements to derive the TOV equations as used
in [21]. The metric signature of [21] (+,-,-,-) and the Einstein notation is used. We sum over
contracted indices [22].

2.2.1 Fundamental principles, mathematics and expressions

General relativity is based on three essential principles:

Out of the special relativity (SR) we can deduce a generalized principle of relativity. This
means that not only in every inertial reference system (IS) the physical laws are valid in the
same way but also in accelerated frames of reference.
A further physical base for the GR is the equivalence principle. In conclusion this principle
deals with the equivalence between gravitational and inertial forces. Therefore gravitational
and inertial mass must be the same. Einstein generalized this principle in the way that in all
sufficiently small free falling reference frames (local IS) everything behaves as if there is no
gravitational force at all.
Based on the equivalence principle we can define the principle of covariance. With this princi-
ple we can derive physical laws containing gravitational effects out of general laws of the special
relativity. The valid equations in a gravitational field must satisfy the following conditions: The
equations are covariant under general transformation of coordinates and valid for a local iner-
tial system (all laws are equal to the ones of special relativity if the metric tensor is equal to the
Minkowski tensor).

General relativity is defined on a four dimensional Riemannian manifold. Coordinates in this
non-Euclidian space are denoted by xµ = (x0, x1, x2, x3). ξα denotes a flat tangential space
wherein the laws of SR hold. The indices µ,ν,λ, .. describe coordinates of the Riemannian space,
α,β ,γ, ... coordinates of the Minkowski space. For every point in the Riemannian manifold exists
a coordinate transformation xµ = xµ(ξ) and it holds the connection between Lorentz vector dξα

and Riemann vector dxµ

dxµ =
∂ xµ

∂ ξα
dξα . (2.1)

2.2 General relativity 7



Therefore we can rewrite the invariant line element ds2 in the following way

ds2 = ηαβdξαdξβ = gµν(x)dxµdxν, with gµν(x) = ηαβ
∂ ξα

∂ xµ
∂ ξβ

∂ xν
. (2.2)

In contrast to the Minkowski tensor ηαβ in SR, the metric tensor gµν of GR depends on the
four dimensional space-time. Analogously to Equation (2.2), we can define a Riemann vector
Aµ ≡ ∂ xµ/∂ ξαAα by the Lorentz vector Aα. The metric tensor can be used to transform any
contravariant Riemann vector to its covariant counterpart and vice versa

Aµ = gµνA
ν , Aµ = gµνAν , (2.3)

where gµν is the inverse of the metric tensor gµν.
In the following we will concentrate on the equation of motion. A force-free mass point in a
local inertial system will move according to the following equation

d2ξα

dτ2
= c2 d2ξα

ds2
= 0 , (2.4)

with the proper time τ and velocity of light in vacuum c. According to the thoughts above
(Equation (2.3)), we can rewrite the equation of motion in a way that it describes particles in
gravitational fields

0=
d

dτ

�

∂ ξα

∂ xµ
dxµ

dτ

�

=
d2xκ

dτ2
− Γ κµν

dxµ

dτ
dxν

dτ
. (2.5)

In Equation (2.5) we use the identity ∂ ξα

∂ xµ
∂ xκ
∂ ξα = δ

κ
µ and introduce the Christoffel symbol Γ κµν.

The path of a particle described by Equation (2.5) is called geodetic line and is a straight line in
case of the Minkowski metric. Expressing the Christoffel symbol by the metric tensor, we obtain

Γ κλµ =
gκν

2

�

∂ gµν
∂ xλ

+
∂ gλν
∂ xµ

−
∂ gµλ
∂ xν

�

. (2.6)

Now we are introducing the following compact notations for the covariant derivatives of a
covariant and contravariant tensor

Aµ||ν ≡ Aµ|ν + Γ
µ

νλ
Aλ ,

Aµ||ν ≡ Aµ|ν + Γ
λ
µνAλ ,

with the partial derivatives
Aµ|ν ≡

∂ Aµ

∂ xν
.

Aµ|ν ≡
∂ Aµ
∂ xν

.
(2.7)

Since the metric coefficients gµν(x) describe a curved space, we will analyze this curvature
quantitatively by the Riemann curvature tensor Rκνµλ, which can be derived from the equa-
tions above. If the curvature tensor vanishes, the space will be flat. From this tensor we can
obtain the Ricci tensor Rµλ and the scalar curvature R by contraction

Rκνµλ =
1
2

�

∂ 2gκν
∂ xµ∂ xλ

+
∂ 2gµλ
∂ xκ∂ xν

−
∂ 2gµν
∂ xκ∂ xλ

−
∂ 2gκλ
∂ xµ∂ xν

�

+ gζσ(Γ
ζ
νκΓ

σ
µλ − Γ

ζ

λκ
Γσµν) , (2.8)

Rµλ =gνκRνµκλ , (2.9)

R=gµνRµν . (2.10)
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Because of symmetry properties, the Riemann curvature tensor has 20 independent components.
Using the definition of the curvature tensor one can derive a fundamental property of it, the
second Bianchi identity [21]

Rµνλκ||σ +Rµνκσ||λ +Rµνσλ||κ = 0 . (2.11)

The Einstein field equations connect the space time curvature with the energy and momen-
tum in this space time. The energy and momentum in space time is described by the energy-
momentum-tensor Tµν. For an ideal fluid it has the following form

Tµν =
�

ε+
P
c2

�

uµuν − gµνP , (2.12)

with the energy density ε, the pressure P and the fluid four-velocity uµ = dxµ/dτ. Since in a
local IS there are no gravitational fields, the Einstein field equations can not be derived from
the principle of covariance. Therefore we have to determine the equations by preferably easy
assumptions, like those that they are covariant and contain the Newtonian limit. Rewriting
the second Bianchi identity, we can define the Einstein tensor Gµν and derive the Einstein field
equations [21]

Gµν||ν :=
�

Rµν −
R
2

gµν

�

||ν
= 0 , (2.13)

Rµν −
R
2

gµν = −
8πG
c4

Tµν ⇔ Rµν = −
8πG
c4

�

Tµν −
T
2

gµν

�

, (2.14)

where G denotes the gravitational constant and T the trace of Tµν. Since Rµν, gµν and Tµν are
symmetric, the Einstein field equations contain ten independent components. By using the two
equations (2.13) and (2.14) above, we get a form of energy conservation Tµν||ν = 0.

2.2.2 Metric in static isotropic spacetime

Since the field equations are not linear, there is no standard method to solve them. For an exact
analytic solution we have to make simplifying assumptions. In this section we will assume an
isotropic and static spacetime. For this we will use a standard form and calculate the components
of the Ricci tensor. When the distance r from the observed object goes to infinity, the metric
must behave like the Minkowski metric. r, θ and φ denote spherical coordinates and t the time
coordinate. The line element of static isotropic space time may be expressed as

ds2 = gµνdxµdxν = B(r)c2dt2 −A(r)dr2 − r2(dθ 2 + sin2 θdφ2) . (2.15)

To satisfy the limit of the Minkowski metric for r→∞, A(r) and B(r) must fulfill

lim
r→∞

A(r) = 1, lim
r→∞

B(r) = 1 . (2.16)

The line element (2.15) has a corresponding metric

gµν = diag(B(r),−A(r),−r2,−r2 sin2 θ ) . (2.17)
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With this metric we obtain the Ricci tensor with the following components1

R00 = −
B′′

2A
+

B′

4A

�

A′

A
+

B′

B

�

−
B′

rA
, R33 = R22 sin2 θ ,

R11 =
B′′

2B
−

B′

4B

�

A′

A
+

B′

B

�

−
A′

rA
, Rµν = 0 for µ 6= ν,

R22 = − 1−
r

2A

�

A′

A
−

B′

B

�

+
1
A

.

(2.18)

2.2.3 The Tolman-Oppenheimer-Volkoff equations

The Tolman-Oppenheimer-Volkoff (TOV) equations are the solutions of the Einstein field equa-
tions inside a spherical, static star containing an ideal fluid. For a static problem (ui(x) = 0 for
i = 1, 2,3) holds

c2 = gµνu
µuν = g00(u

0)2 ⇔ u0 =
c
p

B
and u0 = c

p
B . (2.19)

Hence we can rewrite the general energy momentum tensor (2.12)

Tµν = diag(εc2B, PA, Pr2, Pr2 sin2 θ ) . (2.20)

With the inverse of the metric tensor gµν we can compute the trace of the energy momentum
tensor: T = gµν Tµν = εc2 − 3P. With the results above and the Einstein field equations we can
relate the components of the Ricci tensor to our source terms

R00 = −
4πG
c4
(εc2 + 3P)B, R11 = −

4πG
c4
(εc2 − P)A, R22 = −

4πG
c4
(εc2 − P) r2 . (2.21)

From this we get

R00

2B
+

R11

2A
+

R22

r2
= −

A′

rA2 −
1
r
+

1
r2A
= −

8πG
c2
ε ⇔

d
dr

r
A(r)

= 1−
8πG
c2
ε r2 . (2.22)

If we integrate Equation (2.22) from the centre of the star r = 0 to the radius r with the
additional condition (r/A)|r=0 = 0 (A must be finite at r = 0 because of a continuous mass
distribution) we obtain

A(r) =
�

1−
2GM
c2r

�−1

, with M(r) = 4π

∫ r

0

dr′r′2ε(r′) . (2.23)

Here, M(RNS) denotes the mass of the star with radius RNS. We will now use a property of the
Einstein field equations Tµν||ν = 0. Thus with µ = 1 and the energy momentum tensor Tµν of
Equation (2.20) it yields

T1ν
||ν =

B′

2A

�

ε+
P
c2

�

c2

B
+

P′

A
= 0 . (2.24)

1 For clarity we use the following abbreviations: X= X(r), X′ = dX/dr and X′′ = d2X/dr2 for X= A, B.
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Applying (2.24), (2.22) and (2.23) to (2.21), we obtain the Tolman-Oppenheimer-Volkoff equa-
tion

dP(r)
dr

= −
G M(r)ε(r)

r2

�

1+
P

ε(r) c2

�

�

1+
4π r3 P
M(r) c2

�

�

1−
2 G M(r)

c2 r

�−1

. (2.25)

This equation was first found by Oppenheimer, Tolman and Volkoff [23, 24] in 1939 and de-
scribes the relativistic equilibrium between pressure and gravity for a spherical and static star.
In the Newtonian limit (c→∞) we get the equation of the Newtonian hydrostatic equilibrium

dP(r)
dr

= −
GM(r)ε(r)

r2 c2
= −

G M(r)ρ(r)
r2

, (2.26)

with the non relativistic mass density ρ.

2.3 Solving the Tolman-Oppenheimer-Volkoff equations

In Section 2.2 we derived the TOV equation and the ordinary differential equation for the mass
M

dP(r)
dr

= −
G M(r)ε(r)

r2

�

1+
P

ε(r) c2

�

�

1+
4π r3 P
M(r) c2

�

�

1−
2 GM(r)

c2 r

�−1

(2.27)

dM(r)
dr

= 4π r2 ε(P) . (2.28)

To solve these equations and get the pressure P(r) and the mass M(r) as a function of the radius
r, we have to integrate them from the centre of the neutron star to the distance r. As initial
conditions for the integration, we can use that the radius and mass vanish at the centre and the
pressure reaches its maximum Pc := P(r= 0). To obtain the overall mass MNS and radius RNS we
have to integrate to the surface of the star. With increasing r the pressure will decrease until the
surface is reached where the pressure is zero P(RNS) = 0. This leads to the definition of RNS and
MNS. Figure 2.2 shows the pressure as a function of the radius r. The domain of the integration
is not known exactly, which presents a challenge during numerical integration to find the exact
radius RNS with P(RNS) = 0. This produces large uncertainties for RNS.
To get a consistent domain for all calculations, we rewrite Equation (2.27) and (2.28) by defin-

ing y(P) := r2 and use the chain rule dM(P)
dP = dM(r)

dr

�dP(r)
dr

�−1

dy(P)
dP

= −
2 y(P) c2

G

(
p

y(P)− 2 GM(P)/c2)

(c2 ε(P) + P)(M(P)+ 4πy3/2 P
c2 )

(2.29)

dM(P)
dP

= −
4πy2 ε(P)

G

(py− 2M(P)G
c2 )

(ε(P) c2 + P)(M(P)+ 4πy3/2 P
c2 )

. (2.30)

Equations (2.29) and (2.30) will be integrated over P from the centre Pc to the surface Ps = 0.

2.3 Solving the Tolman-Oppenheimer-Volkoff equations 11
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Figure 2.2: The solutions of the pressure P(r) (a) and the squared radius y(P) (b) of the TOV
equation for an ideal neutron gas with Pc = 40MeV fm−3.

2.3.1 Geometrized units

For simplification and clarity it is convenient to use a geometrized unit system with c = G = 1,
in which we can express the units of all dimensionful quantities in powers of kilometres. For
this purpose it holds

[ε]GU =[ε] ·
G
c4
= 1

MeV

fm3

G
c4 ≈ 1.323× 10−6 km−2

[P]GU =[P]SI ·
G
c4
= 1

kg
s2 m

G
c4
≈ 8.2606× 10−39 km−2

[ρ]GU =[ρ]SI ·
G
c2
= 1

kg

m3

G

c2 ≈ 7.424× 10−22 km−2

[M�]GU =[M�]SI ·
G
c2
≈ 1.989× 1030 kg

G

c2 ≈ 1.476 km .

Hence by defining the pressure P, energy density ε and mass M in units of kilometres

P≡
PG
c4

, ε≡
εG
c2

, M≡
MG
c2

, (2.31)

we can rewrite the TOV equations (2.29) and (2.30) in geometrized units and obtain2

dy

dP
=

−2 y (py− 2M)

(ε+ P) (M+ 4πy3/2 P)
(2.32)

dM

dP
=
−4πεy3/2(py− 2M)

(ε+ P) (M+ 4πy3/2 P)
. (2.33)

2 For clarity we use the following abbreviations: y=y(P), M=M(P), ε= ε(P).
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This system of ordinary differential equations can be solved by integrating over P with the two
required initial values

y(P= Pc) = 0 and M(P= Pc) = 0 , with P(y= 0) := Pc (2.34)

and the equation of state ε = ε(P) as a further input. According to that, the radius and mass of
the neutron star can be easily extracted by using the following equations:

RNS =
q

y(P= 0), MNS = M(P= 0) . (2.35)

For a preferably good numerical integration, a small explicit step size and caution at the surface
are necessary. Since the TOV equations have a singularity in y = 0, we use a leading order
series expansion (M(y)= 4π/3εy3/2 with y≈ 0) as the first step. It can be said that the solution
of the TOV equations only depends on the central pressure Pc and the equation of state ε(P).
Modifying Pc will lead to different tuples (RNS, MNS) which can be visualized in the M,R - plane.
The resulting graph is called mass-radius (MR) curve in which every point represents a single
neutron star with a different central pressure. These mass-radius curves are unique for every
single equation of state.
In this thesis the described method for solving the TOV equations is realized in the programming
language Python. To solve the system of ordinary differential equations a built-in feature using
lsoda is used.

2.4 Equation of state

An equation of state puts the various thermodynamic quantities in relation. Within the scope
of this thesis, we are mainly interested in the relation between the pressure P and the energy
density ε, since they are needed as input parameters of the TOV equations. The EoS depends on
the interactions between the particles and the temperature. Since it is not possible to reproduce
cold matter at high densities well beyond ρ0 in laboratory (particle accelerators), we have no
way to experimentally examine matter at these densities. The uncertainties of the EoS increase
enormously in this region [25]. Therefore there exist a lot of different theories trying to de-
scribe matter at these densities. Some of them will be discussed in Section 2.4.2. One way to
distinguish equations of state is comparing the compressibility. We differ between soft, moder-
ate and stiff EoSs. For a given energy density, stiff EoSs reach higher pressures than softer ones.
Moreover a stiff EoS provides larger masses MNS. In this work we will divide the EoS in three
parts (see Figure 2.3) with respect to the baryon density n, where n0 describes the saturation
density:

I. Low-density EoS up to 0.05n0

II. Hadronic EoS from 0.05n0 to the phase transition to quark-matter

III. Quark EoS for all particle densities above the phase transition

In this thesis we assume, that the phase transition from hadronic to quark matter occurs at
densities between (1− 7)n0.

2.4 Equation of state 13
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Figure 2.3: Subdivision of the equation of state in a low-density EoS (I), a hadronic EoS (II) and
a quark EoS (III). In this figure we us for the low-density EoS the BPS EoS, for the hadronic EoS
the BHF(N,l) EoS and for the quark EoS a CSS EoS (see Section 2.4.2). The phase transition to the
deconfined phase occurs at n= 4.82 n0.

2.4.1 Necessary conditions for the equation of state

With reference to the paper of Rhoades and Ruffini [26], we will summarize some necessary
conditions for the EoS:

• Perturbations from the equilibrium must not destabilize the matter (principle of Le Chate-
lier). This generally means that the EoS is an increasing function with respect to the energy
density

dP
dε
≥ 0 . (2.36)

The equality of equation (2.36) is only allowed in case of a first-order phase transition.

• The EoS must satisfy the principle of causality. This means that the velocity of sound vs is
below the speed of light c

vs

c
=

√

√dP
dε
≤ 1 . (2.37)

• The EoS must fulfill the thermodynamical constraints, particularly the relation of Gibbs-
Duhem (for T = 0): Ndµ = VdP with the Volume V, the Number of particles N and the
chemical potential µ. Furthermore the pressure as a function of µ must be continuous
everywhere [5].
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With these assumptions we can find Mmax = 3.14 M� as maximal mass of a causal neutron star
[12]. If we neglect the principle of causality, the EoS could be much stiffer and the maximal
mass would be around 5M� [27].

2.4.2 Used equations of state

In this thesis we will use the following EoSs, which in combination fulfill the conditions of
Section 2.4.1. We will only give a short overview of the key properties for the used EoSs since
their details go far beyond the level of this work. For further information the used sources are
recommended.

Low density EoS

For subnuclear densities in the crust, we choose the EoS of Baym-Pethick-Sutherland [28].
This EoS describes charge-neutral hadronic matter in its ground state. Since iron has the
highest binding energy per nucleon, it is the endpoint of nuclear burning and the ground
state of matter for low pressure [12]. Therefore at zero pressure the energy density is
ε(P= 0)BPS = εFe = 4.41× 10−12 MeV fm−3. In contrast to Section 2.1.1, the surface of the
neutron star described by the BPS EoS consists of iron without any atmosphere. The BPS equa-
tion of state is tabulated in [12].

Hadron matter EoS
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Figure 2.4: The used EoSs BHF(N,l) (orange
line) and χSU(3) (green line) in compari-
son to the ideal neutron gas (blue line).

In this work we will use two different hadronic
EoSs. The first one is the BHF(N,l) equa-
tion of state, which was derived from the non-
relativistic Brueckner-Bethe-Goldstone many-body
theory using the Brueckner-Hartree-Fock approxi-
mation [29]. It is a microscopic EoS which includes
nucleons and non-interacting leptons. The second
EoS bases on a non-linear chiral SU(3) symmetry
and contains hyperons [30, 31, 32]. Analogously
to [33] we denote this EoS χSU(3). Both EoSs are
interpolated to match continuously to the BPS EoS
at low densities. In Figure 2.4 the two EoSs are
compared to the ideal neutron gas3. The BHF(N,l)
EoS is stiffer, the χSU(3) is softer. The free neu-
tron gas is an excessively soft equation of state, as
the repulsive forces at small distances between the
particles are not considered.

3 The derivation of this EoS can be inferred by [12, 34]. For this EoS we do not use the BPS EoS.
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Quark matter EoS

For the quark matter we use constant speed of sound (CSS) EoSs. They base on the following
assumption

c2
QM :=

�vs

c

�2
=

dP
dε
= const. , for all ε . (2.38)

As mentioned in Section 2.4.1, c2
QM is bounded through 0 and 1. In this thesis we will use two

different sound velocities for the quark matter EoS. The first value is the causal limit c2
QM = 1.

For the second value we will use c2
QM = 1/3. At high densities a principle characteristic of QCD

appears, the asymptotic freedom. The coupling of the quarks becomes less with increasing den-
sities. Quarks and gluons behave like a relativistic gas with the EoS P= ε/3 [25].

To prove the justification of the usage of CSS EoS, we will now analyze the sound velocity of a
few deconfined quark matter EoSs using the (2+1)-flavor Nambu-Jona-Lasinio (NJL) model.
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(a) The quark matter EoSs.
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Figure 2.5: The quark matter EoSs HK, HK + CS, RHK, RHK + CS in (a) and their sound velocity
c2

QM in (b).

The Nambu-Jona-Lasinio (NJL) model refers to the work of Nambu and Jona-Lasinio [35, 36].
According to [33], the NJL model describes cold, strongly interacting quark matter containing
up, down and strange quarks. The EoSs introduced in [33] are shown in Figure 2.5(a), based on
two different sets of NJL parameter (RKH) and (HK) and can be extended to describe color su-
perconductivity (CS) [33]. For low densities the two-flavor color superconductivity (2SC) phase
dominates and for high densities the color-flavor locked (CFL) condensate. A phase transition
of first-order occurs between the two phases.

16 2 Neutron stars, general relativity and the equation of state



The sound velocities of the four NJL EoSs are shown in Figure 2.5(b). The vibrations of the
curves result from the interpolation of the quark matter EoS of finite points. Due to the phase
transition from 2SC to CFL, the EoSs and sound velocities with CS show discontinuities. For
pressures up to 300MeV/fm3 (n ≈ 5 n0) the sound velocities vary about 0.15. For higher den-
sities, c2

QM is nearly independent of the pressure and converges to c2
QM ≈ 0.3 (without CS)

respectively c2
QM ≈ 0.4 (with CS). For this reason the CSS EoS is at least justifiable for high

densities n¦ 5 n0.

2.5 Mass-radius curves

A mass-radius curve is defined as the tuple (MNS(Pc), RNS(Pc)) as a function of the central pres-
sure Pc. The mass and radius of a neutron star is calculated as explained in Section 2.3. In the
following we will establish whether a neutron star with the parametres (MNS(Pc), RNS(Pc), Pc)
is stable or not. Afterwards we will show some mass-radius curves and analyze their validity.

2.5.1 Conditions for stable neutron stars

Figure 2.6: Schematic of a TOV
solution with increasing and de-
creasing mass as a function of εc
[12].

There are necessary and sufficient conditions for stability
[12]:

A neutron star is held together by the equilibrium of the grav-
itational force and force caused by the pressure depending
on the EoS. Referring to Figure 2.6 we suppose an equilib-
rium solution S of the TOV equations. Due to a perturba-
tion the central energy density εc is increased. The star is
therefore compressed C and the equilibrium star with the in-
creased energy density would belong to C∗. Since the Star
C has an deficit in mass against the equilibrium solution S,
the gravity force is less than the pressure force. Therefore
the gravitational force will act to return it to S. Similarly, we
can argue that a perturbed star with a lower central density
will act to return to S by the force acting on the matter. By a
similar argument of the star U in the decreasing curve of M,
we can say that, if either the star is compressed or decom-
pressed, the force acting on the matter will drive it further
from U. In conclusion we can say that a neutron star is stable as long as the mass is an increasing
function of the central energy density εc. Hence the necessary condition for stability is

dM
dεc
≥ 0 ⇔

dM
dPc
≥ 0 ⇔

dM
dnc
≥ 0 . (2.39)

Beside the hydrostatic stability described by Equation (2.39), the star must be dynamically
stable. A sufficient condition for stabilty is that the neutron star is stable against normal
radial modes of vibration (acoustical modes) [1]. We will concretize this in Section 2.5.2 by
outlining consequences on the mass-radius curves.
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2.5.2 Examples of mass-radius curves

In general we can say that for neutron stars with low masses, the radii are larger than for stars
with large masses. In a star with a low mass the central pressure is comparatively low and the
gravitational force reaches the equilibrium configuration at large radii. Analogously for massive
stars the central pressure is high and the gravitational force will shift the state of equilibrium
to small radii. We will now discuss the mass-radius curves of three different EoSs pictured in
Figure 2.7. The corresponding mass central pressure (MPc) curve is shown in Figure 2.8. In
both figures the masses of the neutron stars PSR B1913+16 (M = 1.44 M� [37]) (also called
Hulse-Taylor pulsar) and PSR J1614-2230 (M= (1.97± 0.04) M� [3]) are shown.
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Figure 2.7: Mass-radius curves of the ideal neutron gas, the BHF(N,l) EoS and the χSU(3) EoS
in comparison to the mass of the neutron stars PSR B1913+16 and PSR J1614-2230 with their
uncertainties. The stable equilibrium configurations are characterized by a continuous line, the
unstable by a dashed line. The point of the maximal stable mass is marked as a dot. Following
the curves from large radii to low radii, the central pressure increase.

The blue graph indicates the MR curve of the free neutron gas. The maximal stable mass of this
EoS is M = 0.72 M� at a radius of R = 9.32km. The ideal neutron gas does neither accommo-
date the Hulse-Taylor pulsar nor fit to the average neutron star mass MNS = (1.350± 0.004)M�
deduced from the observation of radio pulsar systems by Thorsett and Chakrabarty [38]. There-
fore the free neutron gas fails for being a realistic EoS of a neutron star.

We will now come to more realistic EoS which can reproduce the Hulse-Taylor pulsar or even
more massive neutron stars like the PSR J1614-2230. The BHF(N,l) equation of state is pre-
sented by the orange and the χSU(3) EoS by the green graph in Figure 2.7. The main properties
of these equations of state and of the corresponding neutron stars are summarized in Table 2.1.
The two EoSs (Figure 2.4) themselves already indicate that the BHF EoS is the stiffer one. This
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fact also occurs in the MR curves since the BHF EoS can describe higher masses.

100 101 102 103 104 105 106

Pc in MeV/fm3

0.0

0.5

1.0

1.5

2.0

M
in

M
�

PSR B1913+16

PSR J1614-2230

Ideal neutron gas
BHF(N,l)
χSU(3)

Figure 2.8: Mass central pressure curves of the ideal neutron gas, the BHF(N,l) EoS and the
χSU(3) EoS in comparison to the mass of the neutron stars PSR B1913+16 and PSR J1614-2230
with their uncertainties. The stable equilibrium configurations are characterized by a continuous
line, the unstable by a dashed line. The point of the maximal stable mass is marked as a dot.

Property BHF(N,l) χSU(3)

Saturation baryon density n0 0.176 fm−3 0.15 fm−3

Binding energy per baryon E/A −16.01 MeV −16.00 MeV

Incompressibility K 281MeV 276MeV

Maximum mass Mmax of star 2.07 M� 1.88 M�

Radius Rmax of the heaviest star 10.63km 11.41 km

Central baryon density nc of the heaviest star 6.57 n0 5.96n0

Central pressure pc of the heaviest star 604.42MeV fm−3 318.71 MeV fm−3

Central energy density εc of the heaviest star 1427.05 MeV fm−3 1228.45MeV fm−3

Radius rHTp of the Hulse-Taylor pulsar 12.14km 12.88 km

Table 2.1: The principle properties of the BHF(N,l) and χSU(3) EoS [29, 30, 31, 32] and the
corresponding NS. χSU(3) is softer, BHF(N,l) is stiffer.
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By analyzing the MPc curves of Figure 2.8, we determine that for increasing Pc at very high
central pressures, the masses increase as well. Although the necessary condition for a stable
star configuration (Equation (2.39)) is fullfilled, neutron stars with these high central pressures
are unstable. In this context we will now present the details of the sufficient condition of stable
neutron stars according to [1]. In Figure 2.9 the stable and unstable mass-radius relations of
compact stars are shown. At every critical point (dM/dPc = 0, denoted by A, B, ..., I) a vibra-
tional mode changes its stability. If at a critical point dR/dPc < 0 holds, the lowest even mode
will be changed. If in contrast dR/dPc > 0 holds, the lowest odd mode will be changed [1].
A star can only be considered as stable against radial perturbations if all vibrational modes are
stable. Therefore mass-radius relations with a curvature comparable to the curve B-C-H-I (see
Figure 2.7) are unstable after reaching point C, although the necessary stability condition (2.39)
is satisfied after point H. To obtain another stable sequence of compact stars at lower radii, the
MR relation must show a behavior like the curve B-C-D-E. In the next chapter we will see that a
phase transition to deconfined matter can lead to this curvature.

Figure 2.9: Schematic of possible mass-radius relations for compact stars taken from [1]. Stable
star configurations are indicated by black solid lines, unstable TOV solutions by red dotted lines.
The points A, B, ..., I refer to the critical turning points. The stability of the lowest three vibra-
tional modes are specified for every part of the MR curve between two critical points. All higher
vibrational modes are stable.
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3 "Third family" stars induced by a
first-order phase transition

In this chapter we analyze the mass-radius curves and the occurrence of "third family" stars, due
to a phase transition of first-order from hadron matter to a deconfined quark matter. First of all
we discuss this phase transition at constant pressure and parametrize it. For certain transition
parameters the star destabilizes immediately after the phase transition. We derive a criterion
which specifies the values of the parameters for this case. Varying the transition parameters
of the phase transition leads in general to four different kinds of MR curves: A, B, C and D.
The occurrence of regions A, B, C and D can be displayed in dependency on the transition
parameters. We denote this the "phase" diagram. Two of the four MR cases contain "third
family" stars. For these regions we investigate the observables of "third family" stars like mass
or radius. Finally we analyze "neutron star twins" and carve out different characteristics.

3.1 The parameterization of the equation of state

As described in Section 2.4.2 we will use an equation of state, consisting of the BPS EoS for
the crust, a hadronic EoS (BHF(N,l) or χSU(3)) and the CSS EoS for the quark matter. Before
we can parameterize the phase transition from hadron to quark matter, we have to analyze the
first-order phase transition. Afterwards we will derive more details about the CSS EoS as a
function of the parameterization.

3.1.1 first-order phase transition

In this thesis we assume a sharp interface between the two phases. The Maxwell construction
is used, which means that the first-order phase transition occurs at a specific pressure. At this
transition point the System is arranged to be in a chemical, thermal and mechanical equilibrium.
According to Gibbs the chemical potentials, the temperatures and the pressures are equal at the
transition point [12]

µHM = µQM , THM = TQM , PHM = PQM , (3.1)

where the index HM and QM denote the hadron and quark phases. Due to Equation (3.1) the
phase change is called constant pressure phase transition. In general the energy and baryon
densities ε and n do not have to be continuous at the transition pressure [12].

3.1.2 The CSS parametrization

With reference to Figure 3.1, we parametrize the hybrid equation of state εCSS containing a
first-order phase transition as follows:
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Figure 3.1: Hybrid EoS containing a first-order
phase transition from hadron matter (blue) to
quark matter (red) defined by the transition pres-
sure Ppt and the energy discontinuity∆ε.

The constant pressure phase transition oc-
curs at the pressure Ppt. For P≤ Ppt,
εCSS conforms with the hadron EoS εHM(P).
For P > Ppt, the hybrid EoS εCSS is
equal to a quark matter CSS EoS εQM(P)
with dP/dεQM = c2

QM. Between the
two energy densities εpt := εHM(Ppt) and
ε0, QM := εQM(Ppt), there is an energy den-
sity discontinuity ∆ε= ε0, QM − εpt. To
achieve these properties, we define the
equation of state as follows:

εCSS(P) =







εHM(P) , P< Ppt

P− Ppt

c2
QM

+ εpt +∆ε , P> Ppt

(3.2)

c2
QM denotes the sound velocity defined in Equation (2.38). If the hadron matter EoS and the

sound velocity c2
QM for the quark matter EoS are known, the equation of state is determined by

the two parameters Ppt and ∆ε.

3.1.3 Chemical potential and particle density of the CSS EoS

For the following calculations we need the dependency on the chemical potential µ and par-
ticle density n on the pressure P of the CSS parametrization. For the derivation we use some
fundamental thermodynamical definitions and relations assuming cold stars (T = 0) [34]:

Gibbs-Duhem-relation: Ndµ= VdP (3.3)

Particle density: n=
N
V
=

dP
dµ

(3.4)

Pressure: P= −
∂ E
∂ V

�

�

�

�

n
(3.5)

Chemical potential: µ=
∂ E
∂N

�

�

�

�

V
=
∂ ε

∂ n

�

�

�

�

V
(3.6)

We can rewrite the pressure P= P(ε)

P= −
∂ (ε/n)
∂ (1/n)

= n2 ∂

∂ n

�ε

n

�

= nµ− ε ⇔
dP
dµ
=

P + ε(P)
µ

. (3.7)

From the differential equation (3.7), we obtain P(µ) by using ε(P) = (P− Ppt)/c2
QM + εpt +∆ε

and the abbreviations D= −Ppt/c
2
QM + εpt +∆ε and F= (1+ c2

QM)/c
2
QM

P(µ) = −
D
F
+µF C . (3.8)
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The constant of integration C is fixed by the condition P(µpt) = Ppt. Since µpt = (Ppt + εpt)/npt
and Equation (3.1) holds for a first-order phase transition, we obtain

P(µ) = −
D
F
+
�

Ppt +
D
F

�

�

µ

µpt

�F

⇔ µCSS(P) = µpt

�

PF+D
PptF+D

�1/F

. (3.9)

Now we can compute the particle density nCSS(P) from Equation (3.4)

nCSS(P) =
�

dµ(P)
dP

�−1

=
PptF+D

µpt

�

PF+D
PptF+D

�1/(Fc2
QM)

. (3.10)

As we can see in Figure 3.2, the pressure and the chemical potential is continuous at the phase
transition as expected from Equation (3.1). The energy and particle density are not continuous.

εpt ε0, QM ε

Ppt

P

µpt µ npt n0, QM n

Figure 3.2: Schematic of the pressure P as a function of the energy density ε, the chemical po-
tential µ and the particle density n in case of a first-order phase transition from a hadronic phase
(blue) to the CSS quark phase (red).

3.2 Generic conditions for stable hybrid stars

Based on the work of Seidov in 1970 [39], we derive a criterion for stable hybrid stars with a
vanishingly small quark core induced by a first-order phase change. A more detailed derivation
is shown in [40, 41]. In the following we use the Tolman-Oppenheimer-Volkoff equations with
respect to r in geometrized units

dP
dr
= −
(P+ ε)(M+ 4πr3P)

r(r− 2M)
,

dM
dr
= 4πr2ε . (3.11)

We assume a phase transition as defined in Equation (3.2) and denote all quantities of the star
as before. For Pc > Ppt there exists a core with radius rN consisting of a quark matter phase.
Assuming Pc − Ppt = δ� Ppt and rN � RNS, we define P+(r) as the solution for this case. In
contrast, P−(r) denotes the boundary solution for a homogeneous star with Pc = Ppt. In a small
neighborhood of the centre of a homogeneous star, we can approximate the solution P−(r).
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Using P(r) = Ppt, ε(Ppt) = εpt and M= 4π/3r3εpt we rewrite (3.11) and expand it to the leading
order

dP−
dr
=−

4π
3

(Ppt + εpt)(3Ppt + εpt)

(1
r −

8π
3 rεpt)

(3.12)

≈
dP−
dr

�

�

�

�

r=0
+

d2P−
dr2

�

�

�

�

r=0
· r = −

4π
3

r (Ppt + εpt)(3Ppt + εpt) . (3.13)

Integrating Equation (3.13) from r′ = 0 to r we obtain

P−(r) = Ppt −δ−(r) , with δ−(r) =
2π
3
(Ppt + εpt)(3Ppt + εpt)r

2 . (3.14)

Analogously for the derivative of P+(r) at radius r = rN with P+(rN) = Ppt, ε(Ppt) = εpt and
M= 4π/3r3ε0, QM yields

dP+
dr

�

�

�

�

r=rN

= −
4π
3

rN (Ppt + εpt)(3Ppt + ε0, QM) . (3.15)

Doing the same expansion and integration for P+(r) on the quark matter side, we obtain

P+(r) = Pc −δ+(r) , with δ+(r) =
2π
3
(Ppt + ε0, QM)(3Ppt + ε0, QM)r

2 . (3.16)

Using P+(rN) = Ppt we finally get the dependence of δ on rN

δ = Pc − Ppt =
2π
3
(Ppt + ε0, QM)(3Ppt + ε0, QM)r

2
N . (3.17)

To express the solution P+(r) by a known solution P−(r), we apply perturbation theory with the
perturbation function Π(r)

P+(r) = P−(r) +Π(r) . (3.18)

Substituting P+(r) = P−(r) + Π(r) in Equation (3.11), assuming small r and neglecting terms
proportional to Π2 and ΠdΠ/dr, it can be shown [42] that the perturbation function has the
form: Π(r) = G+H/r.
Therefore we can estimate the approximation of P+(r) and its derivative at the radius rN

Ppt = Ppt −δ−(rN) +G+
H
rN

dP+
dr

�

�

�

�

r=rN

= −
dδ−
dr

�

�

�

�

r=rN

−
H
r2
N















⇒ G= δ−(rN) + rN

�

dP+
dr

�

�

�

�

r=rN

+
dδ−
dr

�

�

�

�

r=rN

�

. (3.19)

Using Equations (3.14), (3.15) and (3.17) we obtain

G=
(2+

Ppt
εpt
)(3

Ppt
εpt
+ 1− 2∆εεpt

)

(∆εεpt
− 1+

Ppt
εpt
)(∆εεpt

− 1+ 3
Ppt
εpt
)
δ . (3.20)
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For radii r� rN, the perturbation function approaches Π(r) ≈ G. Consequently P+(r) conforms
with the solution P−(r) of a homogeneous star with no phase transition and a central pressure
value Pc = Ppt + F. Hence we obtain the following relation for the left and right derivatives of
the neutron star mass with respect to the central pressure at the point Pc = Ppt

dMNS,+

dPc
=

(2+
Ppt
εpt
)(3

Ppt
εpt
+ 1− 2∆εεpt

)

(∆εεpt
− 1+

Ppt
εpt
)(∆εεpt

− 1+ 3
Ppt
εpt
)

dMNS,-

dPc
. (3.21)

If we assume a stable neutron star consisting of pure hadronic matter (dMNS,-/dPc > 0), then
its counterpart with a vanishingly small quark matter core is only stable (dMNS,+/dPc > 0) if
∆ε <∆εcrit with

∆εcrit

εpt
=

1
2
+

3
2

Ppt

εpt
. (3.22)

Therefore, if the energy density discontinuity of the phase transition is larger than this critical
value, the neutron star will be destabilized immediately by a small quark matter core. Since we
derived equation (3.22) by using many approximations, it is an essential task for the following
section to prove this criterion by calculating mass-radius curves using the TOV equations.

3.3 The "phase" diagram

We will now discuss and characterize the four different types of mass-radius curves for hybrid
stars as defined in [43]. The occurrence of the different types will be presented in a "phase"
diagram depending on the phase transition parameters introduced in Section 3.1.2. Hence we
can extract necessary conditions for the occurrence of "third family" stars. After that we analyze
the dependency on this "phase" diagram on different hadron EoSs and quark matter sound
velocities c2

QM.

3.3.1 Different possible mass-radius relations of hybrid stars

Varying the values of the transition pressure Ppt and the energy discontinuity ∆ε over a broad
range, we can classify four different types of mass-radius curves. Analogously to [43] we denote
the different types A, B, C and D. These types are presented in Figure 3.3 and will be discussed
in the following.

The first possibility is that there is no stable hybrid star at all. The occurrence of a vanishingly
small quark matter core destabilizes the whole star. Even if the quark core grows, the hybrid
star stays destabilized. We denote this case "Absent" (A) and display it in Figure 3.3(a).

Analogously to the previous case, stars of type (D) "Disconnected" destabilize by the appearance
of quark matter in the interior. But in contrast to A, there exists a stable equilibrium solution
for a hybrid star. The star stabilizes again by a large quark matter core in the interior (Figure
3.3(d)). With reference to Chapter 1, we denote the stars of the second stable branch of neutron
stars "third family" stars.
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(a) "Absent"
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(b) "Both"
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(c) "Connected"
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Mpt

M

(d) "Disconnected"

Figure 3.3: Schematic diagram of the four different possible kinds of mass-radius curves for hy-
brid stars. Pure hadron stars are characterized by a blue line, hybrid stars by a red line. Stable
star configurations are presented with a continuous line, unstable with a dashed line. In contrast
to (b) and (c), the stars in (a) and (d) are destabilized immediately by the occurrence of a small
quark core. For cases (b) and (d) we can find a stable quark branch after a destabilized one. We
call these stars "third family" stars.

In contrast to the two previous types, stars of type (C) "Connected" will not be destabilized im-
mediately after the phase transition. But as soon as the star is destabilized, it will not stabilize
again by larger quark cores (Figure 3.3(c)). The larger the transition pressures Ppt, the smaller
is the connected hybrid star branch. The branch can even be so small that it could not be seen
by the used enlargement window in Figure 3.3(c).
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The fourth case "Both" (B) (connected and disconnected) behaves like case C directly after the
phase transition. In contrast to C, the star stabilizes again after an unstable hybrid star branch.
We can find "third family" stars in this case. The "Both" case is shown in Figure 3.3(b) and the
length of its connected hybrid star branch is in general very short.

With reference to criterion (3.22), the energy density discontinuity ∆ε of case A or D must be
chosen above the critical value ∆εcrit.

3.3.2 "Phase" diagram for fixed hadronic EoS and quark matter sound velocity

The occurrence of the four different types of MR curves with respect to the parameters Ppt/εpt
and ∆ε/εpt is shown in Figure 3.4. "Third family" stars appear in the MR types B and D.
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Figure 3.4: The "phase" diagram of MR curves with the BHF(N,l) EoS and c2
QM = 1 depending

on the proportions ∆ε/εpt and Ppt/εpt. The solid red line denotes the stabilization criterion
(3.22). The shaded area at low densities (npt < n0) is excluded since no phase transition could be
observed in nuclear matter. The hatched area at high densities is excluded because the transition
pressure Ppt is above the central pressure of the heaviest pure hadronic star Pmax.

To compute this diagram, we vary the transition parameters Ppt and ∆ε over a wide range and
calculate the corresponding mass-radius curves. This leads to some kind of a grid consisting
of mass-radius relations. By classifying the MR relations, with respect to one of the four types
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described in Section 3.3.1, we can divide this grid into different parts A, B, C and D. To reach a
"high" resolution of this "phase" diagram, we calculate up to 2500 MR curves, each consisting of
about 350 different central pressure stars, which will be again calculated in up to 1000 steps.

The shown "phase" diagram 3.4 characterizes the occurrence of the four different mass-radius
types separated by various blue lines. A phase transition from the hadronic BHF(N,l) to the
quark CSS EoS with c2

QM = 1 is assumed. Two hatched areas are excluded from the observation.
At small pressures (where npt < n0) the phase transition would even occur in nuclear matter.
Since no phase transitions to quark matter could be observed below the saturation density, we
exclude this area. The hatched band at high pressures represents pressures above the maximal
central pressure of a stable hadronic star Pmax. The phase transition would occur in unstable
equilibrium solutions. Since we could not find any signs that a transition to quark matter could
stabilize the star again, we exclude this area as well.

The criterion (3.22) for small stable quark cores is marked by the solid red line. It reproduces
the border of connected and disconnected hybrid branches (blue solid line) over a wide range
of pressures. Below the solid blue line, the stable quark branch is connected (B and C) with the
hadron branch, above it is disconnected (A and D). The fluctuations of our calculated line can
be explained by numerical uncertainties. If we consider high pressures (near Pmax) the deviation
between the two lines increases enormously. We suppose two possible reasons for this fact: First
the calculation is incorrect due to numerical issues and second the approximative derivation of
Equation (3.22) is not valid anymore. Since there is no reason why the approximation becomes
invalid at higher pressure values outside the infinitesimal vicinity of Pmax, we exclude this possi-
bility. Nevertheless it would be interesting to know, how criterion 3.22 would change, if we use
more terms in the approximation of Equation (3.13) and (3.16). This task will be left out for
work in the future. The reason for numerical issues can be explained as follows: The maximum
of the MR curve represents a reversal point. Close to this maximum we have to choose very
small central pressure steps to detect an increasing curve. Since the resolution of mass and
radius between two stars with evanescently different central pressures is bordered by numerical
uncertainties, we can not reproduce the vanishingly small stable hybrid branch. Therefore these
stars are classified as "Absent".

Both the dashed and dashed-dotted blue line represent the transition where the second hybrid
branch appears/disappears. Referring to Figure 3.5, we will discuss the evolution of the MR
curves for increasing energy density discontinuity ∆ε at fixed Ppt/εpt = 0.22. We start from the
blue (∆ε/εpt = 0.1) connected case and increase ∆ε. In the connected hybrid branch a point
of inflection appears. This leads to a disconnected branch while crossing the dashed line (red
line in Figure 3.5 with ∆ε/εpt = 0.5). In contrast to the old branch, the star masses decrease,
the minimal radius of a stable star decreases as well and the maximal central pressure of a sta-
ble star increases. This trend of the behavior of the three properties continues with increasing
energy density discontinuity. While crossing into region D, the stable connected hybrid branch
disappears (green line ∆ε/εpt = 1.0). The mass and radius of the stable star with the maximal
central pressure decrease further.

Crossing the dashed or dashed-dotted line of Figure 3.4 by decreasing the transition pressure
Ppt a stationary point of inflection appears at the central pressure Pip > Ppt. Therefore a new
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disconnected branch originates with a new maximum-minimum pair. If we further decrease Ppt,
the maximal mass of the disconnected branch increases and the minimal radius decreases.

Rpt R

Mpt

M

Figure 3.5: The evolution of MR curves on
the "phase" diagram (Figure 3.4), for fixed
Ppt/εpt = 0.22 and increasing∆ε/εpt (blue line:
∆ε/εpt = 0.1, red line: ∆ε/εpt = 0.5, green
line: ∆ε/εpt = 1.0). Solid lines represent stable
star configurations, dashed lines unstable ones.

Since Ppt/εpt is a monotonically increas-
ing function with respect to Ppt, we can
reparametrize the "phase" diagram 3.4 de-
pending on ∆ε and Ppt (Figure 3.6). Re-
garding the allocation of the four MR
types, we can say that at low transition
pressures case C occurs for low ∆ε and
case D for high energy density disconti-
nuities. To obtain case B, the parame-
ters have to be chosen very specific and
the total area is small compared to the
other cases. For high transition pres-
sures, the star is more robust against
changes of the energy density disconti-
nuity and only destabilizes at very high
∆ε.

Due to this allocation of the four different
cases we obtain the following conditions for
the occurrence of "third family" stars: The
phase transition to quark matter occurs at rel-
atively small (Ppt ® 200MeV fm−3) transition
pressures and high energy density discontinu-
ities ∆ε¦ 200 MeV fm−3. The corresponding
transition baryon density is lower than 4n0.
This would fit to the assumption, that a phase transition to quark matter occurs at particle den-
sities of 2n0 ® n ® 4n0 [2, 9]. Therefore an observation of a "third family" star could give a
sign to confirm the assumed phase transition from hadronic matter to quark matter. Moreover
an observation could possibly provide information about the transition parameters. In Chapter
4 we will analyze how the occurrence of the "third family" stars will change, if we give up the
assumption of a sharp first-order phase transition and use a continuous crossover.

The physical understanding behind the allocation of the four types is as follows:
Due to the larger densities of the quark phase, a phase transition in the interior of a star causes
an additional gravitational pull on the star. With rising energy density discontinuity this pull
will increase as well. At low transition pressures the hadronic mantle is not robust enough to
counteract large gravitational pulls. Hence the connected hybrid branch vanishes already at low
∆ε. If this happens, a larger quark core at higher central pressures (and smaller radius RNS) can
sustain the hadronic mantle and will stabilize the star again. A disconnected branch appears.
At higher transition pressures the hadronic mantle is more massive and therefore more stable
against a gravitational pull caused by the quark core. To eliminate the connected branch, the
necessary ∆ε is much larger. If this happens, the hadronic mantle is so heavy that even large
quark cores can not sustain it and no hybrid star is stable at all (even at higher pressures and
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smaller radii). Since increasing the energy density discontinuity makes the quark core heavier
and increases the gravitational pull, the star will be destabilized at a certain point for fixed
Ppt. Therefore the negative slope of the dashed-dotted line is explainable. The occurrence of
case B is more complicated and can not be explained intuitively [43]. In the connected branch
the pressure balances the increased gravitational pull caused by the phase transition. With
increasing central pressure, the star is destabilized first and somehow stabilizes again at higher
central pressures. A further discussion of this should be part of following work.
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Figure 3.6: The "phase" diagram of MR curves with the BHF(N,l) EoS and c2
QM = 1 depending on

∆ε and Ppt. The solid red line denotes the stabilization criterion (3.22). The shaded area at low
densities (npt < n0) is excluded since no phase transition could be observed in nuclear matter.
The hatched area at high densities is excluded because the transition pressure Ppt is above the
central pressure of the heaviest pure hadronic star Pmax.
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3.3.3 Dependency on different hadronic EoSs and quark matter sound velocities

The "phase" diagrams for the two different hadronic EoSs (BHF(N,l) and χSU(3)) and the two
sound velocities (c2

QM = 1 and c2
QM = 1/3) are shown in Figure 3.7. We will now discuss the

effect of varying εHM(P) and c2
QM and explain its physical background:

As mentioned in Section 2.4.2, the BHF(N,l) EoS is stiffer than the χSU(3) EoS. For χSU(3) the
maximal central pressure for stable hadronic stars Pmax is reached at lower pressures. Therefore
its maximal value of Ppt/εpt is not as high as the ones of BHF(N,l). The deviation of the solid
lines (border between A/D and B/C) to the criterion (3.22) (red line) does not depend on the
EoS and can be explained as in Section 3.3.2. The allocation of the four regions is quite sensitive
to changes of the hadronic EoS and the quark EoS. Varying the equation of state to a softer
one, the "Both" region consisting of a connected and disconnected branch, nearly reaches to
∆ε/εpt = 0 at high transition pressures. For the χSU(3) EoS and c2

QM = 1 with a given transition
pressure (here: Ppt/εpt ≈ 0.25), a disconnected "third family" branch appears even for low
energy density discontinuities ∆ε/εpt ≈ 0.03. The gravitational pull of a large quark core with
high transition pressure can be balanced by the softer hadronic mantle. Decreasing the sound
velocity c2

QM will especially shift the dashed-dotted line (border between A and D) and dotted
line (border between B and C) to lower transition pressures. For lower sound velocities c2

QM =
dP/dε, the energy density increases faster with increasing pressure. Therefore the gravitational
pull increases at high pressures of large quark matter cores and the star tends to destabilize.
This shifts the border of stable "third family" stars to lower transition pressures.
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(a) "Phase" diagram for the BHF(N,l) EoS.
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(b) "Phase" diagram for the χSU(3) EoS.

Figure 3.7: The dependency on the "phase" diagram on different EoSs. In (a) the diagram is
computed using the hadronic BHF(N,l) EoS, in (b) using the χSU(3) EoS. The blue lines denote
the "phase" diagram for the sound velocity c2

QM = 1, the green lines for c2
QM = 1/3. The red

line denotes the stabilization criterion (3.22). The hatched area at low densities (npt < n0) is
excluded since no phase transition could be observed in nuclear matter. The shaded band at
high densities is excluded because the transition pressure Ppt is above the central pressure of the
heaviest pure hadronic star Pmax. Respect the different scaling of the Ppt/εpt axis in (a) and (b).
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3.4 Observables of "third family" compact stars

RTF,max RTF,min R

MTF,max

MTF,min

M

Figure 3.8: Schematic of a MR curve with a "third
family" branch. Red lines denote hybrid stars,
blue lines hadronic stars. Solid lines represent
stable star configurations, dashed lines unstable
ones. The two "third family" stars TFmax and TFmin,
with the maximal and minimal mass are marked
with a cross.

In this section we want to find out which
radii and masses "third family" stars have.
Therefore we denote the "third family" star
with maximal stable mass of one MR curve
TFmax (with (R, M)NS = (R, M)TF,max). The
corresponding "third family" star with min-
imal stable mass is denoted by TFmin (with
(R, M)NS = (R, M)TF,min). This notation is vi-
sualized with the help of a MR curve in Fig-
ure 3.8. Since the MR curve is monotonous,
the values of the masses and radii of all
"third family" stars must be between the
masses and radii of TFmax and TFmin. The
exact values of the mass and radius of these
two stars depend on the CSS parametriza-
tion. Therefore we will analyze these two
stars on the "phase" diagram for different
hadronic EoSs and quark matter sound ve-
locities. Due to this we are able to specify
the "third family" radii of the observed neu-
tron star masses.

In Figure 3.9 contour plots of the minimal
mass of "third family" stars are shown de-
pending on the hadronic EoS, the quark
matter sound velocity c2

QM and the transition
parameters Ppt, ∆ε. Their associated radii are shown in Figure 3.10. The maximal masses and
the corresponding radii of "third family" compact stars are shown in Figure 3.11 and 3.12. For
the upper row of the four figures, the stiffer BHF(N,l) EoS is used for the hadronic matter and
for the lower row the softer χSU(3) EoS. The left plots represent contour plots using the quark
matter sound velocity c2

QM = 1, the right ones c2
QM = 1/3. Due to the numerical issues described

in Section 3.3.2, we use criterion (3.22) instead of the calculated border between the regions of
connected (B, C) and disconnected (A, D) branches. This criterion is indicated by the solid red
line. In each plot the border between the four MR types is visualized by a dashed/dashed-dotted
blue line and the red line. The hatched area at low transition pressures (npt < n0) is excluded
since matter at saturation density consists of a pure hadronic phase. The shaded area at high
transition pressures is excluded as well, since the transition pressure Ppt is above the maximal
stable central pressure of a pure hadronic star Pmax and no "third family" stars could be found.

The minimal mass of "third family" stars MTF,min varies from 0.5M� to 1.9 M�. The mass in-
creases with higher transition pressures and decreasing energy density discontinuity. In this
process, the minimal mass is nearly independent of the hadronic equation of state, but reaches
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(a) BHF(N,l) (stiff), c2
QM = 1
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(b) BHF(N,l) (stiff), c2
QM = 1/3
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Figure 3.9: Contour plots visualizing the mass of TFmin as a function of the CSS parametrization.
Each plot is shown above the corresponding "phase" diagram with the B,D region in detail. They
depend on the transition parameters Ppt/εpt, ∆ε/εpt and npt/n0. The hatched area at low den-
sities (npt < n0) is excluded since no phase transition could be observed in nuclear matter. The
shaded band at high densities is excluded, because the transition pressure Ppt is above the central
pressure of the heaviest pure hadronic star Pmax and no "third family" stars could be observed
for higher transition pressures. The red line denotes the stabilization criterion (3.22). For nuclear
matter the BHF(N,l) EoS is used in the upper row and the χSU(3) EoS used in the bottom row.
The plots (a) and (c) use the sound velocity c2

QM = 1 and the plots (b) and (d) use c2
QM = 1/3 for

the quark matter EoS.

higher masses for increasing sound velocity. The corresponding radii RTF,min range from 9km
to 16 km. The higher Ppt and ∆ε, the smaller is the radius of the star. Contrary to the mass,
the radius shows only a moderate dependency on the quark matter sound velocity. It is mainly
determined by the hadronic EoS and can reach higher values for stiffer EoSs.
The values of the mass and radius of the quark matter core of TFmin, can reach up to
MTF,min,core ≈ 0.8 M� and RTF,min,core ≈ 5 km. The higher the transition pressure, the higher
is the quark core mass. After increasing the ∆ε at high Ppt, the core mass will rise enormously
and will take more than 50% of the star mass. At the same time the central particle density
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Figure 3.10: Contour plots visualizing the radius of TFmin as a function of the CSS parametriza-
tion. Each plot is shown above the corresponding "phase" diagram with the B,D region in detail.
They depend on the transition parameters Ppt/εpt,∆ε/εpt and npt/n0. The hatched area at low
densities (npt < n0) and high densities as well as the red line are defined as in Figure 3.9. For
nuclear matter the BHF(N,l) EoS is used in the upper row and the χSU(3) EoS used in the bottom
row. The plots (a) and (c) use the sound velocity c2

QM = 1 and the plots (b) and (d) use c2
QM = 1/3

for the quark matter EoS.

reaches up to nc ≈ 10n0. The radius of the quark core rises as long as∆ε or Ppt increase. For this
reason we will find the largest and heaviest quark cores in the interior of the smallest stars. The
"third family" stars with the maximal stable mass TFmax have radii of 8 km to 14 km. In contrast
to Figure 3.10, the smallest stars do not occur at the highest possible transition pressure, but
in general the radii of TFmax and TFmin trend in the same way. However with reference to the
mass, they behave completely different. The smaller Ppt and∆ε, the larger is the mass of TFmax.
In this context MTF,max differs from 1.3M� to 2.9 M� and depends mainly on the quark matter
sound velocity. The higher c2

QM, the higher is the mass.
The quark core of TFmax behaves like its radius and mass. The core gets larger and heavier for
low transition pressures. In this case the mass and radius of the quark core can reach values up
to MTF,max,core ≈ 2.5 M� and RTF,max,core ≈ 10km. Therefore the principle part of the star consists
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Figure 3.11: Contour plots visualizing the the mass of TFmax as a function of the CSS parametriza-
tion. Each plot is shown above the corresponding "phase" diagram with the B,D region in detail.
They depend on the transition parameters Ppt/εpt,∆ε/εpt and npt/n0. The hatched area at low
densities (npt < n0) and high densities as well as the red line are defined as in Figure 3.9. For
nuclear matter the BHF(N,l) EoS is used in the upper row and the χSU(3) EoS used in the bottom
row. The plots (a) and (c) use the sound velocity c2

QM = 1 and the plots (b) and (d) use c2
QM = 1/3

for the quark matter EoS.

of quark matter. The quark core is nearly independent of the hadronic EoS, but its mass in-
creases a lot with rising c2

QM.

For realistic CSS parameters (sound velocity based on the asymptotic freedom c2
QM = 1/3 and

transition particle density of 2n0 ® n ® 4n0) and the used hadronic EoSs, we recap for the
radius RTF and mass MTF of "third family" stars

9km® RTF ® 12km , 1.1 M� ®MTF ® 1.5 M� . (3.23)

Since mass and radius are not independent, not all star configurations of Equation (3.23) are
possible. Nevertheless we should be skeptical about this outcome.
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Figure 3.12: Contour plots visualizing the the radius of TFmax as a function of the CSS
parametrization. Each plot is shown above the corresponding "phase" diagram with the B,D
region in detail. They depend on the transition parameters Ppt/εpt, ∆ε/εpt and npt/n0. The
hatched area at low densities (npt < n0) and high densities as well as the red line are defined as
in Figure 3.9. For nuclear matter the BHF(N,l) EoS is used in the upper row and the χSU(3) EoS
used in the bottom row. The plots (a) and (c) use the sound velocity c2

QM = 1 and the plots (b)
and (d) use c2

QM = 1/3 for the quark matter EoS.

The "third family" stars could only attain masses up to 1.5M�, which means that they can not
describe the recently observed supermassive neutron stars with masses of MNS ≈ 2.0M�. Even
for pure hadronic stars, which are described by the hadronic part of these hybrid EoSs, the
maximal masses are not significant larger than 1.5M�. Therefore the chosen EoSs probably
do not describe real neutron/"third family" stars. Nevertheless we want to outline a further
consequence of our calculations. The mass of the Hulse-Taylor pulsar fits in the calculated range
of "third family" stars. If we assume that this pulsar would be a "third family" star, then our
calculations would lead to a radius between 9.5 km and 12.5 km.
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3.5 "Neutron star twins"

In the previous section we analyzed possible masses of "third family" stars, which match with
typical neutron star masses. Since the neutron star branch will abort, due to a decrease of
mass, we will find a mass regions where the "third family" stars and neutron stars overlap. We
denote the non-identical stars (one neutron star and one "third" family star) with the same
masses "neutron star twins". In the following, the structure of these "neutron star twins" will
be compared. Furthermore we discuss why the dicovery of "neutron star twins" is a possible
signature for phase transitions.

3.5.1 The structure of "neutron star twins" in comparison
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Figure 3.13: The MR curve of the a "Both" case
with Ppt/εpt = 0.155, ∆ε/εpt = 0.6 and used
BHF(N,l) EoS and CSS value c2

QM = 1/3. The
two stars with the Hulse-Taylor pulsar mass are
marked as a cross. Red lines denote hybrid stars,
blue lines pure hadronic stars. Solid lines repre-
sent stable star configurations, dashed lines un-
stable ones.

We will now analyze the structure of a
"third family" star and compare it to its neu-
tron star counterpart with the same mass
as the Hulse-Taylor pulsar. To achieve
this, we choose the BHF(N,l) EoS, the CSS
value c2

QM = 1/3 and a MR curve in
the region B with the transition parame-
ters Ppt/εpt = 0.155 (Ppt = 79.84MeV fm−3)
and ∆ε/εpt = 0.6 (∆ε= 309.04MeV fm−3).
The corresponding mass-radius curve is
shown in Figure 3.13. The stars with
a mass of M = 1.44M� are marked as
a cross and differ in their radii by val-
ues of RNS = 12.14 km (neutron star)
and RTF = 10.5km ("third family" star).
While the "third family" star contains a
quark matter core, the central pressure
of the neutron star is not high enough
for a phase transition. Therefore it
only consists of hadronic matter. In
the following the two stars will be com-
pared regarding the properties mass, pres-
sure, energy density and particle den-
sity:

The allocation of the mass is shown in Figure
3.14. We can see that the principle part of the neutron star mass is caused by the matter be-
tween radii of 4 to 10 km. The mass of the crust is negligible. In contrast to this the quark core
of the "third family" accounts for half of the star mass (M = 0.59M�) within the first 5.33km.
This causes an immense gravitational pull.

This gravitational pull is visible in form of the central pressure in Figure 3.15(a). While the
pressure of the ordinary neutron star only increases to Pc = 79.38MeV fm−3, the central pres-
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Figure 3.14: The included mass M(r) as a function of the radius r. On the left the graph of the
neutron star is shown. We compare this with the "third family" star on the right, containing a
quark matter core (red line). The blue lines indicate the hadronic phase. Both stars have the
same mass as the Hulse-Taylor pulsar (M= 1.44M�) but differ in their radii RNS = 12.14km,
RTF = 10.5km.

sure of the hybrid star reaches Pc = 297.15 MeV fm−3. The high values of the pressure at the
quark phase correspond to high energy (Figure 3.15(b)) and particle densities (Figure 3.15(c)).
They reach up to a multiple of the corresponding neutron star densities. The discontinuity of
these two densities at the transition pressure increases the deviation even more.

Conversely we can argue that the energy density discontinuity of a first-order phase transition
leads to a jump discontinuity of the included mass gradient at the phase transition. This fact is
visualized in Figure 3.14. The gradient changes from a higher value at the quark matter to a
lower value at the hadronic matter. Larger mass gradients lead to larger included masses, which
induces a higher gravitational pull.
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(a) The radial trend of the pressure of the two stars.
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(b) The radial trend of the energy density of the two stars.
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(c) The radial trend of the particle density of the two stars.

Figure 3.15: Pressure, energy density and particle density as a function of radius r in the inte-
rior of a star. The hadronic neutron star (left) and the corresponding quantities for the "third
family" star (right) are compared. Both stars have the same mass as the Hulse-Taylor pulsar
(M= 1.44M�) but differ in their radii RNS = 12.14km, RTF = 10.5 km. Red lines denote quark
matter, blue lines hadronic matter.
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3.5.2 "Neutron star twins" as a possible signature for phase transitions

Due to the diversity of possible EoSs, the measurement of the observables of a single star do
not provide enough information to classify it as a "third family" star or an ordinary neutron
star. However the observation of "neutron star twins" do provide enough information to classify
them. To explain this, we consider two neutron stars with a small deviation in mass ∆M and a
large difference in radius ∆R (with ∆R � ∆M) and denote such a pair "quasi twin". The MR
curves of typical neutron stars (Figure 2.7) do not provide a large difference in radius between
two stars with nearly the same mass. A small modification in mass will only lead to a small
change in radius (∆M ≈ ∆R). If we choose a "third family star" and neutron star with nearly
the same mass, the radius of the two stars differ a lot (∆R� ∆M). Therefore finding a quasi
twin will automatically lead to the existence of a "third family" branch, since this is the only
possible reason for the large difference in radius [1]. In this process the "neutron star twins"
are only a special case of quasi twins. If we consider the "neutron star twins" of Section 3.5.1
(∆R= 1.64km), the deviation in mass must be much less than ∆M= 1.11M� (obtained by the
geometrized unit system) to satisfy the quasi twin condition (∆R� ∆M). Since the masses of
the "neutron star twins" are equal, this relation is satisfied.

With reference to Chapter 1, we know that for the existence of a third stable sequence of com-
pact objects, the EoS must provide a sufficiently large discontinuity in the speed of sound (Ger-
lach’s necessary condition). In previous sections and in [15] it is established that a phase tran-
sition to a deconfined quark matter can satisfy this condition and leads to "third family" stars.
Even if it is not proven that this phase transition is the only reason for a third stable branch, it is
maybe the most plausible one [12]. Hence the observation of rising twins is a possible signature
for the deconfinement phase transition.
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4 "Third family" stars and hadron-quark
crossovers

In the previous chapter we have seen, that a first-order phase transition can lead to "third family"
stars. In this chapter we debate whether a sharp first-order phase transition is the only possibility
to obtain "third family" stars. For this reason the sharp phase transition will be smoothed by
using a continuous interpolation between the two phases. We use a crossover which can be
parametrized in different ways. Therefore we firstly discuss the used parametrization, which
depends on the pressure crossover region ΓP. Again, different transition parameter lead to the
four MR types. We will reconstruct the known "phase" diagram with the crossover equation of
state and analyze its dependency on ΓP. From this we can discuss necessary conditions of the
phase change for the occurrence of "third family" stars.

4.1 The crossover parametrization

First of all we want to shortly present the physical concept of this interpolation introduced
in [9]. In the transition region between the hadronic phase and the deconfined phase, the
state of the system can neither be described by an extrapolation of the hadronic equation of
state for higher pressures, nor by extrapolating the quark EoS for lower pressures. Therefore
we somehow connect the hadron EoS and the quark EoS by a continuous interpolation in the
transition region ΓP. In this work we use a crossover EoS, which means that the hadron phase
and the quark phase will coexist. The higher the pressure, the higher is the total number of
particles in the quark phase. In the style of [9] we use the following method to construct the
crossover EoS:

εCross(P) = εHM(P) f−(P) + εQM(P) f+(P) , (4.1)

with the hadronic EoS εHM, the quark matter EoS εQM and the interpolation function f± with

f±(P) =
1
2

�

1± tanh

�

4 ·
P− P
ΓP

��

. (4.2)

P is the mean pressure value of the crossover region. This region is characterized by the window

PCH := P−
ΓP
2
® P ® P+

ΓP
2

=: PCQ . (4.3)

The pressures PCH and PCQ = PCH + ΓP at the border of the transition region represent points,
which we can essentially classify by the hadron phase respectively the quark phase. The equation
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of state εCross has to conform to the hadronic / quark EoS at these points. This fact is nearly
guaranteed due to the definition of Equations (4.1 - 4.3). By using these equations, we obtain

tanh

�

4 ·
PCH − P
ΓP

�

= tanh (−2)≈ −0.96 , tanh

�

4 ·
PCQ − P

ΓP

�

= tanh (2)≈ 0.96 , (4.4)

⇒ ε(PCH)≈ 0.98εHM(PCH) + 0.02εQM(PCH)≈ εHM(PCH) , (4.5)

⇒ ε(PCQ)≈ 0.02εHM(PCQ) + 0.98εQM(PCQ)≈ εQM(PCQ) . (4.6)

εpt ε0, QM ε

Ppt

PCQ

P

∆ε

ΓP

Figure 4.1: The CSS parametrization of Section
3.1.2 (dashed line) in comparison to the crossover
parametrization (solid line) depending on the pa-
rameter Ppt,∆ε and ΓP. The crossover region is in-
dicated by a green line, the hadron/quark phase
by blue/red lines.

In order to compare the crossover EoS
(4.1) with the CSS parametrization in-
troduced in Section 3.1.2, we define
PCH = Ppt. Therefore the crossover re-
gion extends from Ppt to Ppt + ΓP. We
use the same hadron EoSs and quark
EoSs (εQM = 1/c2

QM (P− Ppt) + εpt +∆ε) as
before. Additional to the parameters of
the CSS parametrization, the crossover
parametrization depends on the crossover
region parameter ΓP. These two parameter-
izations are visualized in Figure 4.1. The
crossover region is indicated by a green
line and visualized by grey bars. Beyond
the crossover region both parameterizations
are essentially equal. In contrast to the
first-order phase transition, the crossover
EoS connects the hadron phase (blue lines)
and quark phase (red lines) continuously.
The chemical potential and particle den-
sity as a function of the pressure P can be
derived by using the fundamental thermo-
dynamical relations analogously to Section
3.1.3.

In the context of a crossover, the pressure PCH characterizes the point, where the system starts to
transform into the quark matter phase. This transformation is essentially closed at the point PCQ.
For this reason we have to redefine the four MR types of Section 3.3.1. If a star is even desta-
bilized by the occurrence of a small percentage of quark matter after the point PCH, we classify
it as A or D. The appearance of stable "third family" stars after a disconnected branch will again
lead to the classification B or D. Since the central pressures PTF,c ≈ 300MeV/fm3 of "third family"
stars is in general larger than the transition pressures of their occurrence (Ppt ® 100 MeV/fm3

for c2
QM = 1/3) and the considered transition regions (ΓP ≤ 100MeV/fm3), we can assume that

PTF,c > PCQ holds. This leads to a pure quark matter core in the interior of "third family" stars.
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4.2 "Phase" diagram of the crossover parametrization

After we introduced the crossover parametrization in the previous section, we will use this
parametrization to analyze the occurrence of the four different MR types within the meaning
of the crossover (Section 4.1). Analogously to Section 3.3.2, we calculate the MR curve for the
different transition parameters Ppt, ∆ε, classify them to A, B, C or D and visualize these regions
again in the known "phase" diagram. This procedure will be done for fixed hadronic EoS, c2

QM
and various crossover regions ΓP. For a further understanding of the used values of ΓP, we show
the "phase" diagram in dependency on Ppt, ∆ε/εpt and npt/n0. Since the necessary time for
computing increases enormously by using the crossover parametrization, we choose a slightly
lower resolution of the grid.
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Figure 4.2: The "phase" diagram of the crossover parametrization for small values of the crossover
region in comparison to the "phase" diagram of the CSS parametrization (blue line). The occur-
rence of the four MR curve types is visualized depending on the proportion∆ε/εpt and Ppt. The
BHF(N,l) EoS and c2

QM = 1 are used. The solid red line denotes the stabilization criterion (3.22).
The shaded area at low densities (npt < n0) is excluded since nuclear matter consists only of a
hadronic phase. The hatched area at high densities is excluded because the transition pressure
Ppt is above the central pressure of the heaviest pure hadronic star Pmax.

In Figure 4.2 and 4.3 the "phase" diagrams for the crossover parametrization using various
crossover regions ΓP are visualized. In comparison the "phaselines" of the first-order phase
transition are illustrated as well (blue lines) in Figure 4.2. Both parameterizations use the
BHF(N,l) EoS and the quark matter sound velocity c2

QM = 1. Solid lines represent the border

4.2 "Phase" diagram of the crossover parametrization 43



between the regions with a connected branch (B and C) and those without a connected branch
(A and D). Regions with a "third family" branch (B and D) are separated from other regions
by dashed/dashed-dotted lines. As in the previous sections, the red solid line denotes criterion
(3.22), the hatched area at low transition pressures (npt < n0) is excluded because nuclear mat-
ter consists of a pure hadronic phase. The shaded area at high pressures is excluded, as the
transition pressure Ppt is above the central pressure Pmax of heaviest pure hadronic star and no
stable hybrid stars could be found for even higher transition pressures.

Since the limit of the crossover parametrization for negligible crossover regions (ΓP → 0) co-
incides with the first-order phase transition, it is understandable that the "phase" diagram for
ΓP = 10−5 MeV/fm3 is essentially equal to the CSS parametrization with ΓP = 0MeV/fm3. The
fluctuations of the solid lines of the crossover parametrization can be explained by numerical
uncertainties and the lower resolution of the grid. With increasing but still very small crossover
region (ΓP � 1MeV/fm3, Figure 4.2), the "Both" region reaches to higher energy density dis-
continuities. The "phaselines" at high transition pressures and the settings for the occurrence of
"third family" stars are nearly unchanged. All four MR types occur within the default limits of
∆ε/εpt and Ppt.
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Figure 4.3: The "phase" diagram of the crossover parametrization for large values of the crossover
region. The occurrence of the MR case B and C is visualized depending on the proportion∆ε/εpt
and Ppt. The BHF(N,l) EoS and c2

QM = 1 are used. The shaded area at low densities (npt < n0)
is excluded since nuclear matter consists only of a hadronic phase. The hatched area at high
densities is excluded because the transition pressure Ppt is above the central pressure of the
heaviest pure hadronic star Pmax.
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If we further increase the transition region (Figure 4.3), only regions with a connected branch
occur. Even high transition pressures and energy density discontinuities will not destabi-
lize neutron stars with a small percentage of quark matter inside the core. With increasing
ΓP the connected and disconnected branch of MR curves merge first at low transition pres-
sures and then even at higher Ppt. Therefore region B is shrinking for ΓP ¦ 10−2 MeV/fm3.
At large crossover regions (ΓP = 100MeV/fm3), "third family" stars can only occur for
50MeV/fm3 ® Ppt ® 160MeV/fm3 and large energy density discontinuities∆ε¦ 350 MeV/fm3.
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Figure 4.4: MR curves using the crossover
parametrization for fixed transition parameters
Ppt/εpt = 0.08, ∆ε/εpt = 0.72 and differ-
ent values of the crossover region ΓP. The
blue line indicates the "Disconnected" case for
ΓP = 10−4 MeV/fm3. With increasing crossover re-
gion (ΓP = 1 MeV/fm3) we will obtain the "Both"
type which is visualized by the red line. For even
higher crossover regions (ΓP = 10MeV/fm3) the
"Connected" case occurs (green line). Solid lines
represent stable star configurations, dashed lines
unstable ones.

The development of the MR curve for
fixed transition parameters Ppt/εpt = 0.08
(Ppt = 28.30MeV/fm3), ∆ε/εpt = 0.72
(∆ε = 264.65 MeV/fm3) and increasing ΓP
is shown in Figure 4.4. The transition
settings correspond to region D for small
crossover regions (ΓP = 10−4 MeV/fm3).
This case is indicated by the blue line. The
star will be destabilized as soon as quark
matter appears in the interior. For larger
quark cores the star can balance the addi-
tional gravitational pull caused by the quark
matter and stabilizes again. For increasing
crossover region (ΓP = 1 MeV/fm3) the bor-
der between region D and B shifts to higher
∆ε and the fixed transition parameters cor-
respond to region B. The red line denotes
this case and it is nearly identical to the
previous "Disconnected" case except of the
behavior directly after Ppt. The stars of the
red line will not be destabilized immediately
after the quark matter appears. For even
larger crossover regions (ΓP ¦ 10 MeV/fm3),
the "Connected" region reaches up to higher
∆ε and contains the considered settings.
For the green line, the connected and dis-
connected branch merged. The star will
only be destabilized for large quark cores.
Due to the fact, that a variation of ΓP has
a small influence on the the EoS even for
P < Ppt, the slight shift of the green line to
lower radii at Ppt is explainable. For low or very high central pressures, the effects of the
crossover parametrization are negligible and all three MR curves conform.
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We will now focus on the physical background of the changes caused by using the crossover
parametrization. In the CSS parametrization, the energy density has a jump discontinuity di-
rectly after the transition pressure. Therefore, the additional gravitational pull caused by the
quark matter with increased energy density will rise abruptly. In contrast the energy density in
the crossover parametrization will increase smoothly. Considering fixed Ppt and ∆ε, the gradi-
ent of ε inside the crossover region only depends on ΓP. The larger ΓP, the smaller is the gradient
and therefore the increase of the gravitational pull, caused by the strong interacting matter in
the crossover region. Hence stars with small percentages of quark matter tend to be more sta-
ble, if the crossover region increases. This effect is first noticeable at low transition pressures,
because for low Ppt the hadronic mantle is not sufficiently massive to counteract even small
additional gravitational pulls. If ΓP is large, the percentage of the quark matter increases more
slowly as a function of Pc. Therefore the percentage of hadronic matter is in general higher for
a given central pressure and the star tends to be more stable. The larger ΓP, the longer is the
connected branch stable and the higher is the possibility to merge with a disconnected branch.
Thus the region B is shrinking with increasing crossover region.
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4.2.1 Dependency on different hadronic EoSs and quark matter sound velocities

After we analyzed the changes of the "phase" diagram for various values of ΓP, but fixed hadronic
EoS and quark matter sound velocity, we examine changes of the "phase" diagram due to differ-
ent hadron matter EoS and c2

QM in this section. For this reason we calculate the "phase" diagram
for the χSU(3) EoS, the sound velocity c2

QM = 1/3 and the same crossover regions as in Section
4.2. The "phase" diagram with these properties is shown in Figure 4.5 and 4.6. To compare the
"phase" diagrams for low ΓP with the "phase" diagram of the CSS parametrization, we visualize
the "phaselines" of the first-order phase transition (ΓP = 0MeV/fm3) as well.
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Figure 4.5: The "phase" diagram of the crossover parametrization for small values of the crossover
region in comparison to the "phase" diagram of the CSS parametrization (blue line). The occur-
rence of the four MR curve types is visualized depending on the proportion∆ε/εpt and Ppt. The
χSU(3) EoS and c2

QM = 1/3 are used. The solid red line denotes the stabilization criterion (3.22).
The shaded area at low densities (npt < n0) is excluded since nuclear matter consists only of a
hadronic phase. The hatched area at high densities is excluded because the transition pressure
Ppt is above the central pressure of the heaviest pure hadronic star Pmax.

In general the "phaselines" of the new hadronic EoS and quark matter sound velocity behave
analogously to the ones of Section 4.2. The dashed and dashed-dotted lines are nearly indepen-
dent of the width of the crossover region for small ΓP. For increasing ΓP the solid lines move
away from the line of criterion (3.22) and reach higher energy density discontinuities. This
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process begins at low transition pressures. If we further increase ΓP, regions with connected
branches (B and C) reach up to very high energy density discontinuities and finally the region
B starts to shrink.

Comparing the new "phaselines" with the ones in Section 4.2, we determine that the
dashed/dashed-dotted line shifts to higher transition pressures for a larger sound velocity.
This can be explained analogously to Section 3.3.3. With higher sound velocities, the pres-
sure increases faster with the energy density. Hence "third family" stars with a quark matter
core can sustain the massive hadronic mantle for even larger transition pressures. This shifts
the dashed/dashed-dotted line to higher Ppt. In contrast to the BHF(N,l) EoS, the regions B and
C of the χSU(3) EoS move faster to high energy density discontinuities as a function of ΓP. For
softer equations of state and fixed transition pressure, the transition energy density is higher
and the hadronic mantle is more massive. Hence the hadronic mantle can counteract larger
gravitational pulls of the strong interacting matter. The regions B and C can reach higher en-
ergy density discontinuities. Furthermore the area of region B becomes smaller for using softer
EoSs at large ΓP.

5 10 20 30 50 70 100 150 200 300
Ppt in MeV/fm3

0

0.2

0.4

0.6

0.8

1.0

1.2

∆
ε/
ε p

t

B

C

1.0 2.0 3.0 4.0 5.0
npt/n0

ΓP = 10-2 MeV/fm3

ΓP = 100 MeV/fm3

ΓP = 10+2 MeV/fm3

Figure 4.6: The "phase" diagram of the crossover parametrization for high values of the crossover
region. The occurrence of the MR cases B and C is visualized depending on the proportion
∆ε/εpt and Ppt. The χSU(3) EoS and c2

QM = 1/3 are used. The shaded area at low densities
(npt < n0) is excluded since nuclear matter consists only of a hadronic phase. The hatched area
at high densities is excluded because the transition pressure Ppt is above the central pressure of
the heaviest pure hadronic star Pmax.
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5 Conclusion and outlook
In this thesis the general characteristics of the mass-radius curves of neutron stars were investi-
gated. In this process we focused on the third stable branch of compact stars, the "third family"
stars. It was topic of this work to analyze the occurrence and observables, like mass and radius
of these stars, induced by a phase transition of first-order to a deconfined quark matter or a
hadron-quark crossover.

At the beginning of this thesis, pure hadronic neutron stars were analyzed. We discussed their
structure, derived the necessary equations to describe them mathematically and introduced
the method of solving the Tolman-Oppenheimer-Volkoff equations. In this work we used the
hadronic equations of state BHF(N,l) and χSU(3). For these equations of states the mass-radius
relations were calculated and discussed.

Since the appearance of deconfined quark matter is assumed to occur at high densities by the
theory of QCD, we assumed a first-order phase transition at first. For the quark matter equation
of state, a constant speed of sound approximation was used, which only depends on the sound
velocity c2

QM. The first-order phase transition to this quark matter equation of state was dis-
cussed and parametrized by the transition parameters Ppt (transition pressure) and ∆ε (energy
density discontinuity). Since a hybrid star with a small quark core is destabilized by a large
discontinuity in energy density, a criterion was derived for this case to specify the critical value
∆εcrit. Moreover we varied both transition parameters over a wide range and obtained four
different types of mass-radius curves (A, B, C and D). The occurrence of the different regions
of mass-radius types could be visualized in a "phase" diagram, which depended on Ppt and ∆ε.
We obtained that for the occurrence of the two regions B and D, which contain "third family"
stars, the phase transition must occur at low pressures and provide a large discontinuity in en-
ergy density. After that we investigated the dependency of the "phase" diagram on different
hadronic EoS and c2

QM. The maximal and minimal masses and radii of "third family" stars were
shown by contour plots based on the "phase" diagram and were analyzed with respect to dif-
ferent EoSs. For the used EoSs the "third family" star masses ranged from 1.1 M� to 1.5M�.
Since massive neutron stars with masses of M ≈ 2 M� could not be described by these EoSs, we
concluded that the used EoSs are probably unrealistic. After that we analyzed the structure of a
neutron star in comparison with its "third family" counterpart with the same mass and discussed
why the observation of these "neutron star twins" gave a possible signature for a phase transition.

After we have shown that a first-order phase transition can lead to "third family" stars, we inves-
tigated if a smoother EoS could also lead to these stars. Therefore we introduced a hadron-quark
crossover, which smoothed the sharp first-order phase transition as a function of the pressure
transition region ΓP. For this crossover we repeated the investigation of the occurrence of the
four mass-radius types by using the "phase" diagram. We found out that even for sufficiently
high ΓP ≈ 100 MeV/fm3, "third family" stars can occur.
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Since the mass and radius regions of "third family" stars partially overlap with the corresponding
regions of neutron stars, it is not possible to distinguish between the two families with regard
to mass or radius. Until now a reliable classification of "third family" stars is only possible by
knowing the mass-radius curve or finding a "neutron star twin". Investigating other characteris-
tics of "third family" stars could perhaps lead to a clear separation.
Even in theory, the "third family" stars and hybrid stars are not clearly separated. If the central
densities of all possible "third family" stars are above the maximal limit of stable hybrid stars,
this would lead to a well defined border between the two branches of compact stars.

As we can see in Figure 4.4, the smoothening of the phase transition leads to higher minimal
masses of the third stable branch. As we have not analyzed the effects on mass and radius of
"third family" stars by using a hadron-quark crossover, it would be interesting to do this in future
work. This would give us the chance to locate the mass and radius regions of "third family" stars
in case of a crossover phase transition.

Furthermore it would be interesting to know the effects on general characteristics of "third fam-
ily" stars by using other approaches of the EoS. What happens if we use a third window method
analogously to [5] or a first-order phase transition with a mixed phase (Gibbs construction)? In
either case it would be surely interesting to know, if any other theory beside phase transitions
and crossovers could lead to "third family" stars.
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