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Abstract

The chiral quark condensate and the dressed Polyakov loop are investigated in a two-flavor

NJL model in the mean field approximation. In quantum chromodynamics the chiral quark

condensate is an exact order parameter for chiral symmetry breaking in the chiral limit, whereas

the dressed Polyakov loop is an order parameter for confinement for infinite bare quark masses.

For this reason, both quantities are particularly examined at vanishing and high bare quark

mass and it is checked, whether the expectations derived from quantum chromodynamics are

fulfilled. We furthermorde derive the T -µ-phase diagram from both quantities.

Zusammenfassung

Das chirale Quarkkondensat und der gedresste Polyakov-Loop werden in einem NJL Modell

mit zwei Quarkflavors in Mean-Field-Näherung untersucht. In der Quantenchromodynamik ist

das chirale Quarkkondensat ein exakter Ordnungsparameter im chiralen Limes, wohingegen

der „dressed“ Polyakov-Loop ein Ordnungsparameter für Confinement bei unendlicher nackter

Quarkmasse ist. Aus diesem Grund werden beide Größen insbesondere bei verschwindender

und großer nackter Quarkmasse untersucht und es wird überprüft, ob die Erwartungen aus

der Quantenchromodynamik erfüllt sind. Darüberhinaus werden die T -µ-Phasendiagramme zu

beiden Größen ermittelt.



Contents

1. Introduction 4

2. Theoretical Basics 6
2.1. The Nambu–Jona-Lasinio-Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1. Effective Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2. NJL Model at Finite Temperature and Quark Chemical Potential . . . . . . . 8

2.1.3. Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2. Arbitrary Boundary Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1. The Dressed Polyakov Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3. Numerical Results 13
3.1. Fermionic Chiral Condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2. Bosonic Chiral Condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3. φ-dependent Chiral Condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4. Chiral Condensate without Thermal Cutoff . . . . . . . . . . . . . . . . . . . . . . . . 17

3.5. Consequences on the Dressed Polyakov Loop . . . . . . . . . . . . . . . . . . . . . . . 19

3.6. The Dressed Polyakov Loop as an Order Parameter . . . . . . . . . . . . . . . . . . . 19

3.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4. Summary and Outlook 24

A. Motivation for the Matsubara Replacement in Thermal Field Theory 25

3



1 Introduction

Quantum chromodynamics (QCD) is the physical theory that describes interaction of quarks

and gluons, which are part of the set of elementary particles described by the standard model of

particle physics. Quarks are particles that obey the strong interaction which is a force acting on

the color charge of a particle and is transmitted by its gauge bosons, the gluons. Due to the fact,

that the force between two quarks does not decrease with their distance, one cannot observe

single quarks in nature; they always stick together as hadrons, which is called confinement.

Two famous, unsolved problems that researchers focus on nowadays are the analytical proof

of confinement in QCD and the localization of phase transitions in the QCD T -µ-phase diagram.

Understanding the last one shall help to explain the creation of hadronic matter in the early uni-

verse. A forthcoming project from which one expects to shed light on the QCD phase diagram is

the new accelerator “FAIR”, being built at “GSI Helmholtzzentrum für Schwerionenforschung”

in Darmstadt the next years.

Since gluons themselves underly the strong interaction, which makes it almost impossible

to do any exact calculations, theoretical approaches to deal with the above-named problems

are rather complex. Even though it is possible to calculate cross sections perturbatively and

therefore gain information about interactions occurring in quantum chromodynamics, the com-

putation of many-body interactions is barely possible. This is why the thermodynamic behavior

of quarks and gluons is hardly understood.

A possible workaround is using effective models, that share symmetry properties with the

QCD and hence facilitate the exact calculation of observables in QCD alike quantum field the-

ories. The attempt is to gain information using effective theories, which help to understand

the behavior of quarks and gluons in QCD. The Nambu–Jona-Lasinio model is one convenient

model, that can be used to explore quarks and their properties. Although the NJL model does

not include any confinement, it is possible to calculate observables that are or might be order

parameters for the confined phase in other models, which opens up the opportunity to check

which observables might serve as an order parameter for confinement, and which do not.

Two important quantities in QCD are the chiral quark condensate (or chiral condensate), that

is an exact order parameter for chiral symmetry in the chiral limit, m= 0MeV, and the Polyakov

loop, which is an order parameter for confinement in case of infinite bare quark masses, m=∞.

Lattice calculations have shown that in the range of realistic quark masses both parameters

indicate a cross-over transition. According to these calculations the two cross-overs occur at

approximately the same temperature. Another quantity is the dressed Polyakov loop, that equals

the Polyakov loop in the limit m = ∞, hence the dressed Polyakov loop is an order parameter

for confinement, too.

The NJL model includes chiral symmetry and the chiral quark condensate can be easily cal-

culated, but the model does not include any gluons, thus the Polyakov loop can not be defined.

However, it is possible to compute the dressed Polyakov loop.

In QCD one expects the chiral cross-over to become sharper in the chiral limit, since the cross-

over passes into a phase transition, and blurred at large bare quark masses. On the contrary the

cross-over implied by the dressed Polyakov loop should become sharper with increasing bare
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quark masses.

In this work the behavior of the dressed Polyakov loop and chiral condensate is investigated in

the chiral limit and at large bare quark masses, to check, whether the expectations of quantum

chromodynamics are fulfilled in the NJL model.
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2 Theoretical Basics

2.1 The Nambu–Jona-Lasinio-Model

The Nambu–Jona-Lasinio model had been introduced by Y. Nambu and G. Jona-Lasinio in [1]

in 1961 and extended in [2] in the same year. It was an approach to explain the mass of

nucleons, before the idea of quarks has been developed. Nambu and Jona-Lasinio suggested,

that the nucleon mass arises as the self-energy of self-interacting fermions. These fermions were

supposed to obey an attractive force between particle and antiparticle in order to form a fermion

condensate.

Since quarks have been discovered to be the real components of nucleons, the original inter-

pretation of the NJL model is outdated. Nevertheless, it is used as an effective model of quarks,

nowadays. The Lagrangian is given by

L =ψ
�

i /∂ −m
�

ψ+ G
h

�

ψψ
�2
+
�

ψiγ5τaψ
�2
i

, (2.1)

where τa denotes the Pauli matrices in isospin space and m the bare quark mass. The two-

flavor NJL model describes an up and a down quark, therefore the mass m is a matrix given by

diag(mup, mdown). Due to the fact, that the quark masses of the up and down quark are hardly

dissimilar (compared to the much heavier nucleons), one uses the simplification of identical

masses m= mu = md .1

In case of m = 0 MeV, the Lagrangian splits up into two independent parts, a right-handed

and a left-handed one, describing a right-handed and left-handed field ψr and ψl , respectively.

Both parts of the Lagrangian have their own SU(2) symmetry with the symmetry transformation

ψ→ e−i ~θ~τψ, (2.2)

such that the full Lagrange density is invariant under a global SU(2)r×SU(2)l symmetry, which

is also called chiral symmetry. ~τ denotes the vector of Pauli matrices, the generators of SU(2).

Besides the chiral symmetry (if m = 0 MeV), the Lagrangian is invariant under a global U(1)

transformation (ψ → e−iaψ, a ∈ R). According to this, the NJL model has the same global

symmetry as the Lagrangian of quantum chromodynamics and is assumed to have analog effects.

2.1.1 Effective Mass

The effective mass, that was supposed to explain the nucleon mass, arises due to self-interaction

occurring in all quantum field theories. The diagrammatic self-interaction is shown in figure 2.1.

Translating this diagram in an equation yields

iSd(p) = iSb(p) + iSb(p)(−iΣ)iSb(p) + . . .= iSb(p) + iSb(p)ΣSd(p), (2.3)

1 Actually, the mass matrix reads diag(m, m) = mI, but multiplications with I are usually omitted and will not be

explicitly written down in this work.
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Figure 2.1.: Diagrammatic illustration of the self-interaction. The bold and thin line stand for

the dressed and bare quark propagator, respectively. The circles are one-particle

irreducible diagrams, constituting the self-energy.

where Σ describes the self-energy and

Sd(p) =
/p+M

p2−M2+ iǫ
(2.4)

and

Sb(p) =
/p+m

p2−m2+ iǫ
(2.5)

denote the dressed and bare fermion propagator, respectively. Multiplying equation (2.3) with

the inverse propagators S−1
d
(p) = /p−M+ iǫ and S−1

b
(p) = /p−m+ iǫ yields the relation between

bare and effective quark mass:

M = m+Σ (2.6)

=
k k kk

p

Figure 2.2.: Simple Feynman diagram of the dressed propagator.

The self-energy Σ can be determined applying Feynman rules to figure 2.2:

Σ = 2G

∫

d4p

(2π)4
Tr
�

iSd(p)
	

+ 2G · iγ5τai

∫

d4p

(2π)4
Tr
�

iγ5τaSd(p)
	

, (2.7)

where the trace is performed in Dirac, color and flavor space. Taking into account that the trace

of an odd number of gamma matrices vanishes and Tr I = 4N f Nc (4-dimensional Dirac space

and degeneracy in flavor and color space), the self-energy can be written as

Σ = 8GN f Nc

∫

d4p

(2π)4
iM

p2−M2+ iǫ
(2.8)

Using the residual theorem and the residue R= − 1

2Ep
in p0 = −
Æ

E2
p
+ iǫ with Ep =

p

~p2+M2,

one can perform the time-integration
∫∞

−∞

dp0

2π
in equation (2.8):

Σ = 8iGMN f Nc

∫

d3p

(2π)4
2πi

−2Ep

= 4GMN f Nc

∫

d3p

(2π)3
1

Ep

(2.9)
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Transforming this integral to spherical coordinates, the angular integration can be performed.

All in all one obtains the following equation that can be solved numerically in order to estimate

the effective mass M :

M = m+
2N f Nc

π2
GM ·

∫ Λ

0

dp
p2

Ep

(2.10)

Since the integral is divergent, a momentum cutoff is applied as regularization. For a finite

cutoff parameter Λ, the above integral can be solved analytically and equation (2.10) reads

M = m+
2N f Nc

π2
GM ·

�

−
1

2
M2 · asinh

�

Λ

|M |

�

+
1

2
Λ
p

Λ2+M2

�

(2.11)

2.1.2 NJL Model at Finite Temperature and Quark Chemical Potential

In order to analyze the T -µ-phase diagram mentioned above, it is not sufficient to calculate

quantities at zero temperature and quark chemical potential. Calculating physical observables

at finite temperature and chemical potential, one has to consider a thermal field theory formal-

ism. One of these formalisms is the Matsubara formalism (also referred to as imaginary time

formalism), in which the time integral is replaced by a discrete sum over so called Matsubara

frequencies ωn:
∫

dp0

2π
f (p0,~p)−→ iT

∞
∑

n=−∞

f (iωn+µ,~p) (2.12)

A brief motivation for this transition is given in appendix A based on [3] and [4], where

more detailed introductions to thermal field theory can be found. One important result is, that

fermionic and bosonic fields are liable to the boundary conditions

φ(~x , 0) = ±φ(~x ,β), (2.13)

where the ±-sign indicates the different boundary conditions for bosons (+) and fermions (−).

Given the mode expansion

φ(~x , t) =
∑

n∈N

eiωn tφn(~x), (2.14)

one can use the periodicity (2.13) to calculate the Matsubara frequencies:

φ(~x , 0) = ±φ(~x ,β) (2.15)

⇔
∑

n∈N

φn(~x) = ±
∑

n∈N

eiωnβφn(~x) (2.16)

Equation (2.16) yields the bosonic and fermionic Matsubara frequencies, respectively:

ω(b)
n
= 2nπT (2.17)

ω( f )
n
= (2n+ 1)πT (2.18)
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Using the replacement (2.12), the effective mass at finite temperature and quark density can

be written as

M = m− 8GMN f Nc

∫

d3p

(2π)3

∑

n∈Z

T

(iωn+µ)
2− E2

p

(2.19)

A convenient method to solve this equation is using the residue theorem backwards to replace

the Matsubara sum by an integral in the complex plane (see [5] for an explicit calculation).

Afterwards, the path of this integral can be changed to surround both poles near the real axis.

In a last step, the integral can be replaced using the residue theorem to obtain the following

formula:

M = m− 2GM
NcN f

π2

(

∫ Λ

0

dp
p2

Ep

−

∫ Λ

0

dp
p2

Ep

�

1

1+ e−β(Ep−µ)
+

1

1+ e−β(Ep+µ)

�

)

(2.20)

The effective mass is closely related to the vacuum expectation value
¬

ψψ
¶

of ψψ, which is

the so called chiral or quark condensate and is in general defined as

¬

ψψ
¶

= −i

∫

d4p

(2π)4
Tr
�

S(p)
	

. (2.21)

Comparing this definition with equation (2.7) immediately yields the relation

¬

ψψ
¶

= −
Σ

2G
=

m−M

2G
. (2.22)

In the chiral limit, the chiral condensate is an exact order parameter for chirality, since it is

proportional to the effective mass if m = 0 MeV. Chiral symmetry is spontaneously broken if

M > 0 MeV, which means, that the effective mass equals zero, when the chiral symmetry is

restored.

The expectation value of the pseudo-scalar interaction channel vanishes, since a similar def-

inition like in equation (2.21) is zero due to Tr
�

iγ5τaS(p)
	

= 0. The trace vanishes since the

trace over the pauli matrices equals zero.

The solution of equation (2.24) is not necessarily unique, so that one has to consider, which

solution is the correct one. In statistical physics the a stable solution is specified by the global

minimum of a thermodynamic potential. Since temperature and chemical potential are fixed,

the grand canonical potential is suitable for estimating the physically relevant solution.

In order to derive the grand canonical potential in mean field approximation one has to lin-

earize the Lagrangian using the vacuum expectation value
¬

ψψ
¶

.

Using the relation (2.22), the Lagrangian can be written in mean field approximation (like

done in [6]) as

L =ψ(i /∂ −M)ψ−
(m−M)2

4G
, (2.23)
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which describes non-interacting quasi particles of mass M in a constant, global potential. That

means, that the grand potential is a sum of the mass term and a free quark gas contribution (see

[6] for a more detailed derivation):

Ω =
(m−M)2

4G
−

NcN f

π2

(

∫ Λ

0

dp p2Ep

+

∫ Λ

0

dp p2T
�

ln
�

1+ e−β(Ep−µ)
�

+ ln
�

1+ e−β(Ep+µ)
��

)

(2.24)

One can show, that the self-consistency equation (2.20) is equivalent to ∂Ω

∂M
= 0.

2.1.3 Model Parameters

The model parameters are chosen as Λ = 631.5 MeV, G · Λ2 = 2.193 and m = 5.5 MeV, taken

from [7]. In order to investigate the behavior of the dressed Polyakov loop (see section 2.2.1)

as an order parameter, various bare quark masses are used throughout this work. Therefore the

bare mass parameter m= 5.5 MeV will be referred to as conventional bare quark mass.

The thermal part of the integral in equation (2.20) and (2.24) is not divergent and thus does

not need to be regularized. Nevertheless, the cutoff is applied to this part of the integral in this

work.

2.2 Arbitrary Boundary Condition

The boundary conditions that have been introduced in equation (2.13) arise due to the defini-

tion of the time-ordered product for bosons and fermions (see appendix A). Nevertheless, these

boundary conditions can be generalized to

ψ(~x , x0) = eiφψ(~x , x0+ β), (2.25)

with an arbitrary phase parameter φ ∈ [0, 2π]. Using the mode expansion (2.14) as done

before, one can calculate Matsubara frequencies depending on the arbitrary phase parameter φ:

ψ(~x , 0) = eiφψ(~x ,β) (2.26)

⇔
∑

n∈N

ψn(~x) = eiφ
∑

n∈N

eiωnβψn(~x) =
∑

n∈N

ei(ωnβ+φ)ψn(~x) (2.27)

⇔ 2πn=ωnβ +φ (2.28)

According to equation (2.28), the Matsubara frequencies for arbitrary boundary conditions read

ωn = (2πn−φ)T . (2.29)

The two special cases of bosonic and fermionic Matsubara frequencies emerge when φ = 0

and φ = π, respectively. Applying the new Matsubara frequencies to the model yields slightly

different equations for the grand canonical potential and effective mass. The easiest way to
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evaluate the new expressions is by defining an complex chemical potential µ̃ as µ̃= µ− iT (φ−

π), that encapsulates the phase parameter. Using the replacement µ → µ̃ one obtains the

φ-dependent grand potential

Ωφ =
(m−M)2

4G
−

NcN f

π2

(

∫ Λ

0

dp p2Ep

+

∫ Λ

0

dp p2T
�

ln
�

1+ e−β(Ep−µ)−iT (φ−π)
�

+ ln
�

1+ e−β(Ep+µ)+iT (φ−π)
��

)

. (2.30)

The same replacement can be done to get the φ-dependent self-consistency equation of the

effective mass. The term iT (φ−π) is only part of the exponent and therefore only occurs in the

exponential function of the derivative
∂Ωφ

∂M
. This means, in turn, that

∂Ωφ

∂M
= 0 is still equivalent

to equation (2.20) when replacing µ with µ̃ and that the φ-dependent self-consistency equation

of the effective mass can be written as

Mφ = m− 2GMφ

NcN f

π2

(

∫ Λ

0

dp
p2

Ep

−

∫ Λ

0

dp
p2

Ep

�

1

1+ e−β(Ep−µ)−iT (φ−π)
+

1

1+ e−β(Ep+µ)+iT (φ−π)

�

)

. (2.31)

Since the grand canonical potential and effective mass depend on the phase parameter φ,

one obtains a φ-dependent chiral condensate, too, whose definition is the same as in equa-

tion (2.22):
¬

ψψ
¶

φ
=

m−Mφ

2G
. (2.32)

Note that the summand π in µ̃ is arbitrary but chosen this way that we receive the former

quantities when φ equals π, corresponding to fermionic boundary conditions. Accordingly,
¬

ψψ
¶

0
and
¬

ψψ
¶

π
will be referred to as bosonic and fermionic chiral condensate, respectively.

Depending on the choice of φ the grand potential might become complex, which means, that

the minimum of Ωφ is undefined. Thus only its real component is minimized. Furthermore, the

effective mass might be complex, too, so that one can calculate the derivative of Ωφ with respect

to the imaginary part of Mφ additionally. Since neglecting
∂Ωφ

∂Mφ
= 0 is a common simplification,

the “imaginary” derivative is not taken into account; besides, an imaginary mass is unphysical.

2.2.1 The Dressed Polyakov Loop

Using the φ-dependent chiral condensate, one can define the so called dressed Polyakov loop as

Fourier transformation of
¬

ψψ
¶

φ
(see [8]):

Σ(1) =

∫ 2π

0

dφ

2π
e−iφ
¬

ψψ
¶

φ
. (2.33)
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The dressed Polyakov loop is related to the “thin” Polyakov loop (referred to as Polyakov loop),

that is a Wilson-loop closed around time direction. In lattice QCD, the origin of the Polyakov

loop, it is an exact order parameter for confinement in the limit of infinite bare quark masses.

One expects the Polyakov loop and dressed Polyakov loop to be equal in the limit of infinite

bare quark masses m→∞. The NJL model does not include any gluons, which means, that the

Polyakov loop can not be defined in this model.

It is still interesting to check the behavior of the dressed Polyakov loop at large bare quark

masses: On the one hand one expects the dressed Polyakov loop to differ from the chiral con-

densate, which is no order parameter for confinement; but on the other hand, the NJL model

lacks gluons, confinement and the thin Polyakov loop, so that the dressed Polyakov loop might

still correlate with the chiral condensate for m→∞.

It should be mentioned, that the imaginary part of the dressed Polyakov loop vanishes identi-

cally (see [9]), which is why only the real part of Σ(1) is considered in this work.
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3 Numerical Results

3.1 Fermionic Chiral Condensate

Using the grand canonical potential, one can easily calculate the constituent quark mass for

arbitrary temperature and quark chemical potential, which, in turn, can be used to calculate the

chiral condensate via equation (2.22).

A T -µ-diagram of the fermionic chiral condensate for the conventional bare quark mass is

plotted in figure 3.1(a), where the chiral condensate is normalized to its maximum at T = µ =

0 MeV. In the range of small values of
µ

T
, no phase transition but a cross-over occurs, while

the changeover for small values of T is a first-order phase transition. The critical point of this

diagram is located in between.

The figures 3.1(b), 3.2(a) and 3.2(b) show the normalized chiral condensate for bare quark

masses m = 0 MeV, m = 55 MeV and m = 550 MeV, respectively. In the chiral limit, the first-

order phase transition remains, while the crossover turned into a second-order phase transition.

In this case the chiral condensate is an exact order parameter and the border, where it drops to

zero is the phase border of the chiral phase diagram in the chiral limit.

The diagrams for tenfold and hundredfold bare quark masses possess a first-order phase tran-

sition for large values of
µ

T
and a crossover apart from that, just as the conventional diagram.

Note that the chiral condensate decreases much more slowly with increasing bare quark mass.

Nevertheless, the chiral condensate drops asymptotically to zero for all values of
µ

T
with increas-

ing the temperature.

3.2 Bosonic Chiral Condensate

To understand the φ-dependent chiral condensate, it is helpful to have a look at the chiral

condensate for bosonic boundary condition φ = 0, as plotted in figures 3.3(a) to 3.4(b)1. One

can see that for µ = 0 MeV, the condensate seems to be unbounded or at least monotonously

increasing, that is, no phase transition or crossover occurs in this case. This is why the the chiral

condensate can not be normalized to its maximal value, like done in the fermionic case. In order

to achieve comparability, the bosonic chiral condensate is divided by its value at T = µ= 0MeV,

too, which happens to be identical to the value of the fermionic chiral condensate at T = µ =

0MeV. On the other hand, the bosonic chiral condensate converges to zero alongside every path

µ ¾ T . Note that the phase transition is of first order in the bosonic realm independent of the

bare quark mass, unlike the cross-over of the fermionic chiral condensate.

One can see, that in the range of T ¦ 400MeV the occurring phase transition for m= 550MeV

causes the chiral condensate to drop to negative values at first, before it converges to zero. More

detailed plots show, that this behavior occurs for every positive bare quark mass.

1 Please note, that the viewing direction differs from the one in section 3.1 so that the T - and µ-axis seem to be

swapped.
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(a) regular bare quark mass, m= 5.5 MeV
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(b) chiral limit, m= 0 MeV

Figure 3.1.: Chiral condensate using the conventional parameter set (lhs.) and in the chiral limit

(rhs.). Both plots have been normalized to the expectation values at T = µ= 0MeV.
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(a) m= 55 MeV
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(b) m= 550 MeV

Figure 3.2.: Chiral condensate for higher bare quark masses, normalized to its largest values at

T = µ= 0 MeV.
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(a) regular bare quark mass, m= 5.5 MeV
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Figure 3.3.: Bosonic, chiral condensate using the conventional parameter set (lhs.) and in the

chiral limit (rhs.). The same scale factor as used in figures 3.1(a) and 3.1(b) is applied.
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Figure 3.4.: Bosonic, chiral condensate for higher bare quark masses, normalized to the same

values as 3.2(a) and 3.2(b), respectively.
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Figure 3.5.: φ-dependent chiral condensate for m = 5.5 MeV, normalized to its value at T =

0 MeV

3.3 φ-dependent Chiral Condensate

In addition to the two special cases < ψψ >φ=0 and < ψψ >φ=π discussed in the sections

above, one needs to analyze the general chiral condensate in order to understand the behavior of

the dressed Polyakov loop. The figures 3.5(a) to 3.8(a) show the φ-dependent chiral condensate

over the temperature and boundary condition φ. For each mass parameter used before, two

plots are shown with µ= 0 MeV and µ= T , respectively.

In figure 3.5(a) one can see, that the chiral condensate is constant in φ at zero temperature.

Not surprisingly, the chiral condensate is asymptotically increasing in T for all mass parameters

and µ = 0 MeV around φ = 0 (bosonic range), while it converges asymptotically to zero if φ

is not close to zero (fermionic range). The chiral condensate approaches zero continuously, so

that, speaking in words of thermodynamics, only a cross-over occurs. In case of µ= T ,
¬

ψψ
¶

φ

vanishes for arbitrary boundary conditions with increasing temperature, which is the expected

behavior, since the bosonic chiral condensate vanishes alongside µ = T , too. In this case the
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Figure 3.6.: φ-dependent chiral condensate in the chiral limit, normalized to its value at T =

0 MeV
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Figure 3.7.: φ-dependent chiral condensate for m= 55MeV, normalized to its value at T = 0MeV
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Figure 3.8.: φ-dependent chiral condensate for m = 550 MeV, normalized to its value at T =

0 MeV
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Figure 3.9.: Fermionic chiral condensate with and without cutoff for the thermal part. The

chemical potential is zero on the left hand side and equals the temperature on the

right hand side. The conventional bare quark mass has been used and the value at

T = µ= 0 MeV has been applied as a scale factor.

changeover in the bosonic range is a sharp edge and therefore reminds of a first-order phase

transition.

Besides the displacement of the cross-over, the T -φ-diagrams at larger bare quark masses

show the same behavior. In the chiral limit the (µ=T)-diagram shows the same first order

transition in the bosonic range, while the transition in the fermionic range and in case of zero

chemical potential is of second order. Naturally, the transition in the fermionic range is of first

order for all bare quark masses, if
µ

T
is big enough to cause a first-order phase transition in the

fermionic T -µ-phase diagram.

3.4 Chiral Condensate without Thermal Cutoff

All previous plots have been generated using a cutoff in the thermal integral of equations (2.20)

and (2.24). As mentioned before, this cutoff is not necessarily applied and can be omitted

yielding slightly different results.

The fermionic chiral condensate is plotted with and without thermal cutoff in figure 3.9.

Overall, the fermionic chiral condensate is barely sensitive to the cutoff, only the location of

the cross-over has changed a little. On the contrary, the bosonic chiral condensate (shown in

figure 3.10) shows a crucial difference when using a cutoff in the thermal integral: In case of

zero quark chemical potential the bosonic chiral condensate is proportional to the temperature

when the cutoff is applied, while it seems to be increasing at least quadratically, if the cutoff is

omitted. If µ = T the difference becomes even more evident. Without any cutoff the bosonic

quark condensate grows like in case of zero chemical potential, whereas the condensate with

cutoff instantaneous drops to a value near zero at T ≈ 700 MeV, suggesting a first-order phase

transition.
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Figure 3.10.: Bosonic chiral condensate like the fermionic one in figure 3.9.
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3.5 Consequences on the Dressed Polyakov Loop

The previously discussed behavior has extensive influence on the dressed Polyakov loop, that can

be seen in figure 3.11. One can see, that the dressed Polyakov loop seems to be unbounded when

no thermal cutoff is applied, regardless of the chemical potential, which is a direct outcome of

the behavior of the bosonic quark condensate without thermal cutoff. Using the cutoff in the

thermal integral yields different results depending on the choice of µ. In case of µ = 0 MeV the

dressed Polyakov loop seems to rise permanently, though not as fast as the dressed Polyakov

loop without cutoff; if µ = T the dressed Polyakov loop reaches a maximum and decreases

afterwards.

As seen before, the dressed Polyakov loop is defined as an integral over the φ-dependent chi-

ral condensate, which equals zero for high temperature and small quark chemical potential, if a

thermal cutoff is applied. Accordingly, the dressed Polyakov loop drops to zero for high temper-

atures, too (figure 3.11(b)). The only exception is a small chemical potential (figure 3.11(a)),

since the chiral condensate is monotonously increasing with respect to the temperature in the

bosonic region in this case. Consequently, the dressed Polyakov loop permanently increases with

rising temperature, too. Either way, the dressed Polyakov loop does not reach a plateau and can

not be normalized using some maximum value like it is done with the fermionic chiral conden-

sate. Hence, if the dressed Polyakov loop serves as an order parameter, one has to consider

another criterion than the crossing of some line, in order to check, where the phase transition

or cross-over occurs.

Notice, that the dressed Polyakov loop is liable to regularization effects, since it diverges or

drops to zero depending on the choice of regularization.

With increasing chemical potential the chiral cross-over occurs at lower temperature indepen-

dent of the boundary condition (see section 3.3). This φ-independent effect causes the dressed

Polyakov loop to act that way, that the possible phase transition or cross-over happens to take

place at lower temperature for high values of
µ

T
, which is exactly the behavior of the chiral

cross-over.

3.6 The Dressed Polyakov Loop as an Order Parameter

As discussed before (section 3.5), the dressed Polyakov loop is asymptotically divergent in T ,

for small values of the quark chemical potential, and drops to zero otherwise, which makes

it difficult to interpret the dressed Polyakov loop as an order parameter as easily as the chiral

condensate. The following plots 3.12 to 3.15 show the fermionic chiral condensate and dressed

Polyakov for various values of
µ

T
and bare quark masses. The chiral condensate is normalized

to equal one at zero temperature and the same scale factor is applied to the dressed Polyakov

loop.

One can notice, that the cross-over (chiral phase transition in the chiral limit), indicated by

the dressed Polyakov loop seems to occur at the same temperature as the cross-over stated by

the chiral condensate. In order to compare the chiral condensate and dressed Polyakov loop,

one has to consider how to determine the temperature where the cross-over takes place.

Two possible criteria for the location of the chiral cross-over are the intersection of the nor-

malized chiral condensate with the 1

2
-line and the inflection point, that is the maximum of the
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Figure 3.16.: µ-T -phase diagrams for conventional bare quark mass (lhs.) and in the chiral limit

(rhs.). Note that phase transition in the chiral limit is well-defined, which is why no

“intersection”-phase transition is shown.
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Figure 3.17.: µ-T -phase diagrams for tenfold (lhs.) and hundredfold (rhs.) bare quark masses.

first derivative with respect to the temperature. Note that in the chiral limit the phase transition

is unambiguously defined to occur, when the chiral condensate vanishes, which is (in this case)

identical to the inflection point criterion. The dressed Polyakov loop can not be normalized

to its maximum value and thus only its derivative with respect to T can be used to locate the

cross-over.

These possibilities sum up to three different phase transitions for each bare quark mass. The

following figures 3.16(a) to 3.17(b) show the curves of these phase transitions in the µ-T -

diagram.

One can see, that the phase boundary specified by the dressed Polyakov loop completely

coincides with the chiral phase boundary. At nonzero bare quark masses the two boundary lines

differ and the larger the bare quark masses are, the more disparate they become. Still, the phase

boundary lines indicated by the gradient remain close compared to the phase boundary given

by the intersection with 1

2
. Especially in figure 3.17(b) the intersection-boundary seems to be

mostly unrelated to the other boundary lines. Nevertheless, all three boundary lines are equal

below the endpoint, where the first-order phase transition occurs.
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3.7 Conclusion

As stated in the beginning, the cross-over of the chiral condensate was expected to become

sharper with decreasing bare quark masses resulting in a sharp edge in the chiral limit, corre-

sponding to the chiral phase transition. Furthermore one expected, that the chiral cross-over is

blurred in the range of large bare quark masses. These effects can be seen in figures 3.13 and

3.15, respectively. The huge difference between the two chiral boundary lines in figure 3.17(b)

confirms the blurred chiral cross-over at large bare quark masses in particular.

In the last chapter we have seen, that the dressed Polyakov loop correctly ascertained every

phase transition indicated by the quark condensate. Especially, in the chiral limit, the dressed

Polyakov loop serves as an exact order parameter for chiral symmetry breaking. However, the

expectation of a sharp edge in the dressed Polyakov loop at large bare quark masses (m =

550 MeV) is at least fulfilled at µ¾ 2T (see figure 3.15).

Like in quantum chromodynamics, the cross-over indicated by the quark condensate and

dressed Polyakov loop respectively are close-by, even though the NJL model does not include any

confinement and hence the dressed Polyakov loop can not specify a confinement-deconfinement

cross-over or phase transition.
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4 Summary and Outlook

In the beginning we introduced the Lagrangian of a two-flavor NJL model that has a SU(2)×

SU(2) symmetry (chiral symmetry) and a U(1) symmetry in common with the Lagrange density

of quantum chromodynamics. We derived the grand canonical potential in mean field approxi-

mation, in order to calculate the effective mass and the chiral quark condensate.

Afterwards, the fermionic fields ψ have been generalized to obey arbitrary boundary condi-

tions, which led to a grand potential depending on these boundary conditions. The effective

mass and chiral condensate can be defined via derivatives of the grand potential and therefore

depend on the boundary conditions, too.

Using the generalized quark condensate, we defined the dressed Polyakov loop, that is an

order parameter for confinement in quantum chromodynamics. We discussed the behavior of

the φ-dependent chiral condensate and investigated its influence on the dressed Polyakov loop.

In a last step, the cross-over boundary of the dressed Polyakov loop and the chiral conden-

sate have been calculated and compared for various bare quark masses. We have seen, that

the cross-over temperature of the dressed Polyakov loop and quark condensate coincide, like in

quantum chromodynamics, although the NJL model lacks confinement and one has to consider

a different interpretation for the dressed Polyakov loop.

The extension to arbitrary boundary conditions has been done with strong approximations.

We considered only the real part of the grand canonical potential and the effective mass and

the quark condensate were assumed to be real in general. A matter of interest is, whether the

results of this work stay correct, when omitting these approximations. So the next step could be

to do calculations in a fully complex NJL model.

Alternatively, one could calculate the dressed Polyakov loop and the chiral condensate in

the PNJL model (Polyakov–Nambu–Jona-Lasinio model), that is an extension of the NJL model

and includes a gluonic part. It is possible to define the thin Polyakov loop in the PNJL model

and therefore compare the dressed Polyakov loop and the chiral condensate to a quantity, that

specifies confinement cross-over.
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A Motivation for the Matsubara Replacement in Thermal Field Theory

Thermal field theory (also named finite temperature field theory) is a combination of conven-

tional quantum field theory and statistical (quantum-)mechanics. As in statistical mechanics,

the statistical observables of a quantum field-theoretical system are entirely determined by a

partition function. In this work the temperature and chemical potential are fixed, so that the

grand canonical partition function is suitable to describe the quantum field-theoretical systems.

The grand canonical partition function Z can be written as

Z = Tr
�

ρ̂
	

(A.1)

ρ̂ = e−β(Ĥ−µN̂), (A.2)

where ρ̂ denotes the density matrix, Ĥ the Hamiltonian and N̂ a particle number operator.

Using the basis
�

�φa

�

fulfilling the completeness relation
∫

dφa

�

�φa

�


φa

�

�= I, one can write the

trace explicitly as

Z = Tr
¦

e−β(Ĥ−µN̂)
©

=

∫

dφa




φa

�

� e−β(Ĥ−µN̂)
�

�φa

�

. (A.3)

Now inspect the transition amplitude between a state
�

�φa

�

and its time evolution using the

path integral formalism and the Hamilton densityH :




φa

�

� eiH t
�

�φa

�

=

∫

Dπ

∫

Dφ exp

¨

i

∫ t

0

d t

∫

d3x
�

πφ̇ −H (π,φ)
�

«

(A.4)

Keeping in mind, that a conserved charge forces the replacement

H (π,φ)→H (π,φ)−µN (π,φ), (A.5)

the comparison between equation (A.3) and (A.4) suggests, that the grand partition function

can be written as functional integral using the transition 1

T
= β → i t.

The expectation value of an operator is defined as < Ô >= 1

Z
Tr
¦

ρ̂Ô
©

, so that the propagator

of a field can be written as

D(x , y) = D(~x , ~y; x0, y0) = Tr
�

ρ̂T[φ(x)φ(y)]
	

(A.6)

Using the Heisenberg time evolution φ(~x , x0 + β) = eβ Ĥφ(~x , x0)e−β Ĥ in Euclidean space, one

can show, that the propagator is (anti-)periodic:

D(~x , ~y; x0, y0) = ±D(~x , ~y; x0, y0+ β) (A.7)

The ±-sign occurs due to the different definitions of the bosonic and fermionic time ordered

products. Furthermore, equation (A.7) implies the periodicity of bosonic and fermionic fields φ

and ψ respectively.

φ(~x , x0) = +φ(~x , x0+ β) (A.8)

ψ(~x , x0) = −ψ(~x , x0+ β) (A.9)

This periodicity allows a Fourier series expansion from which the replacement
∫

→
∑

arises.
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