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Zusammenfassung

In dieser Arbeit modellieren wir Baryonen als gebundene Zustände der Diquark-
Quark Streuung mit Hilfe des Zwei-Flavour Nambu–Jona-Lasinio Modells. Hierzu
ist es notwendig die auftretenden Diquarks, ähnlich wie die Mesonen, durch eine
Bethe-Salpeter Gleichung in Random-Phase Näherung zu beschreiben. Dabei werden
wichtige Eigenschaften der Diquarks, wie deren Farbstruktur und effektive Kop-
plungskonstante mit den Quarks extrahiert, welche zur Darstellung der Baryonen
notwendig sind. Basierend auf der Dyson-Gleichung für den Baryonenpropaga-
tor lässt sich im Anschluss eine Bethe-Salpeter Gleichung für die Diquark-Quark
Streuung motivieren. Durch eine Analyse der Vertexstruktur und Anwendung der
statischen Näherung ist es möglich, die Bethe-Salpeter Gleichung in einen Ausdruck
umzuschreiben, welcher große Ähnlichkeit zur Dirac-Gleichung aufweist.
Neben den Vakuumeigenschaften, wie der Masse oder der spontanen Brechung der
chiralen Symmetrie, werden weitere Effekte für endliche Temperatur und chemisches
Potential der Hadronen und Quarks untersucht. Von besonderem Interesse ist hierbei,
die Schmelztemperatur der Diquarks und Nukleonen im Rahmen des Modells zu
bestimmen und mit den Ergebnissen bereits vorhandener Arbeiten zu vergleichen.
Darüber hinaus studieren wir das grundlegende Verhalten der Pionen, Diquarks und
Nukleon für endliches chemisches Potential bei kleiner Temperatur.
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Abstract

In this thesis, we model baryons as diquark-quark bound states within the framework
of the two-flavour Nambu-Jona–Lasinio model. Therefore, the diquarks are described
as bound states of two quarks, which can be evaluated in a similar way as for the
mesons. This analysis leads to important properties of diquarks, i.e. their colour
structure and effective coupling constant to the quarks, which are necessary for the
further discussion. As the following step, a Bethe-Salpeter-like equation is motivated
through a Dyson equation to obtain the scattering matrix for diquark-quark scattering.
After a detailed description of the vertex structure, the static approximation is used to
simplify the Bethe-Salpeter equation, which leads to a less computationally intensive
Dirac-like equation.
Besides the vacuum properties of those particles, including the mass or spontaneously
broken chiral symmetry, effects of finite temperature and chemical potential are
studied. Especially, the melting temperature of the diquark and nucleon within the
model are calculated in order to compare the results to other theoretical investigations.
Moreover, we study the basic behaviour of the pion, diquark and nucleon for low
temperature and non-vanishing chemical potential.
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Chapter 1

Introduction

More than two thousand years ago the ancient Greeks had the idea that matter
does consist of indestructible sub-particles which they called atom. This concept
was rediscovered in the 18th century by scientists in order to explain new chemical
observations within a particle model of matter in an elegant way. Around 200 years
later, Ernest Rutherford presented his model in which an atom has an assumed solid
core, the nucleus, surrounded by an electron cloud. He was able to prove the model
suggestions with the well-known scattering experiment where he shot alpha particles
on a thin gold layer. Moreover, Rutherford showed in later experiments that the
nucleus is not as solid as he had thought. The nucleus is composed of protons, which
he could detect experimentally, and a theoretical particle, which was later called
neutron. It took sixty more years, until deep inelastic electron scattering led to the
proof that the constituent nucleons, i.e. proton and neutron, do have constituents as
well. Nevertheless, the theoretical physicist Murray Gell-Mann claimed the existence
of such particles some years before [1], which he has called quarks and received the
Nobel price in physics for this work in 1969.
With the description of strongly interacting matter based on quantum field theoretical
methods in 1973, quarks and their properties became of particular interest in science.
Thereby, the widely accepted quantum field theory for strongly interacting matter is
the theory of quantum chromodynamics (QCD), which describes the interaction of
colour-charged quarks and gluons [2]. More precisely, QCD is a non-abelian SU(3)
Yang-Mills theory, where the eight gluons are the massless gauge bosons. From the
Lagrangian

LQCD = −1
4
F a

µνF
µν
a + ψ̄ (i /D−m)ψ, (1.1)

containing the covariant derivative

(Dµ)c′c = δcc′∂µ − ig
1
2
(λa)cc′Aa

µ (1.2)
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and the gluon field strength tensor

F a
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f a

bc Ab
µ Ac

ν, (1.3)

one can already see that the gluons carry colour, which is one of the differences
between QCD and quantum electrodynamics (QED). In the latter one the gauge
bosons, namely the photons, do not carry a charge. In the above Lagrangian, g is
the strong coupling constant, while ψ denotes the quark fields of the six quarks up,
down, strange, charm, bottom and top. The structure constants of SUcolour(3) are
denoted by fabc. The non-abelian character of QCD leads to a running coupling, which
is strong for small momenta (or large distances) and decreases for large momenta (or
small distances), respectively. As a result, some interesting features emerge in this
theory, from which we specifically want to mention confinement [3] and asymptotic
freedom [4, 5]. The latter describes the weak interaction of quarks and gluons in
the high-energy regime. It follows that quarks can be treated as nearly free particles
within this regime, which allows to use perturbation techniques. The confinement
meanwhile arises due to the strong coupling of the QCD in the low-energy regime.
Therefore, strongly interacting particles are always bound into colourless states within
this regime. To be more precise, these colourless states have to be colour-singlets,
which are called hadrons. Hadrons are physical particles that consist either of a
quark-antiquark pair (mesons) or three quarks (baryons) as valence quarks. Until now,
no mathematical proof has been found for confinement, although some lattice QCD
calculations indicate it [6].
Another interesting discussion follows by leaving the vacuum and entering a medium
description, i.e. finite temperature and chemical potential, of the QCD. Due to high
energy collider experiments at RHIC at Brookhaven Nation Lab or LHC at CERN,
physicists are able to study the QCD phase diagram experimentally. Therefore, it be-
comes possible to draw conclusions for hot dense states of matter, which were present
in the very early universe where neither mesons nor baryons existed. One interesting
phenomenon in this discussion is the understanding of the emerging deconfined state
of matter, the so-called quark-gluon plasma (QGP) [7]. With increasing temperature
and/or pressure a phase transition is expected, where the quarks and gluons are no
longer confined in hadrons and hence become the proper degrees of freedom. Since
this state of matter can not be observed directly, the particle yields and energy spectra
after the QGP state where quarks and gluons are confined within hadrons again, are
the only possibility to understand the physics of the QGP. Moreover, these and later
experimental set-ups may be able to confirm the predictions of QCD about the phase
diagram and hence test the theory itself. Therefore, certain aspects of hadrons in
hot dense matter have to be studied theoretically and proven in experiments as well.
Especially, the composition of hadrons and mesons as well as their medium properties
are of particular interest.
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Besides the confinement and asymptotic freedom properties of QCD, the non-abelian
character makes it very complicated to solve the full QCD for systems in both, vacuum
and the medium, states. Due to the sign problem in lattice QCD approaches [8],
one has to restrict oneself to certain regimes and models, which may include non-
observable properties. While in the low-energy regime, perturbative techniques are no
longer suitable because of the running coupling constant of QCD, other approaches,
such as effective models, can be used to simulate the dynamics of strongly interacting
matter. As a simple assumption, the mass of the gluon can be assumed to be infinitely
large with the consequence that the Lagrangian reduces to a local point-like interaction.
Nevertheless, these models can be used to investigate some of the aspects that are
not yet reachable from the full QCD treatments. The model used in this work, the
so called Nambu–Jona-Lasinio-model [9, 10], was originally developed to describe
elementary nucleons, and was later reinterpreted as a low-energy effective model
of QCD [11, 12, 13]. Beside the quarks, a bound state of two quarks represents a
non-observable particle within this model, due to its non-vanishing colour structure
and thus has to be treated with care. However, this bound state, which is called
diquark, will be valuable in the modelling of the baryons to simplify the non-trivial
three-body problem.

The goal of this work is to model baryons within the NJL model in a two-flavour case
and discuss certain aspects in vacuum and hot dense matter. Since this discussion
is based on a three-body problem, we will introduce proper approximations and
assumptions to simplify the modelling by transformation into a two-body problem.
Before we can start with the baryons, we give an overview of the NJL model in the
second chapter and discuss certain properties of it, e.g. spontaneous symmetry break-
ing and vertex structure. This discussion leads to the Fierz transformation, which is
used to separate the particle-particle channel from the particle-antiparticle channel.
With the latter, we are able to model the mesons in chapter three and fit the free
parameters of the NJL model to the pion mass and the pion decay constant. In the
fourth chapter, we use the particle-particle channel to model the diquarks and discuss
their structure in colour and flavour space. Finally, in the fifth chapter, our results
from the previous discussions are used to motivate the structure of the baryons in
the NJL model as bound states of a diquark-quark scattering process. This leads to
a Bethe-Salpeter-like equation for the introduced static approximation. Besides the
vacuum investigation, the emerging bound state is discussed in the medium as well.
Thereupon, in the last chapter a short summary is given and followed by an outlook
on possible extensions.

3



Chapter 2

The Nambu–Jona-Lasinio model

In this chapter, we will give an overview of the NJL model, which is used in this work
to describe physical particles, like mesons and baryons. Originally the NJL model was
designed by Y. Nambu and G. Jona-Lasinio in 1961, to explain the high nucleon mass
in accordance with the partially conserved axial current in the pre-QCD era [9, 10].
Later, it was reinterpreted for QCD calculations in the low-energy regime, where gluon
degrees of freedom are supposed to be frozen-out, by reducing the complex structure
of strong interactions in the full QCD Lagrangian to a point like local interaction. Due
to the non-renormalizable character of the NJL model, an additional cutoff parameter
appears, which has to be included to handle the upcoming divergent integrals.
In particular, the NJL model shares the same global symmetries with QCD and in
this way can describe the chiral symmetry and its spontaneous breaking in the vac-
uum as well. It also allows to study the thermodynamic aspects of QCD like the
restoration of the chiral symmetry for high temperatures and densities in the QCD
phase diagram [14, 15]. Besides the non-renormalizable character of the NJL model,
another drawback is the lack of confinement due to the missing gluonic interactions.
Nonetheless, the NJL model can be used to study strongly interacting matter in a
more computationally friendly way than solving the complex QCD.
An NJL-type Lagrangian can be separated into two parts: The first one is the
interaction-free part including the Dirac equation, which describes the kinematic
of the system, while the second one represents the interaction in the model, which has
in our case the form of a local four-point one:

LNJL = Lfree + Lint (2.1)

= ψ̄ (i/∂ −m)ψ + ∑
I

gI(ψ̄ΓIψ)2 (2.2)

Here ψ is a Dirac spinor, representing a quark field. Additional indices for the colour
and flavour space are for now omitted. The mass m denotes a diagonal matrix of
dimension N f (number of flavours) containing the different current (or bare) masses

4
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of the quarks. In the so-called chiral limit, the masses will be neglected, such that m
vanishes. In this case, the Lagrangian does not explicitly break the chiral symmetry
any more, cf. section 2.2. For the interaction term we have made the general ansatz

Lint = ∑
I

gI(ψ̄ΓIψ)2 , (2.3)

where ΓI is an operator corresponding to a certain interaction channel with specific
coupling constant gI . The interaction channel ΓI is a tensor product of operators acting
in Dirac, colour and flavour space:

ΓI = ΓH, f ,c = ∆H︸︷︷︸
Dirac

⊗ Γc︸︷︷︸
Colour

⊗ Γ f︸︷︷︸
Flavour

, (2.4)

where the index H denotes a certain hadronic spin channel, i.e. spin channels for
mesons or diquarks. At this point, it is valuable to introduce the Fierz transformation
to separate the particle-antiparticle from the particle-particle channel. The latter will
lead to the description of the diquarks, which we need to model baryons within the
NJL model as a bound state of the diquark-quark scattering process.

2.1. Fierz transformation

A general ansatz for an NJL-type interaction Lagrangian is given by (2.3). We can
rewrite this equation without loosing any information by using the anticommutation
rules for fermions [14]:

Lint = gI(ψ̄ΓIψ)2 = gIΓI
ījΓ

I
k̄lψ̄īψjψ̄k̄ψl (2.5)

= −gIΓI
ījΓ

I
k̄lψ̄īψlψ̄k̄ψj (2.6)

= gIΓI
ījΓ

I
k̄lψ̄īψ̄k̄ψlψj (2.7)

where the bared indices are related to the complex conjugated quark fields. For
simplicity, we restrict ourself to Hartree-type approximations, where the first and
second as well as the third and fourth field are contracted. It follows that equation (2.6)
and (2.7) are no longer equivalent. This leads, for equation (2.6), to the exchange
diagrams or Fock terms, used to describe the mesons and are represented by the
Lagrangian

Lex := −gIΓI
ījΓ

I
k̄lψ̄īψlψ̄k̄ψj . (2.8)

Meanwhile equation (2.7) yields the particle-particle contribution, which is connected
to the description of diquarks with the corresponding Lagrangian

Lψψ := gIΓI
ījΓ

I
k̄lψ̄īψ̄k̄ψlψj . (2.9)

5
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Now it would be useful to rewrite the operators ΓI
ījΓ

I
k̄l as

ΓI
ījΓ

I
k̄l = ∑

M
cI

MΓM
īl ΓM

k̄j (2.10)

to obtain the exchange term

Lex = −gI ∑
M

cI
M(ψ̄ΓMψ)2 . (2.11)

Here M denotes the corresponding meson (spin) channel, i.e. scalar (S), pseudoscalar (P),
vector (V), axial (A), tensor (T) as well as the flavour and colour channels. Combining
this with the original term Ldir := Lint representing the direct interaction, we get the
full effective particle-antiparticle contribution

Lψ̄ψ = Ldir + Lex = ∑
M

gM(ψ̄ΓMψ)2 (2.12)

with

gM =

{
−cI

MgI for M 6= I
(1− cI

I)gI for M = I
(2.13)

For the particle-particle channel, a similar expression can be found using the charge
conjugation operator C = iγ2γ0 [14]. It has the following properties:

C2 = −1⇒ C−1 = −C (2.14)

CT = C† = −C∗ = C−1 = −C (2.15)

Performing this on the different channels in Dirac space, one finds for the trans-
posed ∆H

(∆H)T = −S(N)C∆HC (2.16)

with

S(S) = S(P) = S(A) = 1 (2.17)

S(V) = S(T) = −1. (2.18)

Overall, we find for the particle-particle channel in Dirac space:

Γ(a)
ī j Γ(a)

k̄l = −S(a) ∑
b
(ΓbC)īk̄(CΓb)l j (2.19)

We can use (2.19) to get the particle-particle contribution of the original Lagrangian

Lψψ = ∑
D

dI
DgI(ψ̄ΓDCψ̄T)(ψTCΓDψ) (2.20)

= ∑
D

hD(ψ̄ΓDCψ̄T)(ψTCΓDψ) , (2.21)

6
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where a redefined coupling constant hD for the different particle-particle channels has
been included. Up to this point, we do not distinguish between the spaces such that
the above discussion holds in each space separately. For the full transformation, the
matrices cI

M and dI
D have to be calculated in Dirac, flavour and colour space. A more

detailed calculation of these matrices can be found in appendix B.

2.2. Global symmetries of the NJL model

In order to study certain QCD aspects, an NJL model Lagrangian has to have the same
global symmetries as the QCD Lagrangian. Typically, the symmetries of a certain NJL
model Lagrangian are [16]

SU(2)V ⊗ SU(2)A ⊗U(1)V (2.22)

for two considered flavours up and down. The related transformations read:

• SU(2)V

ψ 7→ exp(−i~τ~θ/2)ψ , (2.23)

• SU(2)A

ψ 7→ exp(−iγ5~τ~θ/2)ψ , (2.24)

• SU(1)V

ψ 7→ exp(−iα)ψ , (2.25)

with θ ∈ R3, α ∈ R and ~τ the vector containing the three Pauli matrices. The Noethe-
rian current of the U(1)V symmetry, which is always satisfied, corresponds to the
conservation of baryon number. However, while the SU(2)V vector symmetry is
already satisfied in the isospin limit with equal bare masses, the Lagrangian is only
invariant under a SU(2)A-rotation for vanishing bare quark masses.
In the chiral limit, an important phenomenon appears with increasing coupling con-
stant when the SU(2)A is broken spontaneously by the chiral condensate. According
to the Goldstone theorem, the three broken generators of the SU(2)A symmetry cor-
respond to three massless Goldstone bosons. Indeed, we will see that the masses
of the three pions are equal to zero in the chiral limit. For non-zero, but small bare

7
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quark masses, the SU(2)A symmetry is explicitly broken, thus the pion masses do not
vanish. In this case, the pions are called pseudo Goldstone bosons, since their mass
is small compared to other mesons [14]. In general, the SU(2)V ⊗ SU(2)A symmetry
is written by the isomorphic chiral symmetry, represented by independent SU(2)
transformations of the left- and right-handed quark fields.

2.3. NJL Lagrangian

After the general discussions of the NJL model in the previous sections, we want
to determine a local four-point interaction Lagrangian, based on the colour-current
Lagrangian

Lint = −g(ψ̄γµλaψ)2 . (2.26)

This Lagrangian can be directly motivated from the QCD Lagrangian as a massive
gluon exchange, which leads to the point like interaction term above. After performing
a Fierz transformation of Lagrangian (2.26), cf. detail Appendix B.3, it can be separated
into a particle-particle and particle-antiparticle contribution. The resulting particle-
antiparticle Lagrangian, which is related to the mesonic spectrum, reads

Lψ̄ψ = 2g
N2

c − 1
N2

c

[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2 + (ψ̄τmψ)2 + (ψ̄iγ5τmψ)2

− 1
2
(ψ̄γµψ)2 − 1

2
(ψ̄γµγ5ψ)2 − 1

2
(ψ̄γµτmψ)2 − 1

2
(ψ̄γµγ5τmψ)2

]
. (2.27)

Since the physical mesons are in a colour singlet state, we have omitted terms propor-
tional to the colour-octet, i.e. λa. To simplify the notation, we define

gs := 2g
N2

c − 1
N2

c
, (2.28)

as a new coupling constant for the scalar channel. Moreover, we will restrict ourselves
to the scalar mesons and neglect the vector terms, i.e. terms which include γµ.
The term (ψ̄ψ)2 is connected to the (scalar) sigma meson, while the term (ψ̄iγ5τmψ)2

describes the pseudoscalar pions. Since these terms can be transformed into each other
by a chiral rotation, they are often called “chiral partners”. Note that this Lagrangian
is invariant under a U(1)A rotation due to the remaining terms (ψ̄iγ5ψ)2 and (ψ̄τmψ)2.
This symmetry can be explicitly broken by including an additional instanton-induced
interaction term, that comes with the same coupling constant gs,1 which exhibits chiral

1This condition is not necessary, but simplifies the Lagrangian.
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symmetry, but violates the U(1)A symmetry [14]. Overall, the used NJL Lagrangian
for the mesonic spectrum reads

Lψ̄ψ = gs
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2] . (2.29)

For the particle-particle channel, we find after performing a Fierz transformation of
the Lagrangian (2.26)

Lψψ = 2g

{
Nc + 1

2Nc

[
(ψ̄CτAλA′ ψ̄

T)(ψTCτAλA′ψ) + (ψ̄iγ5CτAλA′ ψ̄
T)(ψTCiγ5τAλA′ψ)

− 1
2
(ψ̄γµγ5CτAλA′ ψ̄

T)(ψTCγ5γµτAλA′ψ)

− 1
2
(ψ̄γµCτSλA′ ψ̄

T)(ψTCγµτSλA′ψ)
]

− Nc − 1
2Nc

[
(ψ̄CτAλS′ ψ̄T)(ψTCτAλS′ψ) + (ψ̄iγ5CτAλS′ ψ̄T)(ψTCiγ5τAλS′ψ)

− 1
2
(ψ̄γµCτAλS′ ψ̄

T)(ψTCγµτAλS′ψ)

− 1
2
(ψ̄γµγ5CτAλS′ ψ̄

T)(ψTCγµγ5τAλS′ψ)
]}

. (2.30)

Due to the fact that diquarks are a system of two bound fermions and hence have to
fulfil Pauli’s principle, the restriction in the Lagrangian (2.30) to totally antisymmetric
terms is appropriate.
For the vector and axial-vector channel, i.e. ∆D ∈ {γµ, γ5γµ}, the corresponding
polarisation loop in the BS equation of the diquarks would have a transversal and
longitudinal contribution, similar to the discussion of vector mesons in [17]. Therefore,
in order to simplify the modelling of baryons, we will only consider the scalar and
neglect the vector diquarks. Moreover, the second term with pre-factor −Nc−1

2Nc
is

related to the colour sextet, which cannot be combined with a third quark to obtain
a colourless state and thus will be neglected too. It follows that the considered
interaction Lagrangian for the particle-particle channel is given by

Lψψ = hs

[
(ψ̄CτAλA′ ψ̄

T)(ψTCτAλA′ψ) + (ψ̄iγ5CτAλA′ ψ̄
T)(ψCiγ5τAλA′ψ)

]
,

where

hs := 2g
Nc + 1

2Nc
(2.31)

is the corresponding coupling constant. This Lagrangian satisfies the same global
symmetries as the mesonic Lagrangian given in equation (2.29).

9



2.4. Gap equation Chapter 2. The Nambu–Jona-Lasinio model

Summarizing the above discussion the considered NJL Lagrangian used in this work
reads

LNJL =ψ̄ (i/∂ −m)ψ

+ gs
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2]

+ hs

[
(ψ̄CτAλA′ ψ̄

T)(ψTCτAλA′ψ) + (ψ̄iγ5CτAλA′ ψ̄
T)(ψCiγ5τAλA′ψ)

]
. (2.32)

Since the choice of Lagrangian (2.26) is not unique, one can imagine other possible
interaction terms which share the same global symmetries with QCD. Therefore, the
coupling constants can be redefined in any way. At the end, the parameter gs as well
as hs, and other free parameters of the model, have to be fitted to certain physical
observable values, which will be discussed later.

2.4. Gap equation and constituent quarks

In this section, we want to describe the self interaction of the quarks in the so-called
Hartree- or mean-field approximation, where a quark propagates in the averaged
potential of all other quarks. The corresponding self-energy leads to an effective
mass, the so-called constituent mass, that is larger than the bare quark mass included
in the Lagrangian. As mentioned in the previous section, the vertices of the NJL
Lagrangian are point-like with four external (anti)fermions fields. The dressed quark
propagator can be defined via the Dyson equation, which is diagrammatically depicted
in figure 2.1, where only direct terms are included. Due to the local four-point

S(p) S(p)S0(p)

Σ

S0(p)

k

Figure 2.1. Gap equation in Hartree approximation.

character of the interaction, the exchange terms can always be transformed by a
Fierz transformation into direct-like ones. In this sense the Hartree approximation
is equivalent to the more general Hartree-Fock approximation up to a redefinition
of the coupling constants in the Lagrangian. For the left-hand side of figure 2.1, we
claim that the new dressed quark propagator for a certain flavour f (bold lines) can

10
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be written as a Feynman propagator with modified dressed quark mass M f

iS f (p) = i(/p −M f + iε)−1 . (2.33)

With the bare quark propagator

iS f
0(p) = i(/p −m f + iε)−1 (2.34)

and the self-energy Σ, the self-consistent equation of picture 2.1 has to be solved to
obtain the constituent mass M:

iS f (p) = iS f
0(p) + iS f

0(p)(−iΣ)iS f (p) (2.35)

=
(
(S f

0(p))−1 − iΣ
)−1

(2.36)

The self-energy in Hartree approximation is given by

−iΣ := −i ∑
I

ΣI = −2i ∑
I

gIΓI
∫ d4k

(2π)4 Tr(ΓI iS(k)) , (2.37)

where we used, that for closed fermion loops we have to take the trace over all spaces
and integrate over the internal four-momentum k with an additional negative sign.
In Hartree approximation with quark propagator (2.33), there are only contributions
from the particle-antiparticle channel in the Lagrangian, i.e. we only have to consider
terms in the sum of equation (2.37) where I = M holds, such that (2.29) will be
used. In the Lagrangian, the self-energy can be associated with a linearisation of the
expression Lint in terms of the condensate 〈ψ̄ΓMψ〉

(ψ̄ΓMψ)2 ≈ 2ψ̄ΓMψ〈ψ̄ΓMψ〉 − 〈ψ̄ΓMψ〉2 +O(δ2
ψ̄ψ) , (2.38)

and neglecting higher order terms. Since the quadratic term in the upper expression
only shifts the Lagrangian it can be also neglected in the context of this work. After
inserting (2.38) into the Lagrangian (2.32) and comparing the result with the Dyson
equation (2.35), one obtains immediately that the chiral condensate is given by

〈ψ̄ΓMψ〉 = −i
∫ d4k

(2π)4 Tr(ΓMS(k)) . (2.39)

Due to the trace in relation (2.37) and (2.39), only vertices and condensates will survive,
which do not contain terms proportional to γ5 or one of the Pauli matrices, since these
matrices are traceless. The remaining condensate related to ΓM = 1 is the so called
chiral condensate.

11
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However, comparing both sides of equation (2.35), yields

M f = m f + Σ(M f ) (2.40)

= m f + 2i ∑
M

gsΓM
∫ d4k

(2π)4 Tr(ΓMS(k)) (2.41)

= m f + 2gs1i
∫ d4k

(2π)4 Tr(1S(k)) (2.42)

= m f + 8Ncgsi
∫ d4k

(2π)4 ∑
f ′

M f ′

k2 −M2
f ′ + iε

. (2.43)

which simplifies in case of the isospin limit (mu = md) for two quark flavours to

M = m + 16MNcgsi
∫ d4k

(2π)4
1

k2 −M2 + iε
. (2.44)

The emerging divergent integral will be labelled as

iI1 := i
∫ d4k

(2π)4
1

k2 −M2 + iε
(2.45)

and has to be regularised in a proper way, which will be discussed later.
Within the chiral limit, equation (2.44) has always the trivial solution M = 0. For
increasing coupling constant gs also non-trivial solutions will appear, that lead to the
spontaneously broken SU(2)A symmetry. For sufficiently small couplings meanwhile,
the SU(2)A symmetry is not broken in the chiral limit, whereas it explicitly broken
for a non-vanishing bare quark mass. This behaviour is shown in figure 2.2 which
makes use of parameter set [E] introduced in chapter 3.3 and the cutoff parameter Λ
discussed in the following section. Typically, the chiral condensate is used as the order
parameter for the spontaneously broken chiral symmetry. Figure 2.3 demonstrates the
behaviour of the condensate in dependence of the inverse coupling constant. Keeping
in mind that the introduced coupling constants and bare quark masses are treated as
free parameters of the model, we have to fix them on physical observables like the
pion mass and the pion decay constant. Beside these free parameters, the cutoff Λ,
emerging from the regularisation scheme, is another free parameter of the model and
will be formally introduced in the following section.

2.5. Regularisation

The description of mesons and other physical quantities contains divergent integrals
like I1 in equation (2.44), which have to be regularised in a proper way. In this

12
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0.3 0.5 0.7 0.9

1/gsΛ
2

0.0
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0.9

M
/
Λ

m=0 MeV
m=9.046 MeV

Figure 2.2. Solutions of the gap equation for certain bare quark masses. The constituent
mass M breaks the SU(2)A symmetry spontaneously, since the quarks obtain
a non-vanishing constituent mass. Here parameter set [E], cf. chapter 3.3,
has been used.

work, we will use Pauli-Villars (PV) regularisation, since it preserves the Lorentz
invariance in contrast to the other commonly used three-momentum cutoff. While this
method uses a sharp cutoff to determine the divergent integrals, PV regularisation
subtracts additional terms that behave like the integrand itself for large momenta,
but only have a small contribution for small momenta [17]. Therefore, the number of
additional terms depends on the degree of divergence of the considered integral. In
this context, another advantage of PV regularisation compared to hard-cutoff methods
is the possibility to make any substitutions within the integrand without taking care
of the domain.
Overall, one replaces the original integrand by a weighted sum over new masses, i.e.

∫ d4k
(2π)4 f (M, k) −→

∫ d4k
(2π)4

N

∑
j=0

cj f (Mj, k) . (2.46)

Of course with coefficient c0 = 1 and M0 = M. In order to regularise the integral I1,
which exhibits the highest order of divergence in this work, we find for the upper
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0.3 0.5 0.7 0.9
1/gsΛ
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(〈 ψ̄ψ

〉 /N f
)1/

3

m=0 MeV
m=9.046 MeV

Figure 2.3. Chiral condensate (per flavour) as order parameter for the spontaneously
broken chiral symmetry, with parameter set [E].

substitution

iI1(M) = i
∫ d4k

(2π)4
1

k2 −M2 + iε

→ i
∫ d4k

(2π)4

(
c0

1
k2 −M2 + iε

+ c1
1

k2 − (M2 + Λ2) + iε
+ c2

1
k2 − (M2 + 2Λ2) + iε

)
,

(2.47)

where the ansatz

M2
j = M2 + j ·Λ2 (2.48)

for the masses Mj has been made. The (soft) cutoff Λ in equation (2.48) enters the
model as a new free parameter. Since the original integral diverges quadratically,
which can be directly seen by counting the powers of k in the denominator a minimum
of two regulators have to be used. To ensure that all divergences are treated, the
coefficients cj for the three terms in equation (2.47) have to fulfil

∑
j

cj = 0 (2.49)

∑
j

cj ·M2
j = 0 , (2.50)
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which leads to c0 = c2 = 1, c1 = −2.
Now the k0 integration can be separated in each term from the~k one, by using∫ d4k

(2π)4
1

k2 −M2 + iε
=
∫ d3k

(2π)3

∫ dk0

2π

1
k0 + E~k − iε

· 1
k0 − E~k + iε

(2.51)

and

E~k =
√

k2 + M2 . (2.52)

After application of the residue theorem, the k0 integration can be carried out. The re-
maining three-momentum integration can be solved analytically. Finally, the integral I1

take the analytical form

iI1(M, Λ) =
1

16π2

(
M2 log

(
M2

M2 + Λ2

)
+ (M2 + 2Λ2) log

(
M2 + 2Λ2

M2 + Λ2

))
. (2.53)

As already mentioned, the integral I1 has the highest order of divergence in this work.
In order to be consistent, all other encountered integrals will be regularised in the
same way. This means, always two additional terms with coefficients c1 = −2, c2 = 1
will be added.

2.6. Quarks in the medium

So far, we have studied quarks for zero temperature and vanishing chemical potential.
However, in order to study hadrons in dense hot matter, we have to transform
our results in the context of finite temperature field theory. Hereby, the Matsubara
formalism will be used, where we have to replace the energy integration by a sum
over discrete Matsubara frequencies

i
∫ d4k

(2π)4 f (k) 7→ −T ∑
{iω}

∫ d3k
(2π)3 f (iω + µ,~k) . (2.54)

In case of the gap equation, iω is related to fermionic Matsubara frequencies defined
as iωF := iν = (2n + 1)πiT, with n ∈ Z.
We find that the gap equation (2.44) is formally equal to the vacuum case, up to a
redefinition of the emerging integral. The gap equation thus reads

M = m + 16MNcgsL1 , (2.55)

with

L1(M, T, µ) := iI1(M, T, µ) = −T ∑
{iν}

∫ d3k
(2π)3

1
(iν + µ)2 − E2

k
. (2.56)
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The new integral L1 now depends on temperature T and chemical potential µ as well.
A detailed discussion of the techniques to calculate this kind of integral can be found
in appendix C.

50 150 250
T (MeV)

0

100

200

300

400

500
M

 (
M

eV
)

m=0 MeV
m=9.046 MeV

Figure 2.4. Solution of the gap equation for varying temperature and zero chemical
potential.

We have already seen that the chiral symmetry is explicitly broken for non-vanishing
bare quark mass m in vacuum. Furthermore, the quarks obtain a mass higher than
the actual bare quark mass due to the spontaneously broken chiral symmetry. Under
a variation of the temperature with vanishing chemical potential, cf. figure 2.4, the
quarks obtain the constituent mass as for the vacuum case, until a temperature of
approximately T ≈ 100 MeV has been reached. Increasing the temperature further,
leads to a smoothly decreasing constituent mass until it reaches nearly the value of the
bare quark mass. This behaviour is related to an restoration of the chiral symmetry.
While for non-vanishing mass the transition to the chirally restored phase is smooth
and is associated with a crossover, it is more abrupt in the chiral limit. This can
be identified with a second order phase transition. Due to m = 0 MeV, the chiral
symmetry will be fully restored for temperatures higher than Tc ≈ 195 MeV.
A slightly different behaviour shows for a variation of the chemical potential as shown
in figure 2.5. For a fixed temperature T = 1 MeV constituent mass stays constant in
the chiral limit and for non-vanishing bare quark mass as well. However, a certain
quark does not feel any restraints for appropriate low chemical potential and behaves
like it is in the vacuum and hence obtain the vacuum mass in accordance with the
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Figure 2.5. Solution of the gap equation for varying chemical potential and T = 1 MeV.

silver-blaze property. This property is expected to be valid for zero temperature or
approximately satisfied for appropriate low temperatures.2 The statement of this
property can be summarised to the fact that all observables, and therefore the mass of
a particle as well, should not depend on the chemical potential up to a critical value of
µ at zero temperature [18]. Especially in the case of T = 1 MeV we will see for mesons
as physical particles that the prediction of the silver-blaze property will be fulfilled.
Meanwhile, for the quarks, we obtain a first order phase transition at µc ≈ 400 MeV.
The quark mass jumps down instantly to zero in the chiral limit or to a certain value
for non-vanishing bare quark mass and runs towards zero for high values of µ.
An other possible situation can be found for chemical potentials larger than Mvac.
Hereby, the mass will decrease at µ = Mvac before it jumps down. In our discussion
we obtain the first case in which the constituent mass falls down without decreasing
smoothly first.

2We will use T = 1 MeV for all following discussions to investigate the behaviour of vanishing
temperature.
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Chapter 3

Mesonic spectrum

In the following chapter, we will continue with the description of mesons in the NJL
model for two quark flavours, to obtain expressions for the meson masses and pion
decay constant. In order to generate a set of parameters for the bare quark mass mq,
cutoff Λ, coupling constant gs and constituent mass M, the pion mass and pion decay
constant will be fixed to the experimental values. Then, the equation for the pion
mass and decay constant, as well as the gap-equation represents a coupled system of
equations, which can be simultaneously solved.
Mesons are physical particles built of a quark and an antiquark. Since mesons are
observable in nature, their colour structure has to be a singlet state. In flavour space,
we can identify a scalar singlet and a pseudoscalar triplet state for two assumed
flavours, where the latter can be identified with the three pions. In accordance with
the almost degenerate mass of the three pions in nature, the study of the pions can be
performed in the isospin limit which is a convenient simplification for the expressions.
The singlet state in flavour space meanwhile is typically identified with the sigma
meson. We will later discuss the fact that the sigma meson is not a well defined
particle and hence is not important for our goal to model baryons.
The particles in this chapter will be described by a quark-antiquark scattering process
as a collective excitation in the theoretical framework of a Bethe-Salpeter (BS) equation
in random-phase approximation (RPA). Hereby, the BS equation describes the bound
state of a two-body system and can be motivated directly from the Dyson equation
corresponding to the two-body Greens-function or S-matrix, respectively. After cutting
off external fermion fields, one arrives at the BS equation.
However, before we can solve the BS equation, the scattering kernel and the meson
polarisation loop need to be discussed.
In the previous chapter, we have already seen that a Fierz transformation of the colour-
current interaction Lagrangian (2.26) leads to the already introduced Lagrangian for
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the mesonic channel

L = Lfree + Lψ̄ψ (3.1)

= ψ̄ (i/∂ −m)ψ + gs
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2] . (3.2)

To proceed with the derivation of the pions, it is convenient to transform the interaction
part of the Lagrangian (3.2) into the form

Lψ̄ψ = gs
[
(ψ̄ψ)2 + (ψ̄iγ5~τψ)2] (3.3)

= gs ∑
M

[(
ψ̄īΓ

M
īj ψj

) (
ψ̄k̄ΓM

k̄l ψl

)]
, (3.4)

that is similar to the one shown in the discussion of the Fierz transformation. Here,
the vertex functions ΓM denotes the different mesonic channels and can be extracted
directly from the Lagrangian (3.3). For the sigma meson the corresponding vertex
structure reads

Γσ = 1⊗ 1c ⊗ 1 f (3.5)

while for the pion

Γπ, f = iγ5 ⊗ 1c ⊗ τ f (3.6)

holds. To obtain an expression for the meson propagator, and thus for the masses,
the Bethe-Salpeter equation in random-phase approximation, diagrammatically rep-
resented in figure 3.1 will be investigated. The left-hand side of the Bethe-Salpeter

...

i

j l

k

Figure 3.1. Bethe-Salpeter equation in random-phase approximation (RPA) as an infinite
sum over polarisation loops.

equation is the scattering matrix (T-matrix) with the desired propagator having a pole
at the mass of the corresponding meson. The two bold dots denote the quark-meson
vertices which, at this point, are allowed to be different from the vertices included in
the scattering kernel (cross-hatched dots). In random-phase approximation, where
only quark-antiquark polarisation loops are included, the right-hand side of the Bethe-
Salpeter equation is the sum over all these loops. The leading order term therefore
is the scattering kernel itself. Evaluating figure 3.1, the scattering matrix iT has the
(simplified) form

iT = iK+ iK(−iΠ)iK+ iK(−iΠ)iK(−iΠ)iK+ . . . (3.7)
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i

j l

k

Figure 3.2. Self-consistent expression for the Bethe-Salpeter equation in RPA.

where iK and iΠ denote the scattering kernel and the polarisation loop, respectively.
Both quantities, in general, are matrices which do not have to be diagonal at all.
Reinserting the full scattering matrix into the right-hand side finally leads to the
self-consistent expression

iT (q) = iK+ iK(−iΠ)iT (q) (3.8)

with diagrammatic interpretation shown in figure 3.2. In accordance with the La-
grangian (3.2), the scattering kernel iK with all indices reads

i

j

k

l

:=

i

j l

k

= iKjī,k̄l = 2igs ∑
M
(ΓM

jī ΓM
k̄l ) , (3.9)

which can also be written as [17]

iKjī,k̄l = 2igs ∑
M
(ΓM

jī ΓM
k̄l ) = 2igs ∑

M,M′
δMM′(ΓM

jī ΓM′
k̄l ) (3.10)

with the factor of two entering the kernel as a result of the Feynman rules when
applying Wick’s theorem. In flavour space, the vertex structure of the scattering kernel
(3.10) for the three pions can be rewritten, which yields

∑
f

Γ f Γ f = ∑
f

τ f ⊗ τ f (3.11)

= τ1 ⊗ τ1 + τ2 ⊗ τ2 + τ3 ⊗ τ3 (3.12)

=
1
2
(τ1 + iτ2)⊗ (τ1 − iτ2) +

1
2
(τ1 − iτ2)⊗ (τ1 + iτ2) + τ3 ⊗ τ3 . (3.13)

Hence, the three pions can be distinguished from each other through the corresponding
representation in flavour space. We find that the vertex structure related to the first
term leads to the π+, cf. the l.h.s. of figure 3.1 with an intermediate π+ state between
the two vertices. The second term corresponds to π−, while the last one yields π0.
The vertex structures for the three pions have been summarised in table 3.1.
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Table 3.1. Representation for the three different pions.

pion state (flavour space) vertex structure in flavour space
|π+〉 |d̄u〉 1√

2
(τ1 + iτ2)⊗ 1√

2
(τ1 − iτ2)

|π−〉 |ūd〉 1√
2
(τ1 − iτ2)⊗ 1√

2
(τ1 + iτ2)

|π0〉 1√
2

(
|ūu〉 − |d̄d〉

)
τ3 ⊗ τ3

We have already noted in the introduction that the three pion masses are approximately
equal in nature. Hence, we will make use of the isospin limit, such that the pions are
degenerate in flavour space. Therefore, only one mass occurs within our investigations.

k

q+k

ΓM ΓM'
q

i

j l

k
q

Figure 3.3. Second order diagram in the BS equation for the scalar meson channel.

We now go back to the BS equation. In order to obtain an expression for scattering
matrix, we have to evaluate the second order diagram of the BS equation, depicted in
figure 3.3, which contains the so called polarisation loop. After a carefull evaluation
of this diagram under virtue of the Feynman rule for closed fermion loops, we find

iK(−iΠ)iK = −4i2g2
s ∑

M,M′
ΓM

jī

∫ d4k
(2π)4 ΓM

k̄′ l′ iSl′ j′(q + k)ΓM′
j′ ī′ iSī′ k̄′(k)Γ

M′
k̄l . (3.14)

The propagators of the quark, and antiquark, in this equation are defined in (2.33).
One can now insert expression (2.33) for the propagators S of the quark and antiquark,
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to obtain the polarisation loop

−iΠM,M′(q) :=

k

q+k

ΓM ΓM'

q
j'i'k'l'

q
(3.15)

:= −
∫ d4k

(2π)4 ΓM
k̄′ l′ iSl′ j′(q + k)ΓM′

j′ ī′ iSī′ k̄′(k) = −
∫ d4k

(2π)4 Tr
(

ΓMiSq(q + k)ΓM′ iSq̄(k)
)

,

(3.16)

for the mesonic channel. A detailed evaluation of the pion polarisation loop can be
found in appendix D.1. Considering the Lagrangian (3.4), we find that the polarisation
loop only gives a non-vanshing result for M = M′. Hence, the polarisation loop is
diagonal in all spaces just like the scattering kernel.
Back to the BS equation (3.7), and taking into account the above expressions finally
leads to the result that the scattering matrix itself is diagonal. As a consequence, the
different spin channels are fully separated from each other, such that the pion and
sigma meson do not mix. The scattering matrix for a certain meson thus reads

iT M = iK+ iK(−iΠ)iT (q) (3.17)

=: ΓMtMΓM , (3.18)

with the scalar function

itM(q) := 2igs + 2igs2igsiΠM(q) . . . (3.19)

= 2igs + 2igsiΠM(q)itM(q) , (3.20)

which represents a self-consistent equation itself and can be interpreted as the propa-
gator of a meson M. More precisely, it is the amputated BS equation, such that the
left-hand side of figure 3.2 defines the meson propagator, where the meson-quark ver-
tex is included. Later, we will discuss the meson-quark vertex in pole-approximation
to obtain an effective meson-quark coupling constant (cf. section 3.1). Nevertheless,
we will call the function defined in (3.19) meson propagator, but keep the included
vertex structure in mind.
Near the pole the propagator (3.20) is expected to behave like a free boson, which
propagator reads

DM(q) =
1

q2 −m2
M

. (3.21)

22



Chapter 3. Mesonic spectrum Chapter 3. Mesonic spectrum

Hence, at q2 = m2
M a pole emerges and can be used to define the mass mM. In order

to fit the free parameters of our model to the experimentally well known pion mass,
we have to evaluate the corresponding propagtor (3.20) for M = π, at its pole. We can
rewrite expression (3.20) into

itπ(q) = (1− 2gsΠπ(q))−12igs (3.22)

For the on-shell condition, i.e q2 = m2
π, the inverse propagator has to be zero. There-

fore, the mass determination reduces to a search for roots of the denominator in the
above equation in consideration of the on-shell condition q2 = m2

π. After inserting the
pion polarisation loop

−iΠπ(q) = 8Nc

∫ d4k
(2π)4

1
k2 −M2 − 8Nc

q2

2

∫ d4k
(2π)4

1
[(q + k)2 −M2] · [k2 −M2]

(3.23)

= 8NciI1 − 4Ncq2iI2(q2) , (3.24)

in the denominator, we have to solve

D−1
π (q) := 1− 2gs

(
8NciI1 − 4Ncq2iI2(q)

)
|q2=m2

π
= 0 , (3.25)

with

iI2(q) := i
∫ d4k

(2π)4
1

[(q + k)2 −M2 + iε] · [k2 −M2 + iε]
. (3.26)

A detailed investigation of this integral can be found in appendix D.1.1. Note that the
upper relations always contain a general four-momentum for the pion. It is convenient
to investigate the emerging expression in the rest frame of the corresponding particle,
which means using ~q = 0. Then, the dependency of D−1

π is only given by q0 rather
than q. The inverse propagator (3.25) as a function of q0 is shown in figure 3.4.
In the chiral limit, the inverse pion propagator (3.25) simplifies under virtue of gap-
equation (2.44) for m = 0 MeV to

D−1
π (q) = 8Ncq2iI2(q2)

)
|q2=m2

π
= 0 , (3.27)

which yields a vanishing pion mass in accordance with the Goldstone theorem. Thus,
the pion(s) become the Goldstone bosons for the spontaneously broken SU(2)A

symmetry.
It turns out that the behaviour of iI2 in the above equation is related to another
drawback of the NJL model due to its lack of confinement: For meson masses higher
than the sum of two quark masses, the polarisation loop, or to be more precise the
integral iI2, receives a non-vanishing imaginary part. This imaginary part can be
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Figure 3.4. Inverse pion propagator for parameter set [E], cf. section 3.3

identified with a finite decay width and is related to a decay of a meson into a quark–
antiquark pair.
The other possible particle described by the Lagrangian (2.12), the sigma meson, is
sometimes discussed controversially due to its large mass. Experimental investigations
have shown that the corresponding decay width has the magnitude of the mass itself
[19], such that this particle is not well-defined. Even though this does not hold for the
NJL model analysis with the random-phase approximation, the sigma meson will not
be part of the further discussion as already noted.
Nevertheless, we have to take care of the emerging imaginary part of iI2 for the pion
as well. To obtain physically relevant masses for the pions only the real part of the
propagator will be used. An opening imaginary part then shows up as a kink in the
propagator denoted with “1” in figure 3.4. Hence, roots related to values of q0 after
these kinks correspond to pions which are allowed to decay into an quark-antiquark
pair. The other two kinks, namely “2” and “3”, emerge due to the PV regularisation
scheme, where the two regulators become active.
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3.1. Effective Pion-quark coupling constant

In the previous section, we have discussed the amputated BS equation and have
identified its solution with the pion propagator given in equation (3.22). Diagrammat-
ically, this propagator includes the quark-meson vertices and therefore the pion-quark
coupling constant. To obtain an expression for this effective coupling constant, which
in general will depend on the momentum q, we make the ansatz

tπ(q0) = −
g2

πqq

q2
0 −m2

π

, (3.28)

where, we use the rest frame of the pion, i.e. ~q = 0 in order to simplify the discussion.
Equation (3.28) is based on the assumption, that near the pole the dependence of the
coupling gπqq on q is weak, such that it can be treated as a constant. The so-called
pole approximation utilizes this by expanding the denominator of (3.28) around zero.
We can apply the pole approximation to equation (3.22), which leads to

1− 2gsΠπ(q2
0) ≈ 1− 2gsΠπ(q2

0)
∣∣
q2

0=m2
π︸ ︷︷ ︸

=0

−2gs
∂Ππ(q2

0)

∂q2
0

∣∣∣∣
q2

0=m2
π

(q2
0 −m2

π)

+O((q2
0 −m2

π)
2) . (3.29)

Comparing the pole expansion of (3.28) with (3.29), we find that the coupling constant
can be expressed as

g−2
πq̄q =

∂Ππ(q2
0)

∂q2
0

∣∣∣∣
q2

0=m2
π

. (3.30)

We will see in following discussions that it is better suited to take the derivative with
respect to q0 instead of q2

0. This yields

g−2
πq̄q =

∂Ππ(q2
0)

∂q0

2q0

∣∣∣∣∣∣
q0=mπ

, (3.31)

which for sure leads to the same results as equations (3.30).

3.2. Pion decay

The observed weak decay of the charged pions into a muon and a muon-neutrino
can be described as the transition probability that a pion decays into the hadronic
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vacuum [20]. Although the electromagnetic decay of π0 into two photons is favoured,
the weak decay constant will be calculated for simplicity with the vertex structure of
the uncharged pion.
Due to parity conservation, the pion is only allowed to decay through the axial current.
It follows that the decay constant fπ, determining the strength of the chiral symmetry
breaking [21], can be defined through

〈0|Aa
µ(x)|πb(q)〉 = i fπqµδabeiqx , (3.32)

with the corresponding Feynman diagram shown in figure 3.5. After an evaluation of

p+q/2

p-q/2

jμa
q

Γbγμγ5
λa/2

Figure 3.5. Pion decay Feynman diagram: The pion-decay constant is a result of the
coupling between the pion (right-hand side) and the axial current.

the diagram in figure 3.5, one finds for the pion decay constant

fπ = − 4Ncgπqq MiI2(q2)
∣∣
q2=m2

π
. (3.33)

3.3. Parameter set and chiral theorems

We are now able to compute a set of parameters, which will be used in the further
studies. The pion mass, pion decay constant and the gap equation are solved simul-
taneously with fixed values for the pion mass mπ = 140 MeV and the pion decay
constant fπ = 92.21 MeV [19]. The results are given in the table 3.2 by varying the
constituent mass parameter M. In addition the chiral condensate (per flavour) and the
pion-quark coupling constant are displayed.
Typically, one uses a variation of the chiral condensate (〈q̄q〉/N f )

1
3 to obtain different

parameter sets of the NJL model, due to the fact that it is not known quite well. Since
we want to fit the free parameters later on to the well known nucleon mass, the chiral
condensate can be ignored. Nevertheless, the value of the condensate has been given
for completeness. Moreover, we will see in the discussion of the inverse nucleon
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propagator that the modelling of the baryons requires a relatively high mass M.
In order to verify our parameter sets, the Goldberger-Treiman relation can be used,

Table 3.2. Computed set of parameters for fixed values of mπ = 140 MeV and
fπ = 92.21 MeV.

[A] [B] [C] [D] [E]

M [MeV] 300 350 400 450 453.811
m [MeV] 7.57 8.46 8.89 9.04 9.05
gSΛ2 3.23 3.651 4.095 4.555 4.589
Λ [MeV] 696.676 647.491 624.828 615.359 615

gπq̄q 3.179 3.72 4.263 4.808 4.848
(〈ψ̄ψ〉/N f )

1
3 [MeV] -222.3 -214.04 -210.459 -209.29 -209.267

which connects the pion decay constant to the quark-pion coupling constant [16, 22]

gπqq fπ = M +O(m) . (3.34)

It is one of a couple of chiral theorems that should be satisfied independently from
a certain regularisation scheme. In addition to the Goldberger-Treiman relation, the
Gell-Mann-Oakes-Renner relation [16]

m2
π = −m〈ψ̄ψ〉

f 2
π

+O(m2) (3.35)

gives the correlation between the pion mass and the bare quark mass. In the discussion
of the inverse pion propagator, we have already noted, that a non-vanishing bare
quark mass leads to a physical pion mass, while for massless quarks the pion becomes
the (massless) Goldstone boson. One can directly obtain from (3.35) that the Gell-
Mann-Oaks-Renner relation also leads to a massless pion for a vanishing bare quark
mass. In table 3.3 and 3.4 the Goldberger-Treiman and Gell-Mann-Oakes-Renner
realtion respectively have been evaluated for the different parameter sets. Note that

Table 3.3. Goldberger-Treiman results used for the parameter sets [A]-[E]

[A] [B] [C] [D] [E]

M [MeV] 300 350 400 450 453
gπq̄q 3.179 3.72 4.263 4.808 4.848
gπqq fπ [MeV] 293.174 343.067 393.086 443.351 447.068

the condensate per flavour has been changed to the (full) condensate, which is simply
the sum over the two equal flavour condensates. It turns out that all parameter sets
are in accordance with both relations.
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Table 3.4. Gell-Mann-Oakes-Renner relation results for the parameter sets [A]-[E] with
constant mπ = 140 MeV and fπ = 92.21 MeV.

[A] [B] [C] [D] [E]

m [MeV] 7.57 8.46 8.89 9.04 9.05
〈ψ̄ψ〉 1

3 [MeV] -280.081 -269.674 -265.162 -263.689 -263.66√
−m〈ψ̄ψ〉

f 2
π

[MeV] 139.823 139.687 139.642 139.638 139.639

However, parameter set [E] leads to best result when recalculating the pion mass as
well as the pion decay constant and hence will be used in following discussion of
pions in the medium and in the modelling of diquarks.

3.4. Mesons in the medium

In this section, we want to investigate the behaviour of pions in the medium. We find
that the formal derivation of mesons with the BS equation is equal to the vacuum case.
Therefore, the propagator is given by

itπ(iω,~q) =
2igs

1− 2gs Ππ(iω,~q)|q2=m2
π

, (3.36)

where iω is a bosonic Matsubara frequency, related to q0. The only thing one has to
take care of, is the modification of the polarisation loop. The medium polarisation
loop within the Matsubara formalism for the pion reads

Ππ(iω,~q) = −T ∑
{iν}

∫ d3k
(2π)3 Tr

[
ΓπS(iω + iν + µ,~q +~k)ΓπS(iν + µ,~k)

]
. (3.37)

Here, iν is a fermionic Matsubara frequency related to the zero-component of the
quark momentum k. After a straight forward evaluation of the traces for the different
spaces and the fact that the sum of a bosonic and fermionic Matsubara frequencies is
fermionic again, we find that the pion polarisation loop reads

Ππ(iω,~q) = 8NcL1(M, T, µ)− ((iω)2 −~q2)4NcL2(iω,~q) , (3.38)

where the medium integral L1 from the discussion of the quarks in the medium,
cf. section 2.6, has been used. The integral L2 is defined as

L2(iω,~q) := −T ∑
{iν}

∫ d3k
(2π)3

1
(iω + iν + µ)2 − E2

q+k

1
(iν + µ)2 − E2

k
, (3.39)

28



3.4. Mesons in the medium Chapter 3. Mesonic spectrum

and is basically the medium version of iI2. The integral has been evaluated in detail
for vanishing three-momentum ~q in appendix D.2.1. As for the medium version of iI1

one can separate the vacuum and medium part of the upper expression. The medium
contribution reads

Lmed
2 (q0,~q = 0; T, µ) = −

∫ d3k
(2π)3

1
Ek

1
q2

0 − 4E2
k + sign(q0)iε

(
n f (Ek − µ) + n f (Ek + µ)

)
,

(3.40)

while the vacuum part is given by

Lvac
2 (q0,~q = 0; T, µ) =

∫ d3k
(2π)3

1
Ek

1
q2

0 − 4E2
k + sign(q0)iε

. (3.41)

Here, we have used the analytical continuation iω 7→ q0 + iε to obtain a dependence
on real momenta within the propagator. Further more, the additional (small) posi-
tive imaginary part is related to the retarded version of the integral and hence the
propagator itself for ε −→ 0. Beside, it would be possible to use the advanced or
the Feynman propagator as well. The retarded, advanced and Feynman propagator
only differs in the choice of how (mass) poles are encircled. While for the retarded
propagator the contour goes clockwise around both poles, the poles of an advanced
propagator are encircled anticlockwise. The contour for the Feynman propagator,
which has been used in the vacuum discussion, goes anticlockwise around the left
and clockwise around the right pole.
Compared to the vacuum case the polarisation loop and hence the inverse propagator
itself, depends on q0 and ~q directly. Therefore, the inverse pion propagator, as well
as all other propagators in dense matter which we will discuss, have to be treated as
functions of q0 and ~q.
Note that the vacuum propagator depends only on q2 = q2

0 −~q2 (with Minkowski
metric) due to Lorentz invariance. Thus, one can choose the rest frame of the particle,
i.e. ~q = 0 in order to simplify the expressions. In the medium case this is much more
difficult, since the Lorentz invariance is broken and the medium itself defines a pre-
ferred frame. In fact, it makes a physical difference if a certain particle moves relatively
to this frame or not. Hence, the squared mass of a particle is equal to the square of the
four-momentum q with, in general, non-vanishing three-momentum ~q. Nevertheless,
it has been shown in reference [23] that within a Pauli-Villar regularisation scheme the
contribution of the external momentum ~q is relatively small for the pion propagator
for not too high values of ~q. In addition, one has to choose an arbitrarily ~q in order to
perform any calculations. Further discussions thus will be performed for vanishing
three-momentum ~q, which will simplify the expressions significantly.
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Figure 3.6. Temperature dependency of the pion mass
compared to the (double) constituent mass.
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Figure 3.7. Temperature dependency of the pion mass
in the chiral limit and non-vanishing bare
quark mass.

In figure 3.7 the pion mass for varying temperature and fixed chemical potential
µ = 0 MeV is shown. Again, we distinguish between the chiral limit and a finite
value of the bare quark mass. In case of a non-vanishing mass the pion mass stays
approximately constant at its vacuum value until two times the constituent quark
mass becomes lower than the vacuum mass of the pion, cf. figure 3.6. As already
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discussed in the beginning of this chapter the polarisation loop, and therefore the
inverse propagator, becomes complex, i.e. a non-zero imaginary part emerges. Note
that the kink in the pion mass at T ≈ 220 MeV within the upper figure is related to
this opening imaginary part. Hence, the pion is allowed to decay into its constituents
and obtains a higher mass.
In the chiral limit meanwhile the pion is the Goldstone boson for the spontaneously
broken SU(2)A symmetry and thus is massless. For a temperature Tc = 195 MeV, at
which the constituent quark mass becomes zero and hence the chirally restored phase
begins, the pion obtains a non-vanishing mass.
For vanishing temperature and varying chemical potential the pion mass also stays
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Figure 3.8. Pion mass for parameter set [E] with vanishing and non-vanishing bare
quark mass as a function of the chemical potential µ with fixed value of
T = 1 MeV.

constant at its vacuum value, cf. figure 3.8, in accordance with the silver-blaze property.
For higher values of µ the first order phase transition leads to a non-vanishing
imaginary part of the propagator due to the abruptly decreasing constituent quark
mass. Compared to the temperature behaviour, the constituent quark mass is not a
smooth function of T but jumps at µc ≈ 400 MeV to a significantly lower value instead.
Hence, we obtain an analogous behaviour of the pion mass, except for the fact that it
jumps to a higher value.
For completeness the temperature and chemical potential dependency of the effective
pion-quark coupling gπqq is shown in figure 3.9 and 3.10. We will later discuss in
detail the effective pion-quark coupling in section 4.3 in order to compare it with the

31



3.4. Mesons in the medium Chapter 3. Mesonic spectrum

diquark-quark coupling.
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Figure 3.9. Pion-quark coupling as function of T with vanishing chemical potential.
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Figure 3.10. Pion-quark coupling as function of µ with T = 1 MeV.
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Chapter 4

Diquark modelling

As mentioned in section 2.3, we consider the interaction Lagrangian

Lψψ = hs

[
(ψ̄CτAλA′ ψ̄

T)(ψTCτAλA′ψ) + (ψ̄iγ5CτAλA′ ψ̄
T)(ψCiγ5τAλA′ψ)

]
(4.1)

for the particle-particle channel. Diquarks are non-observable bound states of two
quarks, which cannot be found in nature due to confinement. However, the NJL model
does not contain any confinement and thus we can view them as physical particles
which can be described by a BS equation. In accordance with the SU(3) addition rule
for three different colours, diquarks can occur in a sextet and an antitriplet state [24].
Unlike the mesons composed of a quark and antiquark, we can thus identify particles
which will be antisymmetric in flavour and colour indices. In particular, the particles
antisymmetric in colour space can be coupled with a single quark to obtain a colour-
less object and thus can be used to model the baryons as a colour-singlet state.1 Hence,
the emerging sextet in colour space will not be considered in the further discussion,
which has already been implemented in the Lagrangian (4.1).
In flavour space, we can identify a triplet and a singlet state. Due to Pauli’s principle,
the overall wave function for a certain diquark has to be totally antisymmetric, which
leads to a restriction of allowed combinations for the different spaces. A certain repre-
sentation for the two-flavour case, including vector contributions for completeness,
can be found in the table 4.1, adapted from reference [25]. The lower indices denote
whether the state is symmetric or antisymmetric in the considered space. Hereby the
scalar and pseudoscalar, as well as the vector and axial-vector, channel have switched
the representation in Dirac space compared to the mesonic spectrum. This is related
to the charge conjugation operator entering the Lagrangian (4.1), cf. section 2.1.

1Like the mesons, baryons are physically observable in nature, thus they are in a colour singlet state,
which is invariant under an SU(3) colour rotation.
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Table 4.1. Possible diquark structure in colour and flavour space [25].

Flavour Colour ∆µ
D JP

scalar 1A 3A iγ5 0+

pseudoscalar 1A 3A 1 0−

axial 3S 3A γµ 1+

vector 1A 3A γ5γµ 1−

4.1. Bethe-Salpeter equation for diquarks

In this section, we want to introduce the BS equation for diquarks and determine
expressions for the corresponding scattering kernel and polarisation loop. The interac-
tion Lagrangian in the quark-quark channel (4.1) can be expressed as

Lψψ = hs ∑
D
(ψ̄ΓDCψ̄T)(ψTCΓDψ) , (4.2)

in accordance with the discussion of section 2.1. Therefore, the scattering kernel of a
particular particle-particle channel ΓD reads

iKD
ij,kl :=

i

j k

l

= 2ihs(ΓDC)ij(CΓD)kl , (4.3)

where we have simplified the notation to increase overview. Note that we assumed
for the moment distinguishable quarks. Nevertheless, the BS equation can be used to
obtain the bound state within this channel and is schematically shown in figure 4.1.
Compared to the mesons, or more general, the particle-antiparticle channel, the second
order diagram in the BS equation does not contain a closed fermion loop. Therefore,
the derivation of the related polarisation loop will be more complicated. However,
the polarisation loop can be brought into an form similar to the mesonic channel, as

i

j k

l

q
...

Figure 4.1. Diquark Bethe-Salpeter equation for the quark-quark scattering.
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shown in appendix E.1. For the scalar channel, we find

ΠD(q) = −i
∫ d4k

(2π)4 Tr
(

ΓDSq(k + q)ΓDSq(k)
)

(4.4)

= −itrc

(
λcλc′

)
τ

f
k′i′τ

f ′

i′k′

∫ d4k
(2π)4 trD

(
∆DSq(k + q)∆DSq(k)

)
. (4.5)

Here, the trace performed in colour space is related to a conservation of the colour
during the propagation of a diquark [25].
From a phenomenological point of view, we could expect this transformation, since
mesons are described through the propagation of a quark and an antiquark. Due to
the charge conjugation operator C the antiquark in some way has been transformed
into a particle with quantum numbers of a quark, leading in the scattering process to
a diquark. Furthermore, the interaction kernel for the particle-particle channel looks
like the exchange diagram in the mesonic spectrum, up to the kind of incoming and
outgoing particles. Within the particle-antiparticle channel, the exchange diagram has
been transformed by a Fierz transformation into a direct-like diagram.
It follows, that the diquark scattering matrix iTD reads

iT̃ D
ij,kl = iKD

ij,kl + iKD
ij,mn

(
− iΠD(q)

)
iT̃ D

nm,kl (4.6)

= Ω̄ijit̃D(q)Ωkl (4.7)

with

t̃D(q) := 2hD + 2hDΠD(q)t̃D(q) , (4.8)

Ω̄ij := (ΓDC)ij , (4.9)

as the diquark propagator and vertex, respectively. The diagrammatic representation
of expression (4.6) is shown in figure 4.2 and is similar to the scattering matrix of
the mesons in 3.2 except for the different coupling constants and vertex functions.
To distinguish between the mesonic and diquark scattering matrices, we keep the
non-closed form of the polarisation loop.

i

j k

l

q

Figure 4.2. BS equation for the diquarks reduced to a mesonic description.

Another possible scattering kernel of the particle-particle channel, is given by the
exchange of the outgoing quarks, cf. figure (4.3). This scattering kernel is related to
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i

j

k

l

Figure 4.3. Diquark scattering kernel with exchanged outgoing particles.

the fact, that quarks are indistinguishable fermions. Therefore, we have to include
this kind of scattering process to obtain a description for indistinguishable particles.
Using this kernel, the scattering matrix differs only on the external outgoing quark
indices on the left-hand side of figure 4.1. To obtain the full scattering matrix, both
contributions have to be summed

iTD
ij,kl(q) = iT̃D

ij,kl − iT̃D
ji,kl , (4.10)

where the minus sign in front of the second term is a result of the fermion exchange.
Hence, we are now treating the quarks as indistinguishable. Taking into account the
general vertex structure given by in the Lagrangian (4.2), we find

iTD
ij,kl(q) =

(
Ω̄ij − Ω̄ji

)
itD(q)Ωkl (4.11)

=

0 for Ω̄ij = (ΓDC)ij totally symmetric

2iT̃D
ij,kl(q) for Ω̄ij = (ΓDC)ij totally antisymmetric

. (4.12)

Here, we notice, that only totally antisymmetric interaction channels will survive, in
accordance with Pauli’s principle.
As already mentioned, equation (4.8) will be interpreted as a propagator for the
scalar diquarks, similarly to the mesons, and thus its pole contains the diquark mass.
Therefore, the self-consistent equation for the scalar diquark propagator tsad under
virtue of the factor of two in equation (4.12), reads

tsad(q) =
4hs

1− 2hsΠsad(q)
, (4.13)

where the polarisation loop for the scalar diquarks is given by

Πsad(q) = 16iI1 − 8q2iI2(q) (4.14)

=
2

Nc
Ππ(q) . (4.15)

This shows that within the vacuum case the polarisation loop of the scalar diquark
can be related to the polarisation loop of pseudoscalar meson channel. A detailed
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derivation of the diquark polarisation loop can be found in appendix E.1. The general
behaviour of the inverse propagator within the rest frame (~q = 0) for parameter set
[E] is shown in figure 4.4. As in the discussion of the mesons, the coupling constant

3000 1000 1000 3000
q0  (MeV)

2

0

2

4

6

8

D
−

1
sa

d
(q

0
)

parameter set [E]

Figure 4.4. Inverse propagator for the scalar diquark as function of q0. Here we set
hs = 1.169gs.

of the diquark channel hs will be treated as a free parameter. Nevertheless, with the
transformation matrices given in appendix B for the colour-current interaction, the
two coupling constants hs and gs are related to each other by

gs

hs
= 2

Nc − 1
Nc

, (4.16)

which, with three assumed colours, yields gs/hs = 3/4. This ratio can be seen as
an indicator for certain values of hs, but we have to keep in mind, that the diquark
spectrum is not observable in nature and thus the coupling constant hs cannot be
fitted to this spectrum. A possibility to solve this problem is fitting the baryon
spectrum, where hs is indirectly included in the scattering matrix as we will see in
chapter 5. With equation (4.16), hs can be expressed through the coupling constant in
the particle-antiparticle channel by

hs =
Nc

2(Nc − 1)
gs . (4.17)

37



4.1. Bethe-Salpeter equation for diquarks Chapter 4. Diquark modelling

Using the above relation, we can express the denominator of equation (4.13) in terms
of the (scalar) meson coupling constant gs. This yields, in case of on-shell diquarks
(q2 = m2

sad), the mass for a certain diquark. Under a variation of the assumed number
of colours Nc, we notice that for Nc = 2, the scalar antitriplet diquarks behave like
the pions. Hence, the mass of the diquark and pion are degenerated when hs = gs

holds. Moreover, the scalar diquarks become massless in the chiral limit, such that
they are Goldstone bosons whereas for three colours, this does not hold any more.
For Nc = 3, the masses of the scalar diquarks are higher compared to the two colour
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Figure 4.5. Mass of the scalar antitriplet diquarks for different values of Nc. Parameter
set [E] has been used.

case. The diquarks obtain the pion mass for hs = 3
2 gs as shown in figure 4.5. The

behaviour of the denominator in expression (4.13) for the different values of Nc is
shown in figure 4.6. The roots of the denominator in equation (4.13) give rise to the
masses of the diquarks. Furthermore, the emerging imaginary part of the integral I2

for q2 > 4M2, cf. appendix D.1.1, leads to a critical value of the coupling constant,
where only one root in the positive/negative hemisphere exists. The corresponding q0

to this solution depends on the parameter set and is above the threshold for parameter
set [A] and [B], while for [C]-[E] it lies directly on q0 = 2M. Nevertheless, for all
parameter sets the corresponding q0 can be related to an unstable resonance within
the particle-particle channel.
To obtain the value for the coupling constant, we can express the denominator of
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Figure 4.6. Denomiantor (real part) of the diquark propagator for different values of Nc

for hs = gs (parameter set [E]).

equation (4.13) in terms of gs,

D−1
sad(q) := 1− 2r · gs(16iI1 − 8q2iI2(q)) (4.18)

with r := hs
gs

and determine its minimum. The minimum can be found for parameter
set [A] at qmin

0 = 768.41 MeV and hence rcrit = 0.683 for three colours.
Another point of interest is the coupling for the opening threshold, i.e. for a diquark
mass equal to twice the quark’s constituent mass msad = 2M. We find rth = 0.716
for parameter set [A], cf. figure 4.7. In table 4.2 the critical and threshold ration r
are shown for the different parameter sets of table 3.2. For the parameter sets [C],
[D] and [E], rcrit is equal to rth since the minimum of the inverse propagator is equal
to the point of instability, i.e. q0 = 2M. In case of r > rcrit, it is always possible to
find multiple roots of the denominator of equation (4.13), due to the symmetry of
the inverse propagator, cf. figure 4.4. As already mentioned, the root for q0 > 2M is
related to a scalar diquark, whose mass is large enough to decay into its constituents
and therefore can not be modelled as a particle with a simple pole approximation.
For the pseudoscalar diquarks (labeled with “pad”), we find that its mass is always
larger than the scalar one, due to the difference of the polarisation loop

Πpad(q0) = 16iI1 − (q2
0 − 4M2)8iI2(q2

0) (4.19)
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Figure 4.7. Denomiantor (real part) of the diquark propagator (4.13) for the critical and
threshold coupling constant with Nc = 3. For parameter set [E] rcrit = rth

holds.

Table 4.2. Values of the critical and threshold coupling for different parameter sets.

[A] [B] [C] [D] [E]

M [MeV] 300 350 400 450 453.811
qmin

0 [MeV] 768.41 771.71 2M 2M 2M
rcrit 0.683 0.549 0.44 0.359 0.354
rth 0.716 0.554 0.44 0.359 0.354
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in the propagator. An analogous structure appears in the mesonic channel for the
σ-meson. The corresponding mass of the pseudoscalar diquark is near the threshold
m2

pad = q2
0 = 4M2 and for sufficiently small couplings even beyond it. For hs/gs > 1.5

the pseudoscalar diquark becomes bound, while for smaller values the opening
imaginary part in the inverse propagator is responsible for the root and thus for the
corresponding mass. As already mentioned this imaginary part is related to a decay
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Figure 4.8. Scalar and pseudoscalar diquark masses for different coupling constants
expressed in terms of gs for parameter set [E].

of the diquark into its constituents, while diquark masses which satisfy q2 < 4M2 are
bound states. However, figure 4.8 indicates that a very large coupling in the particle-
particle channel has to be used in order to obtain a stable pseudoscalar diquarks. Even
then, the obtained masses are close or even bigger than the nucleon mass itself. This
will make it complicated to couple the pseudoscalar diquarks with a third quark into
a bound state with the mass of a nucleon. In contrast to the scalar-diquark, which is
much lighter than the pseudoscalar diquark, the latter is thus not suitable to build
a nucleon. For completeness, the critical value rcrit for parameter set [E] for which
no mass exists has been calculated and can be found around rcrit = 0.82. Since this
value is related to a pseudoscalar diquark in the unstable region and lies above the
one we find for the scalar channel, the assumption that pseudoscalar diquarks are
hardly bound in this region of hs compared to the scalar diquarks seems to be valid.
Hence, the pseudoscalar diquark will not be considered in further discussions.

41



4.2. Diquark-quark coupling constant Chapter 4. Diquark modelling

200 600 1000
q0  (MeV)

0

1

2

3

4

5

6

7

8

9

ef
fe

ct
iv

e 
co

up
lin

g

gDqq=gsad−qq

gπqq

gDqq/gπqq

Figure 4.9. Pion-quark and scalar diquark-quark coupling constants as functions of q0

(Nc = 3).

4.2. Diquark-quark coupling constant

Similar to the discussion of the mesons, a diquark-quark coupling constant can be
defined, which will be suitable for the description of the baryons. Again, we start
with the full scattering matrix

iTD
ij,kl=

i

j k

l

q
= Ω̄ij

4ihs
1−2hsΠs(q)Ωkl . (4.20)

Analogously, to the mesons, the interaction between the two quarks can be interpreted
as an exchange of a diquark. This leads to

iTD = (−igDqq(q)ΓDC)
i

q2 −m2
D
(−igDqq(q)CΓD) . (4.21)

where the diquark-quark coupling is allowed to be momentum dependent as well. By
assuming that this dependence is weak and comparing (4.20) with (4.21), we find for
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the scalar diquarks

−
g2

sad−qq

q2 −m2
sad
≈ 4hs

1− 2hsΠsad = ts , (4.22)

which, after applying the pole approximation yields

g−2
sad−qq =

1
2

∂Πsad(q2)

∂q2

∣∣∣∣
q2=m2

sad

=

∂Πsad(q2
0)

∂q0

4q0

∣∣∣∣∣∣
q0=msad

. (4.23)

We have already seen, that in the two-colour case the scalar diquark polarisation loop
is equal to the pion polarisation loop, cf. equation (4.15). Therefore, the coupling
constants are equal too, while in the three-colour case the different pre-factors lead
to a constant ratio gsad−qq/gπ−qq =

√
Nc of the couplings if treated as functions of

q0 and ignoring the on-shell condition. Compared to the meson-quark coupling
constant, or more precisely the pion-quark coupling, the scalar diquarks seems to be
coupled stronger to the constituent quarks despite the significantly higher mass of the
diquarks.
To increase overview and due to the fact we neglect other diquark channels the
effective scalar diquark coupling will be denoted by gDqq.

4.3. Medium diquarks

In this section we want to develop the medium expression for a diquark and study
its behaviour for finite temperature and chemical potential. Again, the expression for
the propagator will be similar to the one obtained in the vacuum case except for the
polarisation loop (4.5), which has to be modified in accordance with the replacement
given in (2.54). In contrast to mesons, which contain a quark and an antiquark, the
constituents of diquark are two quarks. It follows that this kind of particles feel twice
the chemical potential of a quark as we will find in the following discussion. Moreover,
we do not have to distinguish between the quark chemical potentials, since we make
use of the isopin limit.
The diquark polarisation loop (4.5) in the Matsubara formalism reads

ΠD(iω + 2µ,~q) = −iT ∑
n

∫ d3k
(2π)3 Tr

[
CΓDS(iω + iνn + µ,~q +~k)ΓDCST(−iνn + µ,−~k)

]
(4.24)

= iT ∑
n

∫ d3k
(2π)3 Tr

[
ΓDS(iω + iνn + µ,~q +~k)ΓDS(iνn − µ,~k)

]
,

(4.25)
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Figure 4.10. Diquark, pion and two times the constitutent mass for vanishing chemical
potential.

where we have taken into account some of the relations given in appendix E.1. This
looks similar to the mesonic channel. It turns out that the diquark polarisation loop
also can be expressed in terms of elementary integrals. For the scalar color-antitriplet
diquark we obtained

Πsad(iω + 2µ,~q) = 16iL1 −
(
(iω + 2µ)2 −~q2) 8iL̃(iω + 2µ,~q) , (4.26)

with

L̃(iω + 2µ,~q = 0) := −T ∑
n

∫ d3k
(2π)3

1
[(iω + iνn + µ)2 − E2

k ][(iνn − µ)2 − E2
k ]

. (4.27)

A detailed derivation of the polarisation loop and integral can be found in ap-
pendix E.1.1.
Compared to the medium discussion of the pion, the polarisation loop and thus the
inverse propagator itself can be treated as function of iω + 2µ, as expected. To be
consistent to the earlier dicussions, we choose the analytical continuation iω 7→ q0 + iε.
Again, the following discussion has been performed with parameter set [E] and a
coupling hs = 1.169gs in the particle-particle channel.
At first, we keep the chemical potential at a constant value of zero and vary the
temperature. In figure 4.10 the diquark mass compared to the pion mass and two
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Figure 4.11. Diquark, pion and two times the constitutent mass for vanishing chemical
potential in the chiral limit.

times the constituent mass is shown. We note that the behaviour of the scalar diquark
and pion are analogous. As seen in the derivation of the diquark scattering matrix the
behaviour of the scalar diquark strongly recalls the pseudoscalar pions. Especially, in
case of two colours they are expected to be equal in vacuum. However, this does not
hold for non-vanishing chemical potential any more, since the diquark polarisation
loop can not be expressed by the pion one. We already have found in the vacuum
investigation that the diquarks obtain an higher mass than the pions and thus are less
bound. For varying temperature, the melting temperature of the scalar diquark, at
which the imaginary part of the inverse diquark propagator opens, and thus allows the
diquark to decay into its constituents, lies at Tm = 197 MeV. For the pions meanwhile
we found the melting temperature at Tm = 220 MeV.
In the chiral limit, the diquarks have a non-vanishing mass while the pions are the
massless Goldstone bosons. For increasing temperature the mass continuously falls
down until the obtained mass reaches 2M and the decay into a quark pair becomes
possible. Of course this behaviour in the chiral limit, as well as for non-vanishing bare
quark mass, is related to the fact that the constituent mass decreases faster than the
bound state of two quarks.

A completely different behaviour shows for varying chemical potential at vanishing
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Figure 4.12. Free energy of diquark and antidiquark for finite µ (T = 1 MeV).

temperature. For non-vanishing chemical potential the poles of the diquark propagator
are shifted. This can be directly seen if we take a look at the pole-approximation for
T = 0 MeV. Therefore, the diquark propagator near the pole is expected to behave like
a bosonic propagator

DD(q0,~q, µ) =
1

(q0 + 2µ)2 − E2
D

. (4.28)

The poles are given by

q±Pole = E±D − 2µ , (4.29)

with E±D := ±ED = ±
√
~q2 + m2

D. Hence, the poles should not be identified with the

physical mass of the particle. The poles q±Pole meanwhile, are the excitation energy
of the dense medium to obtain an antidiquark and diquark, respectively. In other
words it is the free energy of the (anti)diquark. Since the free energy in the chiral
limit behaves like the one obtained for m = 9.046 MeV, we concentrate on the latter
case. While the pion mass stays constant before the chirally restored phase begins,
the diquark energy becomes linearly smaller by increasing the chemical potential.
At µ = msad/2, where msad denotes the vacuum mass, the diquark obtains a free
energy equal to zero still before the chirally restored phase begins. In comparison
with the critical chemical potential for the quarks, cf. section 2.6, where we obtained
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Figure 4.13. Free energy of diquark and antidiquark for finite µ in the chiral limit
(T = 1 MeV).

µc = 400 MeV, diquarks have an additional phase transition which has not considered
so far. In fact, it has been studied in reference [26] and other works that diquarks
at µ = msad/2 enter the two-flavour colour superconductivity (2SC) phase with non-
vanishing diquark condensate, while in the colour symmetric phase, i.e. µ < msad/2
the diquark condensate is zero. For a chemical potential beneath the threshold, the
six diquark states in colour space split into an colour triplet and antitriplet state [26].
The corresponding free energies of the antitriplet diquark and triplet antidiquark
are shown in figure 4.12 and 4.13 for m = 0 MeV. Moreover, it is known that for
sufficiently large chemical potential and low temperature the condensation of two
quarks is favoured over the chirally restored phase [27]. Notwithstanding the above,
the physical mass of the diquark, and antidiquark as well, should not and indeed does
not change until µ = msad/2 due to the silver-blaze property.
As already mentioned at the beginning of this chapter the antitriplet in colour space is
of particular interest in view of the baryon modelling in later chapters. Despite the fact
the 2SC phase has interesting features to discuss, we focus on the colour symmetric
phase. As a result of the upper discussion the diquark mass will be taken constant
to its vacuum value until µ = msad/2, due to the fact that the methods provided in
this work are not able to investigate the 2SC phase. Therefore, diquarks will not be
considered for µ > msad/2. Of course, effects related to a temperature variation will
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be taken into account.

In figure 4.14 the effective diquark-quark and pion-quark coupling in the medium are
shown for a wide temperature range. The small peaks within the plots do not have
any physical meaning and are related to numerical uncertainties only.
For vanishing chemical potential both couplings are constant until a significant drop
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Figure 4.14. Effective coupling constant for the pion and diquark as functions of the
temperature at µ = 0.

occurs. Since the behaviour of the effective pion-quark and diquark-quark coupling are
qualitatively equal in the corresponding region for both quantities, we will concentrate
our discussion on the latter one.
In figure 4.15 the effective diquark-quark coupling has been calculated in the region of
the kink. We find that the temperatures related to the kink labeled with “2”, in figure
4.15, right after the drop coincides with the melting temperature of the pseudoscalar
diquark. At this temperature, the diquark has zero binding energy since its mass is
equal to twice the constitutes. Therefore, the effective coupling should smoothly fall
down to almost zero, until the imaginary part of the corresponding polarisation loop
opens. Increasing the temperature after this point leads to unstable particles such that
the effective coupling also becomes complex.2 The more or less smooth behaviour of
the effective coupling is possibly related to the (crossover) into the chirally restored
phase of the quarks for a non-vanishing bare mass. Taking a look at the chiral limit,

2Note that we always plot the real part of certain properties unless stated otherwise.
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Figure 4.15. Effective coupling constant for the diquark as function of the temperature
at µ = 0 at the critical region.

where a second order phase transition appears, we find that the effective coupling is
unsteady, which is shown in figure 4.16. Hence, we conclude that the behaviour of
the effective coupling indeed could be related to the kind of phase transition for the
quarks. Unfortunately, we do not find any good explanation for the kinks “1” and “3”
in figure 4.15.
Again, a different picture arises for T = 1 MeV and varying chemical potential,
cf. figure 4.17. In the derivation of the effective coupling we make use of the pole
approximation. While for vanishing chemical potential the poles of the propagator
are the mass of the diquark itself, the poles for non-vanishing chemical potential are
related to the free energies shown in figure 4.12. Consequently, instead of inserting the
diquark mass in (4.23), we have to evaluate (4.23) at q0 = E+

D − 2µ for the antitriplet.
The results for the diquark-quark coupling as a function of the chemical potential are
shown in figure 4.17 for a constant diquark mass. If we consider the poles in equation
(4.29) to be the mass of the diquark, we find that due to the decreasing free energy
of the medium, which is related to an increasing binding energy, the diquark-quark
coupling increases too until µ = msad/2. After this critical chemical potential our
methods are not reliable to further investigate the diquark-quark coupling.
The pion-quark coupling, however, stays constant until µ = 412 MeV, because the
pion mass itself does not change in this range. Then the coupling drops down and
decreases for larger chemical potentials, which is related to the increasing mass of the
pion. Overall, we note that the behaviour of the pion-quark coupling resemble the
one obtained for the pion mass in dense matter as shown in figure 3.8.
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Figure 4.16. Effective coupling constant for the diquark as a function of the temperature
at µ = 0 at the critical region for vanishing bare quark mass.
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Figure 4.17. Effective coupling constants of the pion and diquark channel for finite µ

(T = 1 MeV).
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Chapter 5

Baryon modelling for two flavours

In general, a baryon has to be described by a complex structure of three quarks, cou-
pled through an exchange of gluons. We will reduce this problem in the framework
of the NJL model to a more computationally friendly two-body interaction, where a
diquark and a quark can form a baryon. Therefore, three-body irreducible diagrams,
which contain a three fermion vertex, are ignored. For diquarks the flavour triplet
and singlet states can take part in the baryon structure, but have to be combined
carefully with certain spin channels to obtain an antisymmetric wave function, since
baryons are a composition of three fermions. To simplify our discussion, we will
restrict ourselves to the scalar diquarks, having the lowest mass in the particle-particle
channel, as shown in the previous chapter, and thus might be bound stronger with a
third quark. Note that the Dirac structure of a baryon is then determined by the third
quark, due to lack of a Dirac structure in the scalar diquark channel. Furthermore, the
pseudoscalar diquark will not be used to model baryons within the two flavour NJL
framework, since it would require a binding energy in the order of the constituent
quark mass itself (or even more) to obtain the nucleon mass of 940 MeV [28].
In contrast to the previous chapters, we will start from the Dyson equation and intro-
duce Fadeev components for the baryon propagator as the solution of the three-body
problem. While the non-relativistic Fadeev equation can be solved numerically in
certain model potentials, the bound state problem of a three-quark system has to
be truncated in quantum field theory approaches [29]. To reduce this problem, a
commonly used assumption in QCD calculations is that the two-body correlation
within the three quark system is separable. In our case, the two-body scattering matrix
is already separable in the sense that it can be written as the product given in expres-
sion (4.7), due to the local four-point character of the considered Lagrangian (4.1). This
leads to a BS-like equation for the effective baryon vertex function and can be used
within the Dyson equation to obtain a computationally friendly matrix equation for
the baryons. Compared to the modelling of the two-particle channels, the emerging
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scattering kernel for the baryons does not have an elementary structure given in the
Lagrangian and therefore has to be treated more carefully.

5.1. Dyson equation for the baryon propagator

We will begin, similar to the derivation of the dressed quark propagator in section 2.4,
by introducing the full baryon propagator DB, which can be described in leading-order
as (non-interacting) propagation of three quarks denoted by D0 = Si ⊗ Sj ⊗ Sk. In the
following discussions, we will omit the tensor structure to increase readability. In a
simplified version, the corresponding Dyson equation reads

DB = D0 + D0KD0 + D0KD0KD0 + . . . (5.1)

= D0 + D0KDB , (5.2)

where K denotes the three-fermion scattering kernel, containing all two-particle
irreducible graphs. Based on the approach that we neglect the three-particle irreducible
graphs, the scattering kernel K is the sum over all possible two-quark interactions

K = k1 + k2 + k3 , (5.3)

if we assume three distinguishable quarks. Then, ki with i ∈ 1, 2, 3 denotes the
interaction of the quarks labelled with j and k, while quark i is treated as a spectator.
In particular, the ki will be the scattering kernel of the quark-quark scattering process,
introduced in the previous chapter up to an additional inverse quark propagator
S−1

i for the three particle space. The diquark propagator di fulfils its own Dyson
equation,

di = D0 + D0kidi (5.4)

= D0 + D0T̂iD0 , (5.5)

which is now defined in the three quark space. As already mentioned the diquark
propagator within a three-particle Hilbert space contains an addition quark propaga-
tor Si in the one particle subspace. One finds for the corresponding BS equation, after
cutting of the external legs

T̂i = ki + kiD0T̂i , (5.6)

where T̂i = Ti ⊗ S−1
i denotes the two-body scattering matrix. This equation looks

similar to the scattering matrix of the diquark channel in equation (4.6), but still
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Figure 5.1. Diagrammatical representation of τi with reinserted leading order terms of
τj and τk.

contains the contribution of the spectator quark. It is now convenient to introduce the
so-called Faddeev components

Di := D0kiDB . (5.7)

By virtue of (5.2), (5.3) and (5.4) the Dyson equation can be expressed, cf. appendix F.1,
as

DB = di + di(k j + kk)DB . (5.8)

We found, that the three-particle Dyson equation in leading-order can be written as
a two-particle propagator di, that contains an inverse free quark propagator in the
one-particle sub-space. Using equation (5.5) and comparing the right-hand side with
the right-hand side of (5.8), the Fadeev components Di have to fulfil a set of coupled
integral equations

Di = D0T̂iD0 + D0T̂i(Dj + Dk) . (5.9)

Analogous to equation (5.3), the three-particle T-matrix τ := τi + τj + τk can be defined,
where only two-particle correlations are considered. After cutting off the external legs,
i.e. multiply D−1

0 on both sides of equation (5.9), a certain T-matrix τi of the three
particle scattering reads

τi = T̂i + T̂iD0(τj + τk) . (5.10)

Note that all quantities in the above equation are defined in a three-particle Hilbert-
space. The diagrammatic representation of the expression (5.10) in figure 5.1 shows
that the three-particle scattering matrix τ is a sum over connected two-body scatttering
matrices T̂, defined in a three-particle Hilbert-space. Since the three-particle matrix τi

resembles the full scattering matrix for a 2+1 particle scattering process, the leading-
order term in (5.10) can be interpreted as the non-interacting term of a two-body
correlation with a third free quark within the S-matrix. Hence, the three-particle T-
matrix τ can be identified with the full scattering matrix (S-matrix) within a 2+1 particle
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space. Since we want to describe a baryon as a bound state of the diquark-quark
scattering process, only the last term in (5.10) is of particular interest. In the following
discussion we will successively develop a formalism to obtain a BS-like equation
starting from the Dyson equation for the baryons where only two-particle correlations
are assumed. For this purpose, it is convenient to rewrite equation (5.10) [30]

τi = T̂i + T̂iD0(τj + τk) (5.11)

= T̂i + ∑
m

Υ̃im . (5.12)

Here, we have introduced an operator Υ̃ij, that contains all possible interactions
between the two-particle matrices T̂i and T̂j

∑
m

Υ̃im := T̂i ∑
m

ΥimT̂m . (5.13)

This leads to

τi = T̂i + T̂i ∑
m

ΥimT̂m (5.14)

= TiS−1
i + TiS−1

i ∑
m

ΥimTmS−1
m (5.15)

= TiS−1
i + Ti ∑

m
S−1

i ΥimS−1
m Tm . (5.16)

To obtain the definition equation for the quantity Υij one can insert (5.14) in (5.10) for
j and k. Hence, we find

T̂i + ∑
m

T̂iΥimT̂m = T̂i + T̂iD0

(
T̂j + ∑

n
T̂jΥjnT̂n + T̂k + ∑

n
T̂kΥknT̂n

)
(5.17)

= T̂i + T̂iD0

(
∑
m

T̂m(1− δim) + ∑
nn′

(1− δin′)T̂n′Υn′nT̂n

)
(5.18)

= T̂i + T̂iD0

(
∑
m

T̂m(1− δim) + ∑
mn′

(1− δin′)T̂n′Υn′mT̂m

)
, (5.19)

where in the last step, the index n has been renamed to m. By comparing the l.h.s. of
equation (5.17) with (5.19), Υim satisfies the self-consistent equation

Υim = D0(1− δim) + D0 ∑
n
(1− δin)T̂nΥnm . (5.20)

The Equation (5.16) for a certain scattering matrix τi is diagrammatically represented
by

τi = ...(

(

Ti Ti
Tm

m=iSi
-1 Σ , (5.21)
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where we have inserted the self-consistent equation (5.20) into (5.16). Hereby the
interpretation arises that in leading-order, the quantity Υij describes the exchange of
a quark between the two-particle scattering matrices Ti and Tm with m 6= i. Since
equation (5.20) for the quantity Υim is a self-consistent equation, all higher-order terms
are of the same structure. To simplify the notation, we introduce χij := S−1

i ΥijS−1
j .

Thus, the equations (5.20) and (5.16) can be written in terms of χ as [30]

χji = (1− δijk)Sk + ∑
nn′

(1− δjnn′)SnSn′Tnχni (5.22)

τi = TiS−1
i + ∑

m
TiχimTm , (5.23)

where we have used D0 = SiSjSk and δijk := 1 for i = j = k and zero otherwise.
Equation (5.22) represents a set of coupled integral equations, which give the relation
between the Faddeev components in terms of the particle-particle scattering matrix Ti.
Since these matrices depend on the three-body scattering kernel ki, cf. equation (5.6),
one has to solve Ti to obtain a solution for the three-body problem. Furthermore,
the Fadeev components depend on the two relative momenta between the three
quarks, which significantly increases the difficulty of the problem. A commonly used
simplification in QCD approaches is given by the approximation, that the particle-
particle scattering matrix, that includes the three-body scattering kernel ki, can be
written as a sum over separable two-quark correlations [29]

iTi = ∑
α

Ω̄αitiΩα . (5.24)

Here, Ωα denotes the vertex function of a certain two-quark correlation with flavour,
colour and Dirac representation α and corresponding propagator ti for pair (jk). The
separability of the two-body contributions is based on the assumption, that the lowest
lying poles in a particular three-body channel might be dominated by the two-body
correlations in the kinetic regime relevant within the baryons at not too high ener-
gies [29]. However, in the NJL model with the random-phase approximation, we have
already seen that the two-body correlations are separable in the sense as mentioned
above. Moreover, in general approaches, the vertex function Ω is momentum depen-
dent, while in the NJL model this does not hold as seen in the previous chapter. Then,
the two-quark correlations in pole approximation are the same matrices as introduced
in equation (4.7), except of a factor of two. This factor emerges from the fact that
we treat indistinguishable particles, as seen in chapter 4. Nevertheless, we will call
these separable correlations “diquarks”. In our case, where only scalar diquarks in the
two-flavour case are included the sum over the different diquark channels in equation
(5.24), reduces to the contribution

iTi = (ΓsadC)itsad(q)(CΓsad) , (5.25)
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which is equal to the T-matrix (4.20) in the diquark discussion. As already mentioned,
tsad is the scalar diquark propagator given by equation (4.13). We will omit the in-
dex sad, but replace it with particle index i in the upcoming discussion.

Based on the previous discussion, the Dyson equation (5.2) thus can be brought
into a form, where the leading order term is described by the free propagation of a
diquark and a quark. Due to the construction of the diquarks without a third quark,
this leading-order diagram meanwhile contains a quark-quark loop and hence an
intermediate propagation of three quarks, which in general will not satisfy Pauli’s
principle.

Figure 5.2. Leading-order contribution for the baryon propagator including an interme-
diate propagation of three quarks.

As we will see later, this problem will be solved by the exchange of a quark between
the diquark and the quark, such that Pauli’s principle will be restored in accordance
with [31]. This quark exchange already emerges in equation (5.16) and is described by
the quantity Υij in expression (5.20). We would like to emphasize at this point, that
the existence of a two-quark bound state is not a necessary condition for a three-quark
bound state [32]. However, it will be useful to have such a bound state in the two-quark
correlations.

5.2. Momentum space representation

In this section we want to take a closer look at the momentum dependencies of the
introduced quantities of the previous section. We follow more or less reference [30],
but in more detail and with a slightly different notation.
In our discussion the three quarks are supposed to carry the momenta (k1, k2, k3).
Typically, one would assume to define a three-particle basis using these momenta.
Due to the assumption of a bound state within a two-particle subsystem, it is more
convenient to work in Jacobi variables, where the corresponding Jacobi momenta
depend on the subsystem we want to describe. Let us disregard for a moment the
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colour and flavour degrees of freedom to focus on the complexity in momentum space
only. For three distinguishable quarks, we have three different sets of subsystems as
shown below.

12

3

q1 p1

q1 =
1
2
(k2 − k3) (5.26)

p1 =
1
2
(k1 − (k2 + k3)) (5.27)

q2p2

12

3
q2 =

1
2
(k3 − k1) (5.28)

p2 =
1
2
(k2 − (k3 + k1)) (5.29)

12

3

q3

p3
q3 =

1
2
(k1 − k2) (5.30)

p3 =
1
2
(k3 − (k1 + k2)) (5.31)

In accordance with the notation used in the last section, we can define the Jacobi
momenta as follows [30]:

qi =
1
2
(k j − kk) (5.32)

pi =
1
2
(ki − (k j + kk)) (5.33)

Here, qi denotes the relative momenta between the pair (jk), while pi represents the
relative momenta between the pair (jk) and particle i. The total momentum will be
denoted by P = ki + k j + kk and is invariant under any permutation of the particle
indices. Further, we find linear relations1 between the three possible sets of the
tuple (qi, pi)

qj = −
1
2

qi ∓
3
4

pi ∓
1
8

P (5.34)

pj = ±qi −
1
2

pi −
1
4

P . (5.35)

1These relations are not unique in the pre-factors.

57



5.2. Momentum space representation Chapter 5. Baryon modelling

The upper sign holds for (ij) = (12), (23) or (31), while the lower one will be used
otherwise.
Since the momenta ki, with i ∈ (1, 2, 3), can be used to define a full basis in the
three-particle Hilbert space by

∫ d4k1

(2π)4
d4k2

(2π)4
d4k3

(2π)4 |k1k2k3〉〈k1k2k3|= 1 , (5.36)

a basis change to Jacobi momenta is given by

〈k1k2k3|piqiP〉 =(2π)4δ(4)
(
2qi − (k j − kk)

)
×

×(2π)4δ(4)
(
2pi − (ki − (k j + kk))

)
×

×(2π)4δ(4)
(

P− (ki + k j + kk)
)

, (5.37)

where (ijk) is a cyclic permutation of (123). We are now able to change the basis
from a three particle-basis into a representation with the variables (qi, pi, P) defined
in two-particle subsystems with spectator quark i. In the following discussion, the
three-particle state in the (p, q, P) basis will be defined, but we have dropped the
momentum P in the bra-ket notation, due to its invariant behaviour under particle
permutations. It turns out that one and the same state of relative motion can be
presented in three different ways

|q1 p1〉α1α2α3
1 = |q2 p2〉α2α3α1

2 = |q3 p3〉α3α1α2
3 . (5.38)

To characterize the Dirac, flavour and colour structure for a certain particle i we
introduced the index αi. The lower index defines the subsystem and thus fixes the
meaning of the momentum quantum numbers. For example, the index 1 denotes the
state where particle 1 has the momentum k1. Hence, q1 is the relative momentum
in the subsystem (23) while p1 defines the relative momentum between particle 1
with respect to this subsystem. There exists more relations between the states in this
notation. For a detailed explanation see appendix F.2.
In momentum space, based on the basis described by the two-body quantities q and
p, the operator of a separable diquark scattering matrix from equation (5.25) has the
expectation value

α′iα
′
jα
′
k
i〈q
′
i p
′
i|Ti|qi pi〉

αiαjαk
i = (2π)4δ(4)(p′i − pi)Ω̄

α′jα
′
k ti

(
1
2

P− pi

)
Ωαjαk (5.39)

We can use this expectation value to obtain an operator representation for the two-body
correlation besides the matrix representation. Therefore, we define the state [30]

|pi〉αi
i :=

∫ d4qi

(2π)4 ∑
αj,αk

Ωαjαk |qi pi〉
αiαjαk
i , (5.40)
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which fulfils

αiαjαk
i〈qi pi|p′i〉

α′i
i = (2π)4δ(4)(p′i − pi)δαiα

′
i
Ωαjαk . (5.41)

Hence, the operator for the two-particle T-matrix can be expressed by

T̂i =
∫ d4 pi

(2π)4 ∑
αi

|pi〉αi
i

αi
i〈pi|t

(
1
2

P− pi

)
, (5.42)

but is not unique and one can imagine other representations. This representation,
however, leads to a more or less straightforward derivation of the BS-like equation
for the three-body problem. By using the operator (5.42) within equation (5.22) the
matrix element

Xβα
ji := β

j
〈p′j|χji|pi〉αi (5.43)

=
∫ d4q′j

(2π)4

∫ d4qi

(2π)4 Ω̄γδ βγδ

j
〈p′jq′j|χji|piqi〉

αζη
i Ωζη (5.44)

can be calculated, where a summation over the indices γ, δ, ζ and η has been
suppressed for better readability. This matrix element represents the transition between
a state with spectator particle i and pair (jk) to a state with spectator j and pair (ki)
through a quark exchange described by the operator χji. In other words, it can be
interpreted as the scattering amplitude of a particle on a pair of particles. To obtain
an expression for this scattering amplitude, we have to evaluate βγδ

j
〈p′jq′j|χji|piqi〉

αζη
i ,

where we will use the representation of χji of equation (5.22).
The leading-order term of equation (5.43) reads

Kβα
ji := β

j
〈p′j|(1− δijk)Sk|pi〉αi (5.45)

= (1− δijk)
β

j
〈p′j|Sk|pi〉αi (5.46)

= (1− δijk)
∫ d4q′j

(2π)4

∫ d4qi

(2π)4 Ω̄γδ βγδ

j
〈p′jq′j|Sk|piqi〉

αζη
i Ωζη . (5.47)

Since the states |pi〉αi are a complete orthonormal basis in the three-particle momentum
space, the emerging matrix element can be evaluated by virtue of relation (5.38). Using
the completeness of the states |p, q〉, we find

βγδ

j
〈p′jq′j|Sk|piqi〉

αζη
i =

βγδ

j
〈p′jq′j|Sk|pjqj〉

ζηα
j (5.48)

= (2π)8δ(4)(q′j − qj)δ
(4)(p′j − pj)δδαδβζSγη

k

(
1
4

P− qi −
1
2

pi

)
,

(5.49)

where we assumed an even permutation (ijk) of (123) to permute the upper Greek
indices. In case of an odd permutation the momentum dependence of the quark
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propagator Sk will be the same as above, except for an index change from i to j. In
order to express the momentum kk dependency of the quark propagator in terms
of (q, p), we have used the inverse relations of (5.32) and (5.33), respectively. Due to
the delta distribution and Kronecker delta, the (omitted) sums as well as the integral
in (5.47) simplify to

Kβα
ji (p′j, pi) = (1− δijk)

∫
d4qiδ

(4)(p′j − pj)Ω̄γαSγη
k

(
1
4

P− qi −
1
2

pi

)
Ωβη . (5.50)

Now, we can use expressions (5.34) and (5.35) to express the momentum dependence
of Sk in terms of p′j and pi

Kβα
ji (p′j, pi) = (1− δijk)

∫
d4qiδ

(4)(p′j − pj)Ω̄γαSγη
k

(
1
4

P− qi −
1
2

pi

)
Ωβη (5.51)

= (1− δijk)Ω̄γαSγη
k

(
−pi − p′j

)
Ωβη . (5.52)

At this point, we can already see, that this term can be interpreted as the interaction
kernel of the diquark-quark scattering process. Compared to the scattering kernels
introduced in previous sections, i.e. for mesons (3.9) and diquarks (4.3) respectively,
the scattering kernel for the diquark-quark scattering has an explicit momentum
dependence. Later, we will take a closer look at the diquark-quark scattering kernel to
evaluate it in flavour- and colour-space.
The second contribution for the matrix element βγδ

j
〈p′jq′j|χji|piqi〉

αζη
i , emerging from

the second term of (5.22), reads

β

j
〈p′j|∑

nn′
(1− δjnn′)SnSn′Tnχni|pi〉αi

= ∑
nn′

(1− δjnn′)
β

j
〈p′j|SnSn′Tnχni|pi〉αi (5.53)

= ∑
nn′β′

(1− δjnn′)
∫ d4 p̃n

(2π)4
β

j
〈p′j|SnSn′ | p̃n〉β

′

n
β′

n〈 p̃n|tn(
1
2

P− p̃n)χni|pi〉αi , (5.54)

where we have used (5.42). Again, we analyse the two emerging matrix elements
separately: The first term gives 2

β

j
〈p′j|SnSn′ | p̃n〉β

′

n =
∫ d4q′j

(2π)4

∫ d4q̃n

(2π)4 Ω̄γ′δ′ βγ′δ′

j
〈p′jq′j|SnSn′ | p̃nq̃n〉β

′ζ ′η′

n Ωζ ′η′ (5.55)

=
∫ d4q′j

(2π)4

∫ d4q̃n

(2π)4 Ω̄γ′δ′(2π)8δ(4)(p′j − p̃j)δ
(4)(q′j − q̃j)×

× Sγ′β′

n (
1
4

P + q̃j −
1
2

p̃j)S
δ′ζ ′

n′ (
1
4

P− q̃j −
1
2

p̃j)δβη′Ωζ ′η′ , (5.56)

2Again, we suppressed the summation over the Greek indices.
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where we have taken into account the relations (5.38). Hence, the delta distribution can
be used to evaluate one of the integrals. After expressing the momentum dependence
of the free quark propagators in terms of P and ( p̃n, q̃n) by using (5.35) with the lower
sign3 [30], we find

β

j
〈p′j|SnSn′ | p̃l〉

β′

n

=
∫

d4q̃nΩ̄γ′δ′δ(4)(p′j − p̃j)S
γ′β′

n (
1
4

P + q̃j −
1
2

p̃j)S
δ′ζ ′

n′ (
1
4

P− q̃j −
1
2

p̃j)Ωζ ′β (5.57)

=
∫

d4q̃nΩ̄γ′δ′δ(4)(q′j − q̃j)S
γ′β′

n (
1
2

P + p̃n)S
δ′ζ ′

n′ (− p̃j − p̃n)Ωζ ′β (5.58)

= Ωζ ′βSδ′ζ ′

n′ (−p′j − p̃n)Ω̄γ′δ′Sγ′β′

n (
1
2

P + p̃n) . (5.59)

The second matrix element of equation (5.54) leads to

β′

n〈 p̃n|tn(
1
2

P− p̃l)χli|pi〉αi = tn(
1
2

P− p̃n)Xβ′α
ni ( p̃n, pi) . (5.60)

since the diquark propagator t is just a scalar function. Moreover, the second order
term in (5.44) can be expressed by the diquark-quark scattering kernel defined in
equation (5.52)

β

j
〈p′j|∑

nn′
(1− δjnn′)SnSn′Tnχni|pi〉αi

= ∑
nn′

(1− δjnn′)
∫ d4 p̃n

(2π)4 Ωζ ′βSδ′ζ ′

n′ (−p′j − p̃n)Ω̄γ′δ′Sγ′β′

n (
1
2

P + p̃n)×

× tn(
1
2

P− p̃n)Xβ′α
ni ( p̃n, pi) (5.61)

= ∑
nn′

∫ d4 p̃n

(2π)4K
βγ′

jn′ (p′j, p̃n)S
γ′β′

n (
1
2

P + p̃n)tn(
1
2

P− p̃n)Xβ′α
ni ( p̃n, pi) . (5.62)

Here, we have suppressed the summation over β′. Based on the assumption of an odd
permutation (jnn′) of (123), the latter term can be written as

β

j
〈p′j|∑

nn′
(1− δjnn′)SnSn′Tnχni|pi〉αi

= ∑
n

∫ d4 p̃n

(2π)4K
βγ′

jn (p′j, p̃n)S
γ′η′

n (
1
2

P + p̃n)tn(
1
2

P− p̃n)Xβ′α
ni ( p̃n, pi) , (5.63)

where we changed the index of the scattering kernel K.
Combining the upper results, i.e. expressions (5.52) and (5.63), for the different terms

3This means, we assume an odd permutation of (jnn′).
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in (5.44), we find the self-consistent expression for Xβα
ji in momentum-space

Xβα
ji (p′j, pi) =K

βα
ji (p′j, pi)

+ ∑
n

∫ d4 p̃n

(2π)4K
βγ′

jn (p′j, p̃n)S
γ′η′

n (
1
2

P + p̃n)tn(
1
2

P− p̃n)Xη′α
ni ( p̃n, pi) .

(5.64)

We want to emphasize at this point, that the above equation is already an effective
two-body relation. It only depends on the relative momentum p between a single
particle and a pair of particles. The next step is to transfer our results to identical
quarks. Therefore, the corresponding transition amplitude X has to be antisym-
metrised. As a consequence, the particle index n can be dropped for the quark and
diquark propagators respectively, since we can not distinguish which particle has
been exchanged. Thereupon, the only dependence of particle indices is given in the
factor δijk. In addition, we have to calculate the full three-particle T-matrix

τ = ∑
i=[1,2,3]

τi , (5.65)

with τi from equation (5.23). We can use the definition (5.42) within expression (5.65)
to obtain an operator representation of τ

τ̂ = ∑
i

∫ d4 p
(2π)4 ∑

α

|p〉αi
α
i〈p|ti

(
1
2

P− p
)

S−1
i

+ ∑
ij

∫ d4 p
(2π)4

∫ d4 p′

(2π)4 ∑
αβ

|p〉αi ti

(
1
2

P− p
)

Xαβ
ij tj

(
1
2

P− p′
)

β
j〈p
′| . (5.66)

Now, we put this between antisymmetric states (characterized with index A) in the
three-particle Hilbert-space [30]

|k1k2k3〉α1α2α3
A =

√
3!A|k1k2k3〉 (5.67)

=
1√
3!

∑
i

(
|qi pi〉

αiαjαk
l − |−qi pi〉

αiαkαj
l

)
, (5.68)

with arbitrary index l. Here, the operator A := 1
3! ∑π sign(π)Pπ is Hermitian, idempo-

tent and ensures that the resulting state is antisymmetric under odd permutations of
(123). For fixed index i, we suppose (ijk) to be an even permutation of (123). Hence,
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we find for the matrix element

α′1α′2α′3
A〈k

′
1k′2k′3|τ|k1k2k3〉α1α2α3

A

= ∑
i

∫ d4 p
(2π)4 ∑

α

α′1α′2α′3
A〈k

′
1k′2k′3|p〉αi

α
i〈p|S

−1
i |k1k2k3〉α1α2α3

A ti

(
1
2

P− p
)

+ ∑
i=j

∫ d4 p
(2π)4

∫ d4 p′

(2π)4 ∑
αβ

α′1α′2α′3
A〈k

′
1k′2k′3|p〉αi ti

(
1
2

P− p
)

Xαβ
ij tj

(
1
2

P− p′
)

β
j〈p
′|k1k2k3〉α1α2α3

A

+ ∑
i 6=j

∫ d4 p
(2π)4

∫ d4 p′

(2π)4 ∑
αβ

α′1α′2α′3
A〈k

′
1k′2k′3|p〉αi ti

(
1
2

P− p
)

Xαβ
ij tj

(
1
2

P− p′
)

β
j〈p
′|k1k2k3〉α1α2α3

A ,

(5.69)

where we already separated the sums. The primed quantities in the upper relation
denote properties of the outgoing state.
The leading-order term in the above equation is equal for all i except for the expectation
value of the inverse quark-propagator, which depends on the index l within the
antisymmetric state. Anyway, we can choose an arbitrary index and multiply the
result with a factor of three but have to take care of the inverse quark propagator.
An analogous argument holds for the second term. For the last contribution an extra
factor of two arises from the fact that Xij = Xik holds. Summarised, we find

α′1α′2α′3
A〈k

′
1k′2k′3|τ|k1k2k3〉α1α2α3

A

= 3
∫ d4 p

(2π)4 ∑
α

α′1α′2α′3
A〈k

′
1k′2k′3|p〉α1

α
1〈p|S

−1
l |k1k2k3〉α1α2α3

A t1

(
1
2

P− p
)

+ 3
∫ d4 p

(2π)4

∫ d4 p′

(2π)4 ∑
αβ

(
α′1α′2α′3

A〈k
′
1k′2k′3|p〉α1t1

(
1
2

P− p
)

Xαβ
11 t1

(
1
2

P− p′
)

β
1〈p
′|k1k2k3〉α1α2α3

A

+
α′1α′2α′3

A〈k
′
1k′2k′3|p〉α1t1

(
1
2

P− p
)

2Xαβ
12 t2

(
1
2

P− p′
)

β
2〈p
′|k1k2k3〉α1α2α3

A

)
. (5.70)

Thus, we have to evaluate the matrix element α
1〈p|S

−1
i |k1k2k3〉α1α2α3

A and elements of

the form α′1α′2α′3
A〈k′1k′2k′3|p〉α1 . By using expression (5.68) for the antisymmetric state and

(5.41) a straight forward calculation with l = 1 yields

α′1α′2α′3
A〈k

′
1k′2k′3|p〉α1 =

1√
6

∑
i

(
α′iα
′
jα
′
k
1〈qi pi|p〉α1 −

α′iα
′
jα
′
k
1〈−qi pi|p〉α1

)
(5.71)

=
1√
6

∑
i
(2π)4δ(4)(p− pi)δα′iα

(
Ωα′jα

′
k −Ωα′kα′j

)
(5.72)

=


0 for Ωα′jα

′
k totally symmetric

2√
6 ∑

i
(2π)4δ(4)(p− pi)δα′iα

Ωα′jα
′
k for Ωα′jα

′
k totally antisymmetric

.

(5.73)
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For the other matrix element a similar calculation yields

α
1〈p|S

−1
l |k1k2k3〉α1α2α3

A

=


0 for Ω̄αmαn totally symmetric

2√
6 ∑

l
(2π)4δ(4)(p− pi)Ω̄αmαn S−1

l (
1
2

P + pl) for Ω̄αmαn totally antisymmetric
,

(5.74)

where (lmn) is an even permutation of (123). For a totally symmetric diquark vertex
function Ωαβ the matrix element (5.70) vanishes. A analogous behaviour already
occurs in the diquark discussion, cf. section 4.1, for the diquark scattering matrix.
This is not surprising, since the three quarks which constitute the baryon are fermions
and hence have to fulfil Pauli’s principle. In section 5.6 we will see, how to project the
vertex functions onto a physical nucleon state in colour and flavour space.
According to the fact that only antisymmetric diquark vertices give a contribution, it
is convenient to introduce [30]

Xβα(p′, p) :=
1
6 ∑

ij
Xβα

ji (p′, p) , (5.75)

which determines the full three-particle scattering matrix, when sandwiched between
totally antisymmetric states. This quantity is often called baryon wave function. It is
easy to see that the baryon wave function (5.75) fulfils

Xβα(p′, p) =Kβα(p′, p)

+
∫ d4 p′′

(2π)4K
βγ(p′, p′′)Sγδ(

1
2

P + p′′)t(
1
2

P− p′′)Xδα(p′′, p) . (5.76)

It follows that the matrix element (5.70), by virtue of equations (5.73) and (5.74),
reads [30]

α′1α′2α′3
A〈k

′
1k′2k′3|τ|k1k2k3〉α1α2α3

A

= ∑
(ijk),(lmn)

(2π)4δ(4)(pl − p′i)Ω
α′jα
′
k t(

1
2

P− pl)Ω̄αmαn S−1
αiαl

(
1
2

P + pl)

+ ∑
(ijk),(lmn)

Ωα′jα
′
k t(

1
2

P− p′i)Xα′iαl (p′i, pl)t(
1
2

P− pl)Ω̄αmαn , (5.77)

with (ijk) and (lmn) are assumed to be even permutations of (123). The emerging
factors of two in front of the diquark propagators in equation (5.70) have been absorbed
to obtain the propagator for indistinguishable quarks, as treated in chapter 4. In this
context, note that the diquark propagator in equation (5.70) still contains an index as
expected for distinguishable quarks.
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We have now reached a point where we have derived a BS-like equation for the
determination of baryons within the NJL model, that only depends on an effective
2+1 interaction kernel. We can identify the self-consistent equation (5.76) with the BS
equation for the diquark-quark scattering process and hence in certain ways with the
baryon propagator itself. The corresponding diagrammatic representation is given in
figure 5.3.
Solving equation (5.76) for the baryon wave function Xβα and insert the result into

P
...

Figure 5.3. Diagrammatic representation of the Bethe-Salpeter equation for diquark-
quark scattering.

(5.77) provides the solution of the three-body problem. Moreover, we note that the
leading order term of equation (5.77) is related to a free propagation of a diquark and
quark, while the following term describes the scattering of these two particles. We
have already mentioned in the previous section that the T-matrix in the three-particle
Hilbert space becomes the S-matrix in a 2+1 particle subspace.
For the upcoming discussion, it is practical to rewrite equation (5.76) into a matrix
equation in the (two-dimensional) diquark-quark Hilbert-space. Therefore, we have to
distinguish between the quarks and diquarks in colour and flavour space.
In order to go back to our notation in the meson and diquark chapter, with bared and
non-bared Latin indices we take a closer look to the kernel K

Kβα(p′, p) = Sγη(-p-p')

Ωβη

Ωγα

= Ω̄γαSγη (−p− p′)Ωβη . (5.78)

If we consider the diquark vertices defined in chapter 4.1 (equation (4.7)) for the scalar
diquarks, we find

Ω̄γα = (ΓDC)γα = (iγ5C)γα ⊗ (λA)γα ⊗ (τm)γα . (5.79)

Since we only assume the up and down quarks in our discussion, the (antisymmetric)
second Pauli matrix describes the structure in flavour space. After introducing a new
(upper) composite bared index ā = (A, m = 2) that characterises the diquark channel
and using the notation with non-bared Latin letters for the quarks as in the previous
chapters we can rewrite (5.76) into

X āb̄
ij (p′, p) =Kāb̄

ij (p′, p)

+
∫ d4 p′′

(2π)4K
āb̄′
ij′ (p′, p′′)Sj′(

1
2

P + p′′)tb̄′(
1
2

P− p′′)Xb̄′ b̄
j′i (p′′, p) . (5.80)
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Note that these indices do not correspond to a certain particle any more. More
precisely, they are related to the introduced Greek indices at the beginning of this
section.

5.3. Vertex structure

ΓΓτ
Figure 5.4. Seperation of the baryon T-matrix near the pole.

As already mentioned, equation (5.80) describes the scattering of a (bound) particle
pair on a single particle. Since quarks are the degrees of freedom in the NJL model,
the corresponding baryon vertex Γ with external propagators takes the form shown
on the l.h.s. of figure 5.4.
Near its poles, the three-particle scattering matrix (5.65) can be written in pole-
approximation as [30]

τ =
Γ̄Γ

P2 −m2
B + iε

, (5.81)

for P2 −→ m2
B. With the upper ansatz, the baryon wave function Xα′iαl in equation (5.77)

should separate as well, which leads to the vertex function Γ

Γα1α2α3(k1, k2, k3) = ∑
(lmn)

Xαl (pl)t(
1
2

P− pl)Ω̄αmαn . (5.82)

In accordance with the discussion in the previous section, the three-particle vertex
Γ can be expressed by an effective 2+1 particle vertex, cf. figure 5.5. Note, that the

Γ

k1

k2

k3 X

Ω

t

km

kl

knΣ
(lmn)

Figure 5.5. Diagrammatical representation of the baryon vertex with external legs.

diquark vertex Ω̄ has been assumed to be antisymmetric in the upper Greek indices to
obtain a non-vanishing scattering matrix. This leads to an antisymmetrized behaviour
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of the baryon vertex Γ, too. The effective 2+1 particle vertex function Xαi(pi) fulfils,
with the notation provided in the previous section, the homogeneous version of the
BS equation [25](

X ā
i (p′, P)−

∫ d4 p′′

(2π)4K
āb̄′
ij′ (p′, p′′)Sj′(

1
2

P + p′′)tb̄′(
1
2

P− p′′)Xb̄′
j′ (p′′)

)∣∣∣∣∣
P2=m2

B

= 0

(5.83)

and can be, more or less, directly read off the second term in equation (5.77). Hence,
we can use this homogeneous BS equation to determine the bound state of three
particles in the NJL model. An other possible way to obtain an analogous description
of the baryons is to identify the baryon wave function X āb̄

ij (p′, p) from the previous
section with the full scattering matrix T of a diquark-quark scattering process, like in
the meson and diquark channel, respectively. Thus, the denominator of the propagator
at on-shell mass has to be evaluated. In case of the inhomogeneous BS equation,
we have to solve the self-consistent expression (5.80) for X āb̄

ij (p′, p). The difference
between equation (5.83) and (5.80) lies in the kind of physical object. Equation (5.80)
describes the complete scattering matrix with outgoing (ā and i) and incoming (b̄
and j) diquarks and quarks. By solving this expression for the baryon wave function
we obtain a pole structure, which will be compared to the ansatz (5.81). In order to
obtain the mass of the corresponding bound state, we have to evaluate the result at
the on-shell condition P2 = m2

B.
Meanwhile, in equation (5.83) we start directly from the ansatz (5.81) and split the
T-matrix (5.80) into two vertex functions X ā

i (p′) based on the behaviour near the
three-body bound state. These vertex functions only have one quark and diquark
index since the “outgoing” quantity is a certain baryon propagator. Moreover, the
vertex (5.83) only depends on the relative momentum p of the external quark and
diquark.
For the sake of simplicity, we will use equation (5.83) to determine the mass of the
baryon. We would like to emphasize at this point that in fact the quantities within
equation (5.83) represents matrix elements due to the indices. However, these matrix
elements will be treated as representative for the corresponding matrices in order to
improve the understanding of the complete expression.
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5.4. Baryon masses

To obtain the baryon mass we have to find the root of the matrix equation(
X ā

i (p′, P)−
∫ d4 p′′

(2π)4K
āb̄′
ij′ (p′, p′′)Db̄′

j′ (P, p′′)Xb̄′
j′ (p′′, P)

)∣∣∣∣∣
P2=m2

B

= 0 . (5.84)

Here, the elementary interaction K(p′, p), introduced in equation (5.47), is given by

Kāb̄
ji (p, p′) := Sx(-p'-p)

(CΓD)xi

(ΓDC)jx
b

a

= (ΓDC)b̄
jxSx(−p′ − p)(CΓD)ā

xi , (5.85)

and represents the exchange of a quark with colour and flavour index x and four mo-
mentum p′+ p. 4 The leading-order term of the Dyson equation, the (free) propagation
of the corresponding quark and diquark, is denoted by

iDb̄′
j′ (P, p) :=

itb'(P/2-p)

iSj'(P/2+p)

= −iSj′(
P
2 − p)itb̄′( P

2 + p) . (5.86)

As already mentioned, we will assume the diquarks to be in an antisymmetric state in
colour and flavour space. This leads to the possible interpretation, that the diquark in
a baryon plays the role of the antiquarks in the discussion of the mesonic spectrum.5

Then, the kernel K of the interaction, can be interpreted as the combination of the free
propagation of the baryon constituents with the elementary interaction K

iKāb̄
ij (p, p′, P) := Kāb̄

ji (p, p′)Db̄
i (P, p′) (5.87)

and is shown in figure 5.6.6 To obtain a computable expression for the baryon masses,
we can rewrite equation (5.84)∫ d4 p′′

(2π)4 X ā
i (p′′, P)δ(4)(p′′ − p′)−

∫ d4 p′′

(2π)4 Kāb̄′
ij′ (p′, p′′, P)Xb̄′

j′ (p′′, P)
)∣∣∣∣∣

P2=m2
B

= 0

(5.88)

⇒
∫ d4 p′′

(2π)4

(
δ(4)(p′′ − p′)δb̄′ āδj′i − Kāb̄′

ij′ (p′, p′′, P)
)

Xb̄′
j′ (p′′, P)

∣∣∣∣∣
P2=m2

B

= 0 .

(5.89)

4We do not define a new momentum for the sum p + p′, since we want to maintain the p-dependence
of this quantity for the further discussion.

5This is the reason we choose bared indices for the diquarks.
6The propagators on the l.h.s of the figure are added for illustrative purposes.

68



5.5. Scattering kernel Chapter 5. Baryon modelling

Sx(-p'-p)

i

j

a

b

P/2+p'

P/2-p'P/2+p

P/2-p

Figure 5.6. Interaction kernel of the diquark-quark scattering.

Basically this equation describes an eigenvalue problem with eigenvalue zero for the
on-shell condition. Therefore, we have to solve

det

(
1Diracδb̄′ āδj′i −

∫ d4 p′′

(2π)4 Kāb̄′
ij′ (p′, p′′, P)

) ∣∣∣∣∣
P2=m2

B

= 0 . (5.90)

Due to the p′′ dependency of the interaction kernel Kāb̄′
ij′ (p′, p′′) within the kernel

K(p′, p′′, P), the integration over p′′ is a non-trivial task. In the upcoming chapter, we
will see that applying an adequate approximation leads to a further simplification
of equation (5.90). This allows us to perform the integration over the momentum p′′

within the second term to obtain a quantity, which can be interpreted as a baryon
polarisation loop, composed by a quark and a diquark. In addition, the remaining
dependency of p′ in the upper equation will disappear in this approximation. Before
we evaluate the determinant in equation (5.90), the corresponding matrix within will
be investigated.

5.5. Scattering kernel and static approximation

As already mentioned, the exchange of a quark is the elementary interaction for the
diquark-quark scattering in order to ensure the Pauli exclusion principle. Then the
interaction kernel can be expressed through (5.87) and is diagrammatically represented
in figure 5.6. Basically, this kernel describes a quark exchange between two quark-
quark scattering matrices. The emerging vertices in this Feynman diagram are the
same vertices, cf. equation (4.12), as in the description of the diquark scattering matrix.
A commonly used simplification of the scattering kernel, and thus for the Faddeev
equation itself, is the static approximation [33]. Here the momentum dependence of
the exchange quark is completely neglected by assuming that the mass of the quark is
much larger than the typical momentum exchange. It follows that the (dressed) quark
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Sx(-p'-p)

i

j'a

b' i j'

a b'

Figure 5.7. Visualisation of the static approximation for the baryonic scattering kernel.

propagator reduces to

iSx(−p′ − p) = i(−/p′ − /p −Mx)
−1 → −i

1
Mx

1 , (5.91)

which is illustrated for the kernel (5.87) in figure 5.7. The estimated uncertainty of this
approximation, for the baryon masses in case of vanishing temperature and chemical
potential, is about 5%, as discussed in [34]. The vertex structure of the baryons thus
reduces in the case of the static approximation and only considering scalar diquarks to
a momentum independent vertex function, that can be treated similar to the mesons
and diquarks. Applying the static approximation to the integral kernel in equation
(5.90), leads to

det

(
δBB′ −

∫ d4 p′′

(2π)4 K
āb̄′
ij′ Db̄′

j′ (P, p′′)

) ∣∣∣∣∣
P2=m2

B

= 0 (5.92)

where the elementary interaction is no longer momentum dependent. Here, the
Kronecker-delta δBB′ := 1 ⊗ δcolour

j′i δcolour
b̄′ ā ⊗ δflavour

j′i δflavour
b̄′ ā denotes a certain baryon

channel. The corresponding matrix of this eigenvalue problem can now be reduced
to

δBB′ −
∫ d4 p′′

(2π)4 K
āb̄′
ij′ Db̄′

j′ (P, p′′) = δBB′ + i
1

Mx

∫ d4 p′′

(2π)4 D
b̄′
j′ (P, p′′) . (5.93)

We can now insert expression (5.85) for the elementary interaction and (5.86) as the
free quark and diquark propagator to obtain

det

(
δBB′ +

1
Mx

∫ d4 p′′

(2π)4 (CΓD)ā
xj′(Γ

DC)b̄′
ixSj′(

P
2
− p′′)itb̄′(

P
2
+ p′′)

)∣∣∣∣∣
P2=m2

B

= 0 .

(5.94)

The coupling constant of the baryonic channel can be read off directly. By comparing
the upper equation with the propagators obtained in the meson or diquark channel,
i.e. (3.22) and (4.13), leads to the assumption, that an appropriate Lagrangian for
the baryons within the NJL model, as a diquark-quark bound state, should have a
coupling-constant in the order of the inverse quark mass. Moreover, we note in this
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explicit representation of the BS equation for the baryon that the complete baryonic
channel only depends on the structure of the related diquark vertices.
The (general) vertex structure of the diquarks in this equation, meanwhile, is given
by

(ΓDC)b̄′
ix(CΓD)ā

xj′ = (∆DC)ix(C∆D)xj′ ⊗ λb̄′
ixλā

xj′ ⊗ τb̄′
ix τ ā

xj′ , (5.95)

where ∆D denotes a certain diquark (spin-)channel, cf. chapter 2.

5.6. Baryon projection

In order to obtain a description for the baryons emerging in nature, we have to project
the matrix of the eigenvalue problem (5.94) onto physical states. For this purpose,
projectors can be defined for certain spaces. As already stated, we want to describe
baryons, which only include scalar diquarks, for which the structure in colour and
flavour space is fully antisymmetric. In Dirac space we find

(∆DC)(C∆D) = −∆D∆D , (5.96)

where for the scalar diquarks ∆D = iγ5 holds. The Dirac structure of a certain baryon
therefore is given by the third quark. The contribution of pseudoscalar diquarks, i.e.
∆D = 1, in the modelling of the baryon will be neglected in accordance with the
discussion provided in chapter 4.
The representation in colour space meanwhile can be expressed through an antisym-
metric tensor as shown in appendix B.2. In the following, the bared indices run from
1 to 3 and denote the antisymmetric Gell-Mann matrices. This notation leads to

λā
ixλb̄′

xj′ = iεā
ixiεb̄′

xj′ (5.97)

= −δā
i δb̄′

j′ + δāb̄′δij′ . (5.98)

A qualitative analysis of the kernel, shown in figure 5.6, in colour space already
motivates that the first term in the above expression can be related to a singlet
projector, while the last one represents the octet. Both vertices, corresponding to the
incoming and outgoing diquark with (anti)colours b̄′ and ā, respectively, are connected
through a quark with colour index x. Hence, the first term yields both sides of
figure 5.6 to be colourless.
For the second term in (5.98), the incoming and outgoing diquarks carry the same
anticolour, which holds for the colour of the quarks in the scattering process as well.
Overall, the state obtained by the second term is necessarily coloured, when the
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incoming colours/anticolours, are not equal. As shown in appendix F.3, indeed the
colour singlet and colour octet are eigenstates, of an operator related to equation
(5.98). Moreover, the eigenvalue of the two multiplets have different signs. If we
assume an attractive interaction in the colour-singlet state, the interaction therefore
has to be repulsive in the octet channel due to the different signs. Furthermore, the
singlet and octet do not mix and thus separate the expression (5.94) into these different
states. Since the only observable states in nature are colour singlets, the octet channel
is physically irrelevant and will be neglected. There are plenty of projectors onto
singlet and octet states given in the literature, depending on the used conventions.
To evaluate the baryons, as physical particles in a colour singlet state, the related
projector used in this work reads

Pcolour,(1)
āj =

1√
3

δā
j . (5.99)

For the colour singlet projector, we obtain for the first term in (5.94)

(Pcolour,(1)
āj′ )†δBB′Pcolour,(1)

b̄′i =
1
3

δcolour
ij′ δcolour

āb̄′ δā
j′δ

b̄′
i (5.100)

=
1
3

tr (1c) = 1 , (5.101)

while for the integral term

(Pcolour,(1)
āj′ )†λā

ixλb̄′
xj′P

colour,(1)
b̄′i =

1
3

iεā
ixiεb̄′

xj′δ
ā
j′δ

b̄′
i = −1

3
ε

j′

ixεi
xj′ = −2 (5.102)

holds.

https://de.wikipedia.org/wiki/Levi-Civita-Symbol The structure in flavour space is
just given by the second Pauli matrix, since it is the only antisymmetric matrix for the
SU(2) representation. Due to the consideration of the isospin limit, for which the mass
of up and down quarks are equal,https://de.wikipedia.org/wiki/Levi-Civita-Symbol
the proton and neutron are degenerate in flavour space. Furthermore, since we cannot
distinguish between the up and down quark in flavour space the indices of the mass
Mx of the exchange quark as well as the free quark propagator Sj′ in equation (5.94)
can be omitted. The structure in flavour space of the baryons therefore reduces to
an identity with indices ij′. In detail, equation (5.93) thus represents a diagonal
matrix in the two-flavour case due to the second Pauli matrix. Hence, the proton and
neutron states do not mix, as expected. For three flavours and different masses for
non-strange and strange quarks, off-diagonal elements will appear in matrix (5.94),
which are related to the Σ0 −Λ mixing, such that a coupled set of equations has to be
solved [25].
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5.7. Dirac-like equation for the nucleon

Using the results from the previous section, the eigenvalue problem in equation (5.94)
in Dirac-space takes the form

det

(
1− 2

M

∫ d4 p′′

(2π)4 S(
P
2
+ p′′)itsad(

P
2
− p′′)

)∣∣∣∣∣
q2=m2

B

= 0 , (5.103)

where tsad denotes the scalar antitriplet diquark propagator discussed in chapter 4.1.
In the following steps, we want to rewrite equation (5.103), which already looks like a
Dirac equation, to a more familiar form. Therefore, it is useful to define the nucleon
polarisation loop

JN(P) :=

tsad(P/2-p'')

S(P/2+p'')

=
∫ d4 p′′

(2π)4 S(
P
2
+ p′′)itsad(

P
2
− p′′) , (5.104)

which, compared to the mesonic and diquark polarisation loops, neither includes
any vertex structure nor a trace. Furthermore, the polarisation loop (5.104) is not a
closed fermion loop, since it is constructed of a fermion and a boson. As already
mentioned in the previous discussions, the complete Dirac structure of the spin-
half baryons is given, in the case of scalar diquarks, by the single quark. Now, we
can insert the expressions (2.33) and (4.22) for the quark and diquark propagator in
pole-approximation and change the variable p′′ 7→ P

2 − p′′, to obtain

JN(P) = −ig2
Dqq

∫ d4 p′′

(2π)4

/P− /p′′ + M
(P− p′′)2 −M2

1
p′′2 −m2

sad
. (5.105)

This can be rewritten (see appendix F.4) as

JN(P) = −ig2
Dqq

(
/P(I0(P)− I1(P)) + MI0(P)

)
(5.106)

with the introduced integral

In(P) :=
∫ d4 p′′

(2π)4

(
Pp′′

P2

)n 1
(P− p′′)2 −M2

1
p′′2 −m2

sad
, n = 0, 1 . (5.107)

Note that for n = 0 and M = msad the integral in equation (5.107) is equal to the
definition of I2 in appendix D.1.1. Hence, the expression (5.103) reads

det

(
1− ig2

Dqq
2
M

{
/P(I0(P)− I1(P)) + MI0(P)

})∣∣∣∣∣
P2=m2

B

= 0 . (5.108)
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Basically, we find that the inhomogeneous BS equation (5.80) can be written as a
Dirac-like equation for an appropriate (renormalised) nucleon wave function Xnucl(P),
which, in a compact version reads

(/PA(P)− B(P)) Xnucl(P)
∣∣∣

P2=m2
B

= 0 . (5.109)

Here, we have introduced the momentum-dependent pre-factors

A(P) := −ig2
Dqq

2
M

(
I0(P)− I1(P)

)
, (5.110)

B(P) := ig2
Dqq MI0(P)− 1 . (5.111)

Equation (5.109) also represents an eigenvalue problem and therefore can be solved
by

det (/PA(P)− B(P))|P2=m2
B

!
= 0 , (5.112)

which leads, for a nucleon at rest, to

m2
B =

B(P0)

A(P0)

∣∣∣∣∣
P2

0=m2
B

. (5.113)

Comparing equation (5.109) with the well known Dirac equation, the scalar part, or
more precisely the fraction B(P)/A(P), in equation (5.109) defines the mass of the
nucleon in accordance with expression (5.113) and can be computed directly. The
emerging divergent integrals I0 and I1 defined in (5.107) have to be regularised in a
proper way, for example with Pauli-Villars regularisation. Furthermore, the pre-factors
A(P) and B(P) are in general related to the spectral functions of the nucleon.

5.8. Nucleon propagator and mass

In this section we want to determine the vacuum nucleon propagator and investigate
its behaviour under a variation of the free parameters of the NJL model. Hence, it will
be possible to fit the still undetermined coupling constant hs of the particle-particle
channel onto the well known nucleon mass mN = 938 MeV. Despite that we have
already given an equation to obtain the nucleon mass in (5.109) through the coefficients
A(P) and B(P), we will go a step back and consider the BS equation (5.103). By virtue
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of the polarisation loop, defined in (5.104), the corresponding matrix reads

1 +
2
M

J(P)

= 1− i
2
M

g2
Dqq

∫ d4 p′′

(2π)4

/P− /p′′ + M
(P− p′′)2 −M2

1
p′′2 −m2

sad
(5.114)

= 1− i
2
M

g2
Dqq

∫ d4 p′′

(2π)4
(P0 − p′′0 )γ0 − (~P− ~p′′)~γ + M1

(P− p′′)2 −M2
1

p′′2 −m2
sad

(5.115)

In Dirac-space, we can split the baryon polarisation loop into a scalar, related to the
identity matrix, and a vector contribution, related to the γ0-matrix. For a certain
nucleon at rest, i.e. ~P = 0, the scalar part is given by

Js(P0) := −ig2
Dqq MI0(P0) (5.116)

while the vector one reads

Jv(P0) := −ig2
Dqq

∫ d4 p′′

(2π)4
(P0 − p′′0 )

(P− p′′)2 −M2
1

p′′2 −m2
sad

. (5.117)

The remaining ~p′′~γ contribution is antisymmetric and hence vanishes in case of an
integration over the hole (three-dimensional) momentum space. A detailed treatment
of both contributions can be found in appendix F.5. Due to the eigenvalue character
of the original equation (5.84), we have to evaluate

det
(

1 +
2
M

J(P0)

) ∣∣∣
P2

0=m2
N

= det
(

1 +
2
M

(Js(P0)1 + Jv(P0)γ0)

) ∣∣∣
P2

0=m2
N

!
= 0 . (5.118)

Since γ0 is a diagonal 4 × 4 identity, except for a sign switch in the (last) 2 × 2
submatrix, the determinant can be evaluated directly. The matrix structure of the
non-trivial part of the nucleon polarisation loop (5.104) reads

2
M

(Js(P0)1 + Jv(P0)γ0)

=
2
M


Js(P0) + Jv(P0) 0 0 0

0 Js(P0) + Jv(P0) 0 0
0 0 Js(P0)− Jv(P0) 0
0 0 0 Js(P0)− Jv(P0)

 (5.119)

Hence, the determinant reads

D−1
N (P0) := det

(
1 +

2
M

(Js(P0)1 + Jv(P0)γ0)

) ∣∣∣
P2

0=m2
N

(5.120)

= [1 +
2
M

Js(P0) +
2
M

Jv(P0)]
2[1 +

2
M

Js(P0)−
2
M

Jv(P0)]
2
∣∣∣

P2
0=m2

N

(5.121)

=

(
[1 +

2
M

Js(P0)]
2 − 4

M2 J2
v(P0)

)2 ∣∣∣
P2

0=m2
N

!
= 0 . (5.122)
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It turns out that one term of the determinant would be enough to determine the
nucleon mass. Nevertheless, we choose the multiplication of the two different terms
to obtain a symmetric behaviour of the nucleon-mass equation under a variation of
P0. For an arbitrary choice of input parameters 7, like the constituent quark-mass
and coupling constant hs of the diquark channel, the denominator of the baryon
propagator represented by equation (5.122) is shown in figure 5.8.
In the discussion of the diquarks, we have already seen that for hs =

3
2 gs the scalar

diquarks and pseudoscalar mesons are degenerate. For increasing hs the diquark
becomes even lighter than the pion, cf. the discussion in chapter 4.1, before the mass
vanishes. Hence, the upper limit for coupling hs within the quark-quark channel
will be set to hs = 1.5gs in the following discussion. The lower limit for the diquark
coupling is also given in chapter 4 and lies around hs = 0.7gs.
For |P0| between zero and approximately 1000 MeV, we recognise the stable region for
baryons. The roots in this region are related to the mass of the nucleon. The first kink
at a certain P2

0 = (M + msad)
2, indicates the beginning of a non-vanishing imaginary

part and hence the possibility for the nucleon to decay. Therefore, roots after the
first kink describe an unstable resonance of the nucleon that is allowed to decay into
its constituents. In the following section we take a closer look at equation (5.122) to
investigate the behaviour under various variations of the input parameters.

5.8.1. Constituent quark-mass / parameter set variation

Table 5.1. Parameter set for fixed value of hS = 1.1gS

[A] [B] [C] [D] [E]

M [MeV] 300 350 400 450 453
m [MeV] 7.57 8.46 8.89 9.04 9.05
gSΛ2 3.23 3.65 4.095 4.553 4.589
Λ [MeV] 696.676 647.491 624.828 615.359 615

msad [MeV] 472.186 490.169 514.274 542.188 544.437
gDqq 3.985 4.887 5.725 6.531 6.576

To get an idea of the behaviour of the inverse baryon propagator under a variation
of the constituent quark-mass, or to be more precisely, the complete parameter set,
we will use the parameter sets calculated in section 3.3. These sets are shown again
in table 5.1. The coupling constant of the diquark-channel, i.e. hs, in the upcoming

7Here, parameter set [E] of table 5.1 has been used with hs = 1.1gs
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Figure 5.8. Inverse nucleon propagator for parameter set [E] with hs = 1.1gs.
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Figure 5.9. Behaviour of the inverse baryon propagator under a variation of M for fixed
hs = 1.1gs. The related parameters for each M can be found in table 5.1.
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discussion will be set to a fixed value of hs = 1.1gs. From this the scalar antitriplet
diquark mass as well as the corresponding effective coupling gDqq have been calculated
and added to the table.
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Figure 5.10. Roots for the inverse nucleon propagator for each parameter set of table 5.1.

Since we assume the nucleon to be stable, we will concentrate only on the region before
the first kink. In case of constituent quark-masses lower than 350 MeV corresponding
to parameter set [B], the roots, and thus the related nucleon mass, lies approximately
200 MeV over the diquark mass itself. However, increasing the constituent mass leads
to a shift of the instability point to higher values of P0. It seems that the form of the
inverse propagator stays more or less constant for different parameter sets, except
for a shift in the vertical axis and the position of the first kink due to the different
constituent quark/diquark masses as well.
Physically, this behaviour could have been expected, since we vary the masses of
the three constituents of a nucleon and consequently the diquark-quark coupling.
The only possibility for an interaction between the quarks within a nucleon is given
through the quark-quark coupling hs. Note that the diquark masses are relatively close
to each other in the parameter sets [A]-[D]. Due to the fact that we fix the quark-quark
coupling to a certain value, the quarks can form a bound three-particle state, when
their masses are high enough. From figure 5.9 it follows that a constituent mass of
M = 300 MeV, related to parameter set [A] leads to root at P0 = 770 MeV, while
M = 450 MeV (parameter set [D]) gives P0 = 875 MeV. Beside the quark masses, the
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diquark-quark coupling changes as well. Since this coupling enters the two terms
of the nucleon polarisation loop quadratic, it contributes to the roots significantly. It
follows that the roots of the propagator and hence the related nucleon mass, hardly
depends on the choice of parameter set, when we fix the quark-quark coupling hs. In
figure 5.10 the roots for each parameter set of table 5.1 can be found, which verifies
our statement.
Unless stated otherwise, we choose the parameter set which represents the most stable
nucleon, cf. figure 5.9. Parameter set [E], as well as [D], have the roots sufficiently far
away from the point of instability with not to high coupling in the diquark channel.
Nevertheless, as the next step in the analysis of the inverse baryon propagtor, we will
increase the diquark coupling.

5.8.2. Variation of hs

Table 5.2. Pseudo scalar diquark masses for parameter set [C] with different values of
hs.

hs/gs 0.7 0.9 1.1 1.3 1.5
msad [MeV] 725.504 629.096 514.274 372.305 140.002

We have seen, that a quark mass around 400 MeV leads to stable nucleons with not
too strongly coupled diquarks. Now, we want to analyse the behaviour of the inverse
baryon propagator in case of a variation of the diquark coupling hs for parameter set
[C].
For the various parameter sets, we noticed that the form of the inverse nucleon
propagator stays relatively constant. In contrast, the inverse baryon propagator
behaves slightly different when we tune hs. Increasing hs stretches the region of
stability of the inverse nucleon propagator in the direction of P0, while decreasing
the diquark coupling squeezes it. In fact, varying hs is related to the modification
of the diquark mass. Based on our assumption of a nucleon built of a quark and
a diquark, the mass of the latter should play an important role for the obtained
nucleon propagator. Indeed, increasing hs leads to lower masses for the diquarks
and thus sharpens the region for stable nucleons. The point where the first kink
emerges depends on the quark mass and diquark mass as well. Hence, for a coupling
constant at the lower limit related to a diquark mass near the point of instability,
i.e. m2

sad = 4M2, the region of instability of the inverse nucleon propagator emerges
around P2

0 ≈ (3M)2 = (1200)2 MeV2. Despite that we do not find a root for such
diquark masses, we find that in the inverse nucleon propagator, the interesting region
of stability will be increased to its maximum. In general, it seems very complicated to
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Figure 5.11. Behaviour of the inverse baryon propagator under a variation of hs for
fixed M = 400 MeV. The related diquark mass for each value of hs can be
found in table 5.2.
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obtain a root within the region of stability of the inverse propagator at all with the
restriction of not too strongly bound diquarks. In figure 5.12 the nucleon mass in
terms of hs/gs has been calculated for the different parameter sets. One sees that the
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Figure 5.12. Nucleon masses as a function of hs/gs for all parameter sets. The solid
black line show mN = 938 MeV.

masses of the constituent quarks should lie around 450 MeV, whereas M = 400 MeV
is also possible, in order to obtain a strongly bound nucleon. Then, a diquark mass of
about 550 MeV can be obtained from a coupling hs in the diquark channel between
(1− 1.1)gs depending on the other parameter as well. Parameter set [B], however,
leads to a mass of 914 MeV for hs = 0.96gs, which is quite close to the mass of the
nucleon. We will use this parameter set in further investigations as an example for
nucleons near the point of instability. In table 5.3 we have summarised the best
ratios hs/gs, if possible, for all parameter sets to fit the experimentally well known
nucleon mass mN = 938 MeV. In case of parameter set [A] no solution can be found
in accordance with the upper discussion. Compared to the coupling obtained by the
Fierz-transformation of the colour-current interaction, which yields hs = 3/4gs, the
diquarks have to be significantly stronger bound to form a nucleon with a third quark.
In the following discussion of the nucleons in the medium, parameter set [E] will be
used with a coupling constant hs = 1.051gs for the diquark channel.
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Table 5.3. Parameter set for fixed value of the nucleon mass mN = 938 MeV.

[A] [B] [C] [D] [E]

M [MeV] 300 350 400 450 453
gsΛ2 3.23 3.65 4.095 4.553 4.589
hs/gs - - 1.006 1.049 1.05
msad [MeV] - - 570.742 576.121 576.78

5.9. Nucleon in the medium

It is now time to discuss the nucleon in dense hot matter in order to investigate
the melting temperature and critical chemical potential of the nucleon. For this, the
obtained vacuum description has to be transformed with the already introduced
methods into the medium expressions. A slight difference compared to the mesons or
diquark occurs due to the emerging effective coupling gDqq within the BS equation.
Unlike the two particle channels, i.e. mesons and diquarks, the coupling in the three-
body discussion itself depends on the temperature and quark chemical potential as
well and is not given as an elementary coupling in the NJL Lagrangian. We want
to refer at this point to the discussion encountered in section 4.3, where we have
already investigated the in-medium behaviour of the effective diquark-quark coupling.
Moreover, the inverse nucleon propagator has a more complicated structure due to
mixture of a fermionic and bosonic contribution, but looks formally the same as in
the vacuum. The polarisation loop for the nucleon in expression (5.105) within the
Matsubara formalism thus reads

JB(iν + µ + µD, ~P = 0)

= T ∑
{iω}

∫ d3 p
(2π)2 ((iν− iω + µ)γ0 + M1)

1

(iν− iω + µ)2 − (EQ
P )

2

1
(iω + µD)2 − (ED

P )
2

,

(5.123)

with (EQ
p )

2 = p2 + M2 and (ED
p )

2 = p2 + m2
sad, the quark and diquark energy, re-

spectively. Again, we found that in our baryon modelling, which is based on the
assumption of a diquark-quark scattering process, the corresponding polarisation
loop depends on the sum of a quark and diquark chemical potential. Hereby, the
chemical potential µD is related to the diquark chemical potential and will be set
to 2µ in accordance with section 4.3. Then, the baryon polarisation loop and the
corresponding inverse baryon propagator depend on three times the quark chemical
potential which would be expected for the three-body problem.
It follows directly from equation (5.123) that the polarisation loop yields the same two
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contributions, i.e. a scalar and vector part, and thus will have the same structure as
already found for the vacuum. A detailed investigation of the nucleon polarisation
loop within the medium can be found in appendix F.5.1.
At first we want to take a closer look at the temperature behaviour for a fixed chemical
potential µ = 0. Our results are shown in figure 5.13 for parameter set [E]. For
increasing temperature the nucleon mass decreases at first slowly and then faster until
the limit of stability will be reached at Tm = 193 MeV and consequently is 4 MeV
smaller than the one obtained for the diquarks. At this critical temperature, we would
expect a melting of the nucleon into its constituents. Instead, we find that the nucleon
indeed melts at first but becomes stable again for higher temperatures although the
diquark is unstable. It turns out that within the gap in the region 193 < T < 198 MeV,
no roots of the inverse nucleon propagator, neither in the stable nor in the unstable
region, can be found. Maybe the behaviour of the diquark-quark coupling, discussed
in section 4.3, is responsible for this gap.
Increasing the temperature leads to new roots in the inverse propagator, which can be
identified with a stable nucleon, but with unstable diquarks. Since we do not include
the emerging imaginary part within the diquark propagator in this case, our results
have to be treated with some care. However, in reference [35] it has been argued
that due to this Borromean-state like behaviour the nucleon does not have a melting
temperature at all. In order to verify this assumption within our investigation the
binding energy of the nucleon has been calculated, cf. figure 5.14. While the diquark
indeed becomes unstable for a certain value of T (the binding energy becomes zero),
the nucleon obtains also a zero binding energy for nearly the same temperature, which
is interesting.8 Compared to reference [35] our binding energy for the nucleon shows a
different behaviour, since it becomes zero before the Borromean-state emerges. There-
fore, it is possible to identify a certain melting temperature Tm. A possible explanation
of the different behaviour could be the simplification of the Dirac structure within the
polarisation loop by performing a trace in reference [35]. Hence, the contribution of the
integral proportional to γ0 vanishes in this work. Due the observation in figure 5.14,
we will use the temperature where the diquark-quark-nucleon binding energy (blue
line) becomes zero, in the following discussion as the melting temperature of the
nucleon. Nevertheless, we have to keep in mind that for higher temperatures, after
the gap, a bound nucleon exists in our description.
Taking a look at the other parameter sets, with the upper definition of the melting
temperature, leads to the results shown in figure 5.15, where we calculated the mass
until the binding energy becomes zero. We note that the critical temperature depends
significantly on the set of parameters, although the coupling hs has been fitted to

8For msad = 2M, the blue line has to coincide with the red one.
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Figure 5.13. Nucleon mass as a function of temperature for zero quark chemical poten-
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Figure 5.14. Binding energy of the nucleon and diquark as a function of T.
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obtain the nucleon mass in the vacuum.9 For parameter sets [B] and [C] we find
Tm = 107 MeV and Tm = 173 MeV, respectively. This can be explained by the already
discussed region in which the roots and thus the related nucleon mass of the inverse
baryon propagator lies for the different parameter sets. While for set [B] the root is
very close to the point of instability, the nucleon is much stronger bound in set [D]
and especially [E]. Hence, we expect and find that the latter two have to have a higher
melting temperature.
Comparing our results for the nucleon with the results provided in references [28] and
[25] we found a good agreement. While in both investigations, a three-momentum
cutoff rather than the PV regularisation in our discussion has been used, reference [28]
also simplifies the Dirac structure in the baryon polarisation function by taking the
trace in all spaces. Due to the different regularisation scheme, our result for the critical
temperature is slightly smaller than in these references where melting temperatures
larger than 200 MeV have been found. Moreover, in [25] a factor of two, based on
the two different scattering kernels in the particle-particle channel, cf. equation (4.12),
is missing in the modelling of the diquarks. Therefore, the baryons are less bound
to the diquark and quark and melt earlier, which could explain why the melting
temperatures of the baryons in reference [25] differs significantly from the diquark
one.
For small (fixed) temperature T = 1 MeV and non-vanishing chemical potential
the discussion is analogous to the one for the diquarks in the medium. Again, we
note that our obtained nucleon propagator comes with an additional term of 3µ

in the zero-component of the four-momentum P. A nucleon propagator for the
pole-approximation reads

DB(P0, ~P, µB) =
/P + mB

(P0 + µB)2 − E2
B

, (5.124)

where mB denotes the nucleon mass, µB = 3µ the nucleon chemical potential and
E2

B = ~P2 −m2
B the energy of the nucleon. The poles are given by

P±Pole = E±B − 3µ , (5.125)

with E±B := ±EB = ±
√
~P2 + m2

B. While the diquark is a boson and hence does not
have a Dirac structure in the propagator, the third quark is a spin-half particle and
thus does have a Dirac structure. In detail, the related nucleon Dirac structure is given
by the scalar and vector contribution within the polarisation loop, namely Js and Jv.
Nevertheless, the poles of the nucleon propagator (5.124) are of particular interest
and describe in the case of non-vanishing chemical potential the free energy of the
nucleon, while the physical mass of the nucleon has to be constant, up to a certain

9Except for parameter set [B], where we have used mN = 914 MeV.
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Figure 5.15. Nucleon mass as a function of temperature for zero quark chemical poten-
tial.
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Figure 5.16. Free energy of the nucleon as a function of the chemical potential for
T = 1 MeV.
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Figure 5.17. Free energy of the nucleon as a function of the chemical potential for
T = 1 MeV for the different parameter sets of table 5.1.

threshold, based on the silver-blaze property. As shown in figure 5.16 the behaviour
of the free energy for the nucleon bears a strong resemblance with the one obtained
for the antitriplet diquark. Since the 2SC Phase has not been considered, our results
are not reliable for chemical potentials greater than µ = msad/2. However, we expect
and find that the poles P±Pole are given by (5.125) until µ = msad/2, cf. figure 5.16 with
~P = 0 and P+

Pole.
For the other parameter sets and especially for parameter set [B], with a mass near to
the point of instability, a similar behaviour is expected. Therefore, the fitting function
coincide with equation (5.125) for all parameter sets, cf. figure 5.17. The line for
parameter set [B] with a slightly lower mass of 914 MeV indicates that it crosses the
µ-axis at 914/3 MeV, in accordance with the upper discussion.
As a conclusion, the behaviour of the nucleon in dense matter is independent of the
choice of the parameters. The parameters, meanwhile, should reflect the vacuum
observables of the treated physical particles, like the mass or decay constants. Further-
more, the position of the roots does not contribute for vanishing temperature in any
way.
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Chapter 6

Summary and outlook

In this thesis, we have modelled and studied mesons, diquarks and baryons in the
framework of a two-flavour Nambu–Jona-Lasinio model in vacuum, as well as for
finite temperature and quark chemical potential. Mesons have been described as a
collective excitation of a quark-antiquark pair by using the Bethe-Salpeter equation in
random-phase approximation. The physical masses of the pions and the pion decay
constant have been used to generate a set of values for the bare quark masses, the
coupling constant and other parameters. The in-medium behaviour of the quarks and
mesons has been discussed with the Matsubara formalism. In addition, certain aspects
like the phase transitions from the chirally broken into the restored phase have been
found.
In order to describe diquarks as bound states of the quark-quark scattering process,
the Fierz transformation has been introduced. This led to separate interaction La-
grangians in the particle-particle and the particle-antiparticle channel of the NJL
model. Thus, we obtained a relation between the coupling constants gs and hs of
the particle-antiparticle and particle-particle channel, respectively, based on the Fierz
transformation of the colour-current interaction. However, the coupling hs has been
treated as a free parameter of the model and was later on fixed with the nucleon mass.
In fact, diquarks are bound states of two quarks and thus are not observable in nature
due to confinement. Nevertheless, to ensure Pauli’s principle, we have discussed
the possible channels that occur in Dirac, flavour and colour space. To simplify the
discussion, we have restricted ourselves to the scalar channels in the antitriplet colour
representation. For this, we have seen that the scalar diquarks obtain a smaller mass
than the pseudoscalar ones. Just as for the mesonic channel, it was possible to intro-
duce an effective diquark-quark coupling constant for the pole-approximation, which
was needed for the baryon modelling. Besides the vacuum properties, we have also
discussed the medium behaviour of the diquarks. In particular, we were interested
in the melting temperature and the behaviour for finite chemical potential. We were
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able to discuss the free energy of the diquarks for (nearly) vanishing temperature,
while, due to the silver-blaze property, the masses have to be constant until a certain
threshold emerges.
Since baryons are built out of three quarks, the modelling of such particles is more
complicated compared to the two-particle spectrum. Therefore, we have started
from the Dyson equation, and introduced the Faddeev components with separable
two-particle correlations. For these correlations, we only considered scalar diquarks
and two degenerate flavours, which led to a description of the nucleon. Then we
have investigated our expression in momentum space, to obtain a Bethe-Salpeter-like
equation. Furthermore, the vertex structure, as well as a Dirac-like equation of the
nucleon have been derived and discussed. In order to simplify the complex struc-
ture of the diquark-quark scattering kernel within the Bethe-Salpeter equation, the
static approximation has been introduced. This approximation is characterized by
neglecting the four-momentum dependence of the exchanged quark and therefore
can be interpreted as an infinitely heavy quark exchange. As a following step, the
eigenvalue problem of the Bethe-Salpeter-like equation has been solved to obtain an
expression for the nucleon mass. Therefore, it was possible to fix the coupling hs of
the particle-particle channel onto the well-known observable mass of the nucleon.
Beside the discussion of the inverse nucleon propagator in vacuum, the Bethe-Salpeter
equation of the nucleon has been transformed into the medium. Here, the temperature
behaviour for vanishing chemical potential has been studied. Similar to the mesons
and diquarks, the nucleon melts into its constituents at a certain temperature but
seems to become stable again at higher temperatures. In this regime, where the
diquarks are unstable, the nucleon seemed to be a Borromean-state. However, these
results have to be treated with some care since the methods provided in this work are
not reliable for unstable bound states. Furthermore, the results for the temperature
behaviour of the nucleon, including the Borromean-state, has been compared to other
already existent works. We found that our results resembled the results of these works,
although some technical differences occur. Beside the temperature behaviour of the
nucleon, the free energy of the nucleon in dense matter for vanishing temperature has
been shortly discussed up to the chemical potential, for which the system enter the
2SC phase.

Since we have restricted ourselves to the two-flavour case in the chiral limit in order
to simplify the discussion, it would be interesting to extend the investigation to three
flavours. Then, it would be possible to describe the full baryon octet and decuplet as
well, where for the latter it is required to include the axial diquarks into the baryon
modelling. In order to describe the decay of diquarks and baryons, we could improve
our methods by allowing an imaginary part within the propagators of the two-particle
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and three-particle channel and thus get access to a finite decay width of the described
particles. This would be, due to the already known imaginary parts of the expressions,
more or less straightforward. In this context the question arises whether the baryon is
stable when the diquark becomes unstable.
We have already seen in the in-medium discussion of the nucleon that the condition
of a stable diquark within the nucleon is not necessary to obtain a stable three-particle
state. Moreover, we have seen that the baryon seems to have a Borromean-state like
behaviour for non-vanishing temperature and vanishing chemical potential. Therefore,
a more detailed discussion of a possible melting temperature and the physics behind
this Borromean-state would be of particular interest. For this purpose, the factors
A(P) and B(P) as functions of the baryon momentum P within the derived Dirac-like
equation can be used. These factors are known to be related to the spectral functions
of a certain baryon, and thus can be used in upcoming discussions to investigate
baryons in more detail. Especially, the spectral functions allow to get access to the dif-
ferent decay channels of the baryons and are therefore more suited for the in-medium
discussion. Due to the fact that we have only studied the behaviour of particles either
for vanishing chemical potential or (nearly) vanishing temperature, the discussion
could be improved by studying the particles for the complete T− µ plane, where we
expect that the silver-blaze property is no longer fulfilled. Hereby, we also have to
take care of the 2SC phase. Of course, the spectral function formalism can be used in
a three-flavour model as well.
Besides the upper mentioned extensions and improvements, the NJL model could be
extended to the PNJL model, which includes Polyakov-loops, such that some aspects
of confinement in medium will be part of the model. Even though some of these
improvements have already been discussed in the literature, questions regarding the
reliability of some approaches have been raised.
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Conventions

In this work we use the following structure of the Minkowski space

(xµ) =


t
−x1

−x2

−x3

 =

(
t
−~x

)
(A.1)

which implied the used metric

gµν = gµν = diag(1,−1,−1,−1) . (A.2)

Greek indices are elements of [0, 1, 2, 3] and are summed over when they appear as
upper and lower indices. Latin indices, meanwhile, can take values from one to eight
unless stated otherwise. For the Dirac matrices, the following relation holds:

{γµ, γν} = γµγν + γνγµ = 2gµν · 14×4 (A.3)

The Gell-Mann matrices, as a base for the SU(3), are used in the minimal possible
presentation

λ0 =

√
2
3

1 0 0
0 1 0
0 0 1

 λ1 =

0 1 0
1 0 0
0 0 0



λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


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λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0



λ6 =

0 0 0
0 0 1
0 1 0

 λ7 =

0 0 0
0 0 −i
0 i 0



λ8 =
1√
3

1 0 0
0 1 0
0 0 −2


with the anti-commutator relation[

λi, λj
]
= λiλj − λjλi = 2i fijkλk . (A.4)

Here fijk denote the complete antisymmetric structure constants of the Lie algebra.
The non-vanishing ones read:

f123 = 1 (A.5)

f213 = −1 (A.6)

f147 = f165 = f246 = f257 = f345 = f376 =
1
2

(A.7)

f458 = f678 =

√
3

2
(A.8)

The generators of an arbitrary SU(N) matrix will be denoted by τ. In case of N = 2,
the generators are given by the three Pauli matrices.
Moreover, all calculations will be performed in natural units, which means that

c0 = h̄ = kB = 1 (A.9)

holds.
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Fierz transformation

B.1. Dirac space

A general 4x4 matrix in Dirac space can be expressed by

M = AS1+ APiγ5 + Aµ
Vγµ + Aµ

Aγµγ5 + Aµν
T σµν (B.1)

with scalar, pseudoscalar, vector, axial vector and tensor coefficients AS, AP, Aµ
V , Aµ

A
and Aµν

T . In order to determine these coefficients we can project into each channel by
taking the trace of M with certain factors

tr (M) = 4AS (B.2)

tr (iγ5M) = −4AP (B.3)

tr
(

γλ M
)
= 4Aλ

V (B.4)

tr
(

γλγ5M
)
= −4Aλ

A (B.5)

tr
(

σαβ M
)
= 8Aαβ

T . (B.6)

Hence, we are able to rewrite M

M =
1
4

(
tr (M)1− triγ5 M (i) γ5 + tr (γµ M) γµ − tr (γµγ5 M) γµγ5 +

1
2

tr (σµν M) σµν

)
.

(B.7)

Thus, we find that the components of the Matrix M are given by

Mij =
1
4

[
Mmmδij − (iγ5)mn Mnm(iγ5)ij + (γµ)mn Mnm(γ

µ)ij

− (γµγ5)mn Mnm(γµγ5)ij +
1
2
(σµν)mn Mnm(σµν)ij

]
. (B.8)
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Therefore, it follows

Mnmδinδjm =
1
4

Mnm

[
δmnδij − (iγ5)mn(iγ5)ij + (γµ)mn(γµ)ij

− (iγµγ5)mn(iγµγ5)ij +
1
2
(σµν)mn(σµν)ij

]
, (B.9)

which leads for the Kronecker delta to

δinδjm =
1
4

[
δmnδij − (iγ5)mn(iγ5)ij + (γµ)mn(γµ)ij

− (iγµγ5)mn(iγµγ5)ij +
1
2
(σµν)mn(σµν)ij

]
. (B.10)

For each channel, we can now perform a Fierz transformation which is a long but
straightforward calculation and therefore will not shown in detail. The summarised
results for the particle-antiparticle channel reads

1ī j1k̄l

(iγ5)ī j(iγ5)k̄l

(γµ)ī j(γ
µ)k̄l

(iγµγ5)ī j(iγµγ5)k̄l

(σµν)ī j(σµν)k̄l

 =



1
4 − 1

4
1
4 − 1

4
1
8

− 1
4

1
4

1
4 − 1

4
1
8

1 1 1
2 − 1

2 0
−1 −1 1

2 − 1
2 0

3 −3 0 0 − 1
2




1īl1k̄j

(iγ5)īl(iγ5)k̄j

(γµ)īl(γ
µ)k̄j

(iγµγ5)īl(iγµγ5)k̄j

(σµν)īl(σµν)k̄j

 . (B.11)

In a more compact form the upper expression is given by

∆N
ij ∆N

st = ∑
N′

fNN′∆N′
it ∆N′

sj , (B.12)

where fNN′ are the matrix-elements of the 4x4 matrix in equation (B.11).
Now we want to find a similar equation for the particle-particle channel. For this
purpose, the charge conjugation operator C := iγ2γ0 will be introduced. As mentioned
in the main-text, it satisfies the conditions given in equation (2.14) and (2.15). By
applying this on the different spin channels yields

C−1
1C = 1

T , (B.13)

C−1iγ5C = iγT
5 , (B.14)

C−1γµC = −γT
µ , (B.15)

C−1γµγ5C = (γµγ5)
T , (B.16)

C−1σµνC = −σT
µν , (B.17)

which can also be brought into a more comfortable form

(∆N)T = −S(N)C∆NC . (B.18)
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Here

S(N) =

S(S) = S(P) = S(A) = 1

S(V) = S(T) = −1
, (B.19)

holds By virtue of equation (B.18), the expression for the Fierz transformation in the
particle-particle yields

∆N
īj ∆N

k̄l = ∆N
īj (∆

N
lk̄)

T (B.20)

= −S(N)∆N
īj (C∆NC)lk̄ (B.21)

= −S(N)∆N
īj Cls̄∆N

s̄t Ctk̄ (B.22)

= −S(N) ∑
N′

fNN′∆N′
īt Cls̄Ctk̄∆N′

s̄j (B.23)

= −S(N) ∑
N′

fNN′(∆N′C)īk̄(C∆N′)l j (B.24)

where fNN′ are again the components of the transformation matrix from (B.11). Hence
we found:

1ī j1k̄l

(iγ5)ī j(iγ5)k̄l

(γµ)ī j(γ
µ)k̄l

(iγµγ5)ī j(iγµγ5)k̄l

(σµν)ī j(σµν)k̄l

 =



1
4 − 1

4
1
4 − 1

4
1
8

− 1
4

1
4

1
4 − 1

4
1
8

1 1 1
2 − 1

2 0
−1 −1 1

2 − 1
2 0

3 −3 0 0 − 1
2




Cīk̄Cl j

(iγ5C)īk̄(Ciγ5)l j

(γµC)īk̄(Cγµ)l j

(iγµγ5C)īk̄(Ciγµγ5)l j

(σµνC)īk̄(Cσµν)l j

 .

(B.25)

B.2. Flavour and colour space

Since the flavour and colour symmetries are both members of the special unitary
group SU(N), we can discuss them simultaneously. So let τa, with a = 1, . . . , N2 − 1,
be a traceless hermitian NxN matrices with normalisation condition

tr (τaτb) = 2δab . (B.26)

It is commonly known that every complex NxN matrix can be written in a basis
formed by 1, i1, τ, iτ as

A = (a + ib)1+ (cj + idj)τj . (B.27)
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According to the commutator relation for a Lie-algebra, we find:

[τa, τb] = 2i fabcτc (B.28)

{τa, τb} =
4
N

δab + 2dabcτc (B.29)

tr ([τa, τb]τc) = 4i fabc (B.30)

tr ({τa, τb}τc) = 4dabc (B.31)

with fabc and dabc are totally antisymmetric and totally symmetric quantities, respec-
tively. We can now perform the same steps as in the last section for the Dirac space, in
an other basis. At first, a general NxN matrix can be written as

M = A01+ Aaτa (B.32)

and projected into the different channels

M =
1
N

tr (M)1+
1
2

tr (τa M) τa . (B.33)

This leads to the Kronecker delta

δilδkj =
1
N

δijδkl +
1
2
(τa)ij(τa)kl , (B.34)

which is needed in the Fierz transformation for the particle–antiparticle channel. The
result reads (

1ī j1k̄l

(τa)ī j(τa)k̄l

)
=

(
1
N

1
2

2
(

N2−1
N2

)
− 1

N

)(
1īl1k̄j

(τa)īl(τa)k̄j

)
. (B.35)

For the particle-particle channel we can rewrite expression (B.34) to

1ī j1k̄l = 1ī j1lk̄ =
1
N

δīk̄δl j +
1
2
(τa)īk̄(τa)l j (B.36)

and separate the symmetric (τS) and antisymmetric (τA) terms

1īl1lk̄ =
1
N

δīk̄δl j +
1
2
(τS)īk̄(τS)jl −

1
2
(τA)īk̄(τA)jl . (B.37)

In case of N = 3, τS ∈ {λ1, λ3, λ4, λ6, λ8} and τA ∈ {λ2, λ5, λ7} holds. The latter can
also be expressed with the total antisymmetric tensor εi

jk := εijk:

iε1
ab := −λ7 (B.38)

iε2
ab := λ5 (B.39)

iε3
ab := −λ2 (B.40)
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Thereupon, it follows that

(τa)ī j(τa)k̄l = 2
(

N − 1
N2

)
1īk̄1jl +

(
N − 1

N

)
(τS)īk̄(τS)jl

+

(
N + 1

N

)
(τA)īk̄(τA)jl , (B.41)

holds, which in combination with τ0 :=
√

2
N1, leads to(

1ī j1k̄l

(τa)ī j(τa)k̄l

)
=

(
1
N

1
2(N−1

N

)
−
(N+1

N

))( (τS)īk̄(τS)jl

(τA)īk̄(τA)jl

)
. (B.42)

B.3. Example: Colour-current interaction

As an example we want perform a full Fierz transformation and separation of the
particle-antiparticle and particle-particle channel, on the colour-current interaction
Lagrangian given in equation (2.26). In the particle-antiparticle channel we have two
types of diagrams: The first one is the direct particle-antiparticle vertex

i

j

k

l

= −2ig(γµλa)jī(γµλa)k̄l (B.43)

The second one is the so-called exchange diagram and reads

i

j

k

l

= 2ig(γµλa)jl(γµλa)k̄ī , (B.44)

where the negative sign for the fermion exchange is already included. We can
now perform a Fierz transformation in the exchange diagram to obtain the total
vertex structure in the particle-antiparticle channel. In order to do this, we need the
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transformation rules in the different spaces1

(γµ)jl(γµ)k̄ī = 1jī1k̄l − (iγ5)jī(iγ5)k̄l −
1
2
(γµ)jī(γ

µ)k̄l −
1
2
(γµγ4)jī(γµγ5)k̄l (B.45)

(1 f )jl(1 f )k̄ī =
1
2
(1 f )jī(1 f )k̄l +

1
2
(τm)jī(τm)k̄l (B.46)

(λa)jl(λ
a)k̄ī = 2

N2
c − 1
N2

c
(1c)jī(1c)k̄l −

1
Nc

(λa)jī(λ
a)k̄l (B.47)

which leads to the (full) particle-antiparticle channel:

2ig

{
N2

c − 1
N2

c

[
1jī1k̄l + (iγ5)jī(iγ5)k̄l −

1
2
(γµ)jī(γµ)k̄l −

1
2
(γµγ5)jī(γµγ5)k̄l

+ (τm)jī(τm)k̄l + (iγ5τm)jī(iγ5τm)k̄l −
1
2
(γµτm)jī(γµτm)k̄l−

1
2
(γµγ5τm)jī(γµγ5τm)k̄l

]
− 1

2Nc

[
(λa)jī(λ

a)k̄l + (iγ5λa)jī(γ5λa)k̄l + (2Nc −
1
2
)(γµλa)jī(γµλa)k̄l

− 1
2
(γµγ5λa)jī(γµγ5λa)k̄l + (τmλa)jī(τmλa)k̄l

+ (iγ5τmλa)jī(iγ5τmλa)k̄l −
1
2
(γµτmλa)jī(γµτmλa)k̄l

− 1
2
(γµγ5τmλa)jī(γµγ5τmλa)k̄l

]}
(B.48)

For the particle-particle channel we can also find two diagrams

i

j

k

l

= 2ig(γµλa)jl(γµλa)ik , (B.49)

i

j

k

l

= −2ig(γµλa)jl(γµλa)ik . (B.50)

1We set N f = 2, but do not fix the number of colours, because later we want to make different
assumptions.
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Here, the diagram shown in B.50 will be implemented later when we model the
diquarks. As we want to perform a Fierz transformation into the particle-particle chan-
nel the upper transformation rules have been modified with the charge conjugation
operator mentioned in the previous section

(γµ)jl(γµ)ik = CjiCkl + (iγ5C)ji(Ciγ5)kl −
1
2
(γµC)ji(Cγµ)kl −

1
2
(γµγ5C)ji(Cγµγ5)kl

(B.51)

(1 f )jl(1 f )ik =
1
2
(τS)ji(τS)kl +

1
2
(τA)ji(τA)kl (B.52)

(λa)jl(λ
a)ik =

Nc − 1
Nc

(λS)ji(λS)kl −
Nc + 1

Nc
(λA)ji(λA)kl . (B.53)

Here, the index S denote the symmetric and A the antisymmetric matrices of a certain
space, i.e. the Gell-Mann matrices in colour and Pauli matrices in flavour space. Hence,
we find for the particle-particle channel the vertex structure

2ig

{
Nc + 1

2Nc

[
(CτAλA′)ji(CτAλA′)kl + (iγ5CτAλA′)ji(Ciγ5τAλA′)kl

− 1
2
(γµγ5CτAλA′)ji(Cγ5γµτAλA′)kl −

1
2
(γµCτSλA′)ji(CγµτSλA′)kl

]
− Nc − 1

2Nc

[
(CτAλS′)ji(CτAλS′)kl + (iγ5CτAλS′)ji(Ciγ5τAλS′)kl

− 1
2
(γµCτAλS′)ji(CγµτAλS′)kl −

1
2
(γµγ5CτAλS′)ji(Cγµγ5τAλS′)kl

]
+ total symmetric terms

}
. (B.54)
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Medium Version of I1

In order to obtain an expression for the in-medium contribution gap equation, we have
to modify the integral I1. Due to the simplicity of I1, we will introduce the techniques
that can be used for other integrals as well. The integral I1 in the setting of finite
temperature field theory with respect to the Matsubara formalism reads

L1(M, T, µ) := iI1(M, T, µ) = −T ∑
{iν}

∫ d3k
(2π)3

1
(iν + µ)2 + E2

k
. (C.1)

A commonly used trick to evaluate the sum over Matsubara frequencies is to rewrite
it as a contour integral. Indeed, using the residuum theorem backwards and taking
into account

Res
z=iν
z=iω

(
1

exp(βz)± 1

)
= ∓T , (C.2)

where the upper sign holds for fermionic Matsubara frequencies and the lower for
bosonic ones. The corresponding function are the Fermi-Dirac distribution function

nF(z) :=
1

exp(βz) + 1
(C.3)

and the Bose-Einstein distribution function

nB(z) :=
1

exp(βz)− 1
, (C.4)

respectively. Hence, we can rewrite equation (C.1)

iI1(M, T, µ) =
∫ d3k

(2π)3

∮
C

dz
(2π)i

nF(z)
1

(z + µ)2 − E2
k

. (C.5)

The contour C is shown on the left hand side of figure C.1. Note, that the integrand
has two additional poles on the real axis at z± = ±Ek − µ. Since the integrand of
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Figure C.1. Contour modification for Integral L1. The left one in the original integra-
tion path, while the second one can be obtained by merging the circles
around nF or nB, respectively. Evaluating L1 with the last contour leads to
equation (C.6).

equation (C.1) behaves like 1/z2, it is possible to redraw the contour in a way that we
can use the residuum theorem again, but this time around the poles z±, cf. figure C.1.
We can always redraw the contour in this way of all integrals emerging in this work.
After performing a partial-fraction decomposition of the integrand and evaluating the
resulting expression at the two poles z±, we arrive at

L1(M, T, µ) =
∫ d3k

(2π)3
1

2Ek
(1− nF(Ek − µ)− nF(Ek + µ)) . (C.6)

The leading term is equal to the integrand we already found in the vacuum case. Since
this integral is divergent, it will be regularised with the Pauli-Villar regularisation. To
increase overview we will separate the vacuum and medium contribution

L1(M, T, µ) = Lvac
1 (M, Λ) + Lmed

1 (M, T, µ) . (C.7)

Compared to the vaccum part, the medium contribution

Lmed
1 (M, T, µ) = −

∫ d3k
(2π)3

1
2Ek

(nF(Ek − µ) + nF(Ek + µ)) (C.8)

is not divergent and therefore will not be regularised. More over, the medium part
vanishes for T → 0 due to the exponential character of nF,B.
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C.1. Properties of distribution functions

At this point some properties of the bosonic and fermionic distribution functions will
be pointed out. At first, under an inversion of the argument we find

nF(−z) = 1− nF(z) (C.9)

nB(−z) = −1− nB(z) . (C.10)

At some point in the discussion of mesons, diquarks and baryons we have to evaluate
the distributions as functions of bosonic or fermionic Matsubara frequencies. It is easy
to see how the Fermi distribution behaves under such shifts

nF(z + iω) = nF(z) , (C.11)

nF(z + iν) = −nB(z) . (C.12)

Here, we have taking into account that e2nπi = 1 and e(2n+1)πi = −1. For the Bose
distribution a similar calculation leads to

nB(z + iω) = nB(z) , (C.13)

nB(z + iν) = −nF(z) . (C.14)

Moreover, an integration of the plain distributions yields∫
dx nF(x) = −T ln

(
1 + e−

x
T

)
, (C.15)∫

dx nF(x) = T ln
(

1− e−
x
T

)
. (C.16)
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Mesons

D.1. Pion polarisation loop

k

q+k

ΓM ΓM'

q
j'i'k'l'

q

Figure D.1. Mesonic polarisation loop.

As mentioned in the main text, we have to evaluate the diagram shown in figure D.1
which leads to

−iΠM,M′, f , f ′ =
∫ d4k

(2π)4 ΓM, f
k̄′ l′ iSl′i′(q + k)ΓM′, f ′

i′ j̄′ iS j̄′ k̄′(k) (D.1)

= i
∫ d4k

(2π)4 Tr
(

ΓM, f iSq(q + k)ΓM′, f ′ iSq̄(k)
)

(D.2)

= δMM′ trc (1) τ
f

k̄′i′τ
f ′

i′ k̄′ i
∫ d4k

(2π)4 trD
(
iγ5iSq(q + k)iγ5iSq̄(k)

)
. (D.3)

In the isospin limit the three pions, i.e. |π±〉 and |π0〉, are completely degenerated
and thus, we can restrict ourself to the |π0〉, which is physical represented when
τ f ′ = τ f ′ = τ3 holds. For the charged pions one have to insert the Projectors given in
table 3.1 with respect to

τ
f

k̄′i′τ
f

i′ k̄′ = tr
(

τ f τ f ′
)
= 2δ f f ′ , (D.4)
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which implies that the quark flavour of the mesons do not change in the propagation.
After inserting the relation (D.4) into expression (D.3), we find

−iΠπ0
= −2δ f f ′Nci

∫ d4k
(2π)4 trD

(
iγ5iSq(q + k)iγ5iSq̄(k)

)
(D.5)

= −2δ f f ′Nc

∫ d4k
(2π)4 trD

(
Sq(−q− k)Sq̄(k)

)
, (D.6)

where γ5S(q)γ5 = S(−q) has been used. The Dirac trace can now be evaluated which
leads to

−iΠπ0
(q) = −2Nc

∫ d4k
(2π)4

qk + k2 + M2

[(q + k)2 −M2] · [k2 −M2]
(D.7)

= −8Nc

[
−
∫ d4k

(2π)4
1
2

(
1

(q + k)2 −M2 +
1

k2 −M2

)

+
p2

2

∫ d4k
(2π)4

1
[(q + k)2 −M2] · [k2 −M2]

]
. (D.8)

After a certain variable shift k 7→ k − q, the first two integrals are equal, thus the
integral I1 appears. Hence, we find

−iΠπ0
(q) = 8Nc

∫ d4k
(2π)4

1
k2 −M2 − 8Nc

p2

2

∫ d4k
(2π)4

1
[(q + k)2 −M2] · [k2 −M2]︸ ︷︷ ︸

=:I2(q)

(D.9)

= 8Nc I1 − 4Ncq2 I2(q) , (D.10)

where we have defined the integral I2, which will be discussed in detail in the following
section.

D.1.1. Integral iI2

The integral iI2 is defined by

iI2(q) := i
∫ d4k

(2π)4
1

[(q + k)2 −M2 + iε] · [k2 −M2 + iε]
(D.11)

and can be bought into a more general form

iI′2(q
2) := i

∫ d4k
(2π)4

1[
(q− k)2 −M2

1 + iε
]
·
[
k2 −M2

2 + iε
] , (D.12)
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when we distinguish between the masses in the denominators. This new integral I′2
will be useful, when we discuss the baryons, thus we will concentrate on I′2 in the
following short discussion. The results can be used for I2 when M1 = M2 holds. An
important difference between the integral I2 and I′2 can be found by analysing its
behaviour in the complex area.
Analogous to I1, the q0 integration of I′2 can be separated and performed with the
residue theorem after rewriting the integrand and switching into the rest frame, i.e.
~q = 0,

iI′2(q0,~q = 0) = i
∫ d4k

(2π)4
1

4EkE′k

(
1

(q0 − k0)− Ek + iε
− 1

(q0 − k0) + Ek − iε

)
×

(D.13)

×
(

1
k0 − E′p + iε

− 1
k0 + E′p − iε

)
.

Here, the energies with various masses are given by E2
k = k2 + M2

1 and (E′k)
2 = k2 + M2

2.
Unlike the integral I1 the Integral I′2 have four poles corresponding to the mass-shell
of the two included particles, but only two of them will contribute to the integral.
Using the residue theorem for the k0 integration thus yields

iI′2(q0,~q = 0) =
∫ d3k

(2π)3
1

4EkE′k

(
1

q0 + Ek + E′k − iε
− 1

q0 − Ek − E′k + iε

)
. (D.14)

Since this expression only depends on~k2 = k2, we can transform it easily into spherical
coordinates

iI′2(q0,~q = 0) =
1

2π

∫ ∞

0
dk k2 1

4EkE′k

(
1

q0 + Ek + E′k − iε
− 1

q0 − Ek − E′k + iε

)
(D.15)

= − 1
2π

∫ ∞

0
dk k2 1

2EkE′k

(
Ek + E′k

q2
0 − (Ek + E′k)

2 + iε

)
, (D.16)

where we have already performed the angle integration.
The imaginary part of expression (D.16) can be determined with the identity

lim
ε→0

Im
(

1
x + iε

)
= −πδ(x) . (D.17)

Hence, we find

ImiI′2(q0) = −
1

16π

√
[(M1 + M2)2 − q2

0][(M2 −M1)2 − q2
0]√

q2
0

Θ(q2
0 − (M1 + M2)

2) .

(D.18)
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The real part can be obtained by taking into account the Kramers-Kronig rela-
tion [36, 37]

Re( f (x)) =
1
π

P.V.
∫

dx′
Im( f (x′))

x′ − x
, (D.19)

which connects the imaginary part of a certain function f to its real part by a principal
value integration. This integration will be performed numerically to be consistent
with the treatment of later integral expressions. Unlike the later discussed integrals
an additional factor of sign(q) for I2 and I′2 has to be multiplied to (D.18) in order to
reproduce the analytical expression provided in reference [17] and other works. The
sign function ensures that the real part has the right symmetry. For q2 > (M1 + M2)2

3000 1000 1000 3000
P0  (MeV)

0.015

0.010

0.005

0.000

0.005

0.010

0.015

I 2
 (

M
eV

)

ReI2 (P0 )

ImI2 (P0 )

Figure D.2. Real and imaginary part of the integral I2, where M1 = M2 holds.

the integral I′2 or I2, respectively, obtains a non vanishing imaginary part, which leads
to masses related to unstable particles and a non-real effective coupling as well. In the
case of I2 the imaginary part rises for M1 = M2 yields q2 > 4(M1)

2. A more detailed
discussion of the physical consequences are given in the main text.

D.2. Medium version of pion polarisation loop

Since the propagator of a quark and an antiquark are identical in their functional
form, the polarisation loop has the same structure as in the vacuum case. Beside the

107



Appendix D. Mesons

integral iI1, which has already been discussed in appendix C, we have to transform
the integral iI2 into its medium version. In accordance with the Matsubara formalism,
the medium version of iI2 reads

L2(q0,~q; T, µ) := iI2(q; T, µ) (D.20)

= −T ∑
{iν}

∫ d3k
(2π)3

1(
(iω + iν + µ)2 − E2

q+k

)
·
(
(iν + µ)2 − E2

k

) , (D.21)

with E2
q+k := (~q +~k)2 + M2. Here, iω is related to a bosonic frequence, while iν is

related to a fermionic one. Next, we will evaluate the upper integral expression.

D.2.1. The integral L2

To simplify the discussion we assume ~q = 0. Hence, equation (D.21) reduces to

L2(iω,~q = 0; T, µ) = −T ∑
iν

∫ d3k
(2π)3

1(
(iω + iν + µ)2 − E2

k

)
·
(
(iν + µ)2 − E2

k

) .

(D.22)

A backward evaluation of the residue theorem with the Fermi distribution yields

L2(iω,~q = 0; T, µ) =
∫ d3k

(2π)3

∮
C

dz
2πi

nF(z)
1(

(iν + z + µ)2 − E2
k

)
·
(
(z + µ)2 − E2

k

) .

(D.23)

Compared to the integral L1, L2 has two additional poles in the complex plane due to
iν in the denominator of equation (D.22). The four poles are given by

z1± = −iω− µ± Ek , (D.24)

z2± = −µ± Ek . (D.25)

Again, it is possible to redraw the contour C, which is shown in figure D.3. Evaluating
the integral with the new contour on the right hand side of fig. D.3 around the 4 poles
yields

L2(iω,~q = 0; T, µ) = −
∫ d3k

(2π)3
1

2Ek · (iω)

(
− nF(−Ek − µ)

2Ek − iω
− nF(Ek − µ)

2Ek + iω
(D.26)

+
nF(−Ek − µ− iω)

2Ek + iω
+

nF(Ek − µ− iω)

2Ek − iω

)
.
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Under virtue of equations (C.11)-(C.16) the upper expression can be simplified to

L2(iω,~q = 0; T, µ) =
∫ d3k

(2π)3
1
Ek

1
(iω)2 − 4E2

k

(
1− n f (Ek − µ)− n f (Ek + µ)

)
.

(D.27)

Therefore, the vacuum contribution can be identified directly

Lvac
2 (iω,~q = 0; T, µ) =

∫ d3k
(2π)3

1
Ek

1
(iω)2 − 4E2

k
, (D.28)

while the medium contribution reads

Lmed
2 (iω,~q = 0; T, µ) = −

∫ d3k
(2π)3

1
Ek

1
(iω)2 − 4E2

k

(
n f (Ek − µ) + n f (Ek + µ)

)
.

(D.29)

In order to obtain the retarded version of the integral, we have to performe the
analytical continuation iω 7→ q0 + iε. Hence, the vacuum and medium part yields

Lvac
2 (q0,~q = 0; T, µ) =

∫ d3k
(2π)3

1
Ek

1
q2

0 − 4E2
k + sign(q0)iε

, (D.30)

Lmed
2 (q0,~q = 0; T, µ) = −

∫ d3k
(2π)3

1
Ek

1
q2

0 − 4E2
k + sign(q0)iε

(
n f (Ek − µ) + n f (Ek + µ)

)
,

(D.31)

where terms of ε2 have been neglected. Since we treat the retarded version of the
integral the vacuum part differs from I2 by the sign in front of iε. In the following
discussion we want to determine the imaginary part of equations (D.30) and (D.31).
The real part, which is necessary to determine the roots of the inverse propagator, can
be calculated by the Kramers-Kronig relation (D.19).

Figure D.3. Contour modification of integral L2

109



Appendix D. Mesons

Imaginary part of Lvac
2

As already mentioned, the imaginary part of equation (D.30) can be calculated by
virtue of relation (D.17). Up to an addition factor of sign(q0) the imaginary part is
equal to the one we find for iI′2, when M1 = M2 holds, cf. expression (D.18).
For completeness, the imaginary part of Lvac

2 reads

Im(Lvac
2 (q0,~q = 0; T, µ)) = −sign(q0)

1
16π

√
q2

0 − 4M2

q2
0

Θ(q2
0 − 4M2) (D.32)

Using the Kramers-Kronig relation (D.19) gives rise to the real part of Lvac
2 .

Imaginary part of Lmed
2

The medium contribution Lmed
2 in a compact form reads

Lmed
2 (q0,~q = 0; T, µ) = −

∫ d3k
(2π)3

1
Ek

1
q2

0 − 4E2
k + sign(q0)iε

n f (Ek ± µ) . (D.33)

We can perform a simply variable transformation from the momentum integration
into an energy integration to obtain

Lmed
2 (q0,~q = 0; T, µ) = −

∫ ∞

−∞
dEk Θ(Ek −M)

√
E2

k −M2n f (Ek ± µ)
1

q2
0 − 4E2

k + sign(q0)iε
.

(D.34)

Performing a second variable transformation with x(Ek) := q2
0 − 4E2

k and taking into
account the relation D.17 we have to evaluate the integral at x = 0. Finally, the
imaginary part of Lmed

2 reads

Im(Lmed
2 (q0,~q = 0; T, µ)) = sign(q0)

1
16π

√
q2

0 − 4M2

q2
0

n f (
|q0|

2
± µ)Θ(q2

0 − 4M2) ,

(D.35)

where we have to sum over the possible signs. Again, the real part can be obtained by
virtue of (D.19).
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Diquaks

E.1. Diquark polarisation loop

The diquark polarisation loop, which we want to investigate, is diagrammatic repre-
sented in figure E.1. A carefull evaluation of the this diagram yields

ΠD
f , f ′(q) = i

∫ d4k
(2π)4 (CΓD)k′ l′ iSl′i′(k + q)(ΓDC)i′ j′ iSk′ j′(−k) (E.1)

= i
∫ d4k

(2π)4 (CΓD)k′ l′ iSl′i′(k + q)(ΓDC)i′ j′ iST
j′k′(−k) (E.2)

= −i
∫ d4k

(2π)4 Tr
(

CΓDS(k + q)ΓDCST(−k)
)

(E.3)

= −i
∫ d4k

(2π)4 Tr
(

ΓDS(k + q)ΓDCST(−k)C
)

, (E.4)

where, we have used the property of the trace to be invariant under a cyclic permu-
tation. The transposed quark propagator in equation (E.4) can now be simplified

i

j k

l

k'

l' i'

j'

Figure E.1. Diquark polarisation loop.
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through the relation

CST
q (−k)C = −S(k) , (E.5)

which yields

ΠD(q) = −i
∫ d4k

(2π)4 Tr
(

ΓDS(k + q)ΓDS(k)
)

. (E.6)

The diquark polarisation loop for the scalar antitriplet diquarks, with ΓD = iγ5 ⊗ λA ⊗ τA,
thus reads

Πsad(q) = −i
∫ d4k

(2π)4 Tr
(

ΓsadSq(k + q)ΓsadSq(k)
)

(E.7)

= trc (λAλA) tr f (τAτA)
∫ d4k

(2π)4 trD
(
iγ5Sq(k + q)iγ5Sq(k)

)
, (E.8)

with λA and τA are the antisymmetric Gell-Mann and Pauli matrices, respectively.
Taking into account

trc (λAλA) = tr f (τAτA) = 2 , (E.9)

in order to performing the traces in the three different spaces and finally, leads to

Πsad(q) = 16iI1 − 8q2iI2(q) . (E.10)

The calculations for the pseudoscalar diquark is completely analogous up to the
different structure in Dirac space, i.e. ∆sad = 1. For the polarisation loop of the
pseudoscalar diquarks we find

Πpad(q) = 16iI1 − (q2 − 4M2)8iI2(q2) . (E.11)

E.1.1. Medium version of the diquark polarisation loop

We start from equation (4.25),

ΠD(iω + 2µ,~q) = iT ∑
n

∫ d3k
(2π)3 Tr

[
ΓDS(iω + iνn + µ,~q +~k)ΓDS(iνn − µ,~k)

]
.

(E.12)

For the scalar diquarks, the traces in flavour- and colour-space give a factor of 2. Then,
the trace in Dirac-space can be evaluated directly,

Πsad(iω + 2µ,~q) = −16T ∑
n

∫ d3k
(2π)3

(iω + iνn + µ)(iνn − µ)− (~q +~k)~k−M2

[(iω + iνn + µ)2 − E2
q,k][(iνn − µ)2 − E2

k ]
.

(E.13)
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The numerator can be expressed as

(iω + iνn + mu)(iνn − µ)− (~q +~k)~k−M2 (E.14)

= (iνn)
2 − µ2 + (iω)(iνn)− µ(iω)− k2 −~q~k−M2 (E.15)

=
1
2

(
(iω + iνn + µ)2 − E2

q,k + (iνn − µ)2 − E2
k − (iω)2 − 4µ− 4(iω)µ + q2

)
(E.16)

=
1
2

(
(iω + iνn + µ)2 − E2

q,k + (iνn − µ)2 − E2
k − ((iω) + 2µ)2 − q2

)
. (E.17)

Using this in the polarisation loop yields

Πsad(iω + 2µ,~q) = −8T ∑
n

∫ d3k
(2π)3

(
1

(iω + iνn + µ)2 − E2
q,k

+
1

(iνn − µ)2 − E2
k

)
(E.18)

+ 8T
(
(iω) + 2µ2 − q2)∑

n

∫ d3k
(2π)3

1
[(iω + iνn + µ)2 − E2

q,k][(iνn − µ)2 − E2
k ]

.

If we assume a vanishing external momentum, i.e. ~q = 0, the energies Ek and Eq,k are
equal. Moreover, we can replace iνn + iω −→ iνn and iνn −→ −iνn. Then, the first
integral is equal to L1, cf. (C.6). The latter integral will be defined as

L3(iω + 2µ,~q = 0) := −T ∑
n

∫ d3k
(2π)3

1
[(iω + iνn + µ)2 − E2

k ][(iνn − µ)2 − E2
k ]

(E.19)

We will take a closer look at this integral in the following section.

E.1.2. The integral L3

The integral L3 will be evaluated similar to L2 in the discussion of the mesons. After
using the residue theorem backwards by virtue of the Fermi distribution nF we can
deform the contour to the poles on the complex plane as shown in previous chapters.
Then, the residue theorem again, yields

L3(iω + 2µ,~q = 0) = −
∫ d3k

(2π)3
1

4E2
k

[
nF(−Ek + µ)

(
1

iω + 2µ
− 1

iω + 2µ− 2Ek

)
(E.20)

+ nF(Ek + µ)

(
1

iω + 2µ
− 1

iω + 2µ + 2Ek

)
− nF(−Ek − µ− iω)

(
1

iω + 2µ
− 1

iω + 2µ + 2Ek

)
− nF(Ek − µ− iω)

(
1

iω + 2µ
− 1

iω + 2µ− 2Ek

) ]
.
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Taking into account the properties of the Fermi distribution given in section C.1, this
can be expressed as

L3(iω + 2µ,~q = 0) = −
∫ d3k

(2π)3
1

2E2
k

[
− 2Ek

(iω + 2µ)2 − 4E2
k

(E.21)

+ 2nF(Ek − µ)

(
Ek

(iω + 2µ)2 − 2Ek(iω + 2µ)

)
+ 2nF(Ek + µ)

(
Ek

(iω + 2µ)2 + 2Ek(iω + 2µ)

) ]
.

As expected the integrand depends on iω + 2µ, such as the complete diquark po-
larisation loop does. Now, an analytical continuation of the form iω 7→ q0 leads
to

L3(q0, 0) =
∫ d3k

(2π)3
1
Ek

[ 1
(q0 + 2µ)2 − 4E2

k

− nF(Ek − µ)
1

(q0 + 2µ)2 − 2q0Ek
− nF(Ek + µ)

1
(q0 + 2µ)2 + 2q0Ek

]
.

(E.22)

The first term describes the vacuum contribution for µ = 0 MeV, similar to Lvac
2 . Hence,

we can can decompose the integral into a vacuum and medium contribution

L̃(q0, 0) = L̃vac(q0, 0) + L̃med(q0, 0) , (E.23)

with

Lvac
3 (q0, 0) :=

∫ d3k
(2π)3

1
Ek

1
(q0 + 2µ)2 − 4E2

k
, (E.24)

Lmed
3 (q0, 0) := −

∫ d3k
(2π)3

1
Ek

(
nF(Ek − µ)

1
(q0 + 2µ)2 − 2q0Ek

+ nF(Ek + µ)
1

(q0 + 2µ)2 + 2q0Ek

)
. (E.25)

Since the evaluation of the vacuum contribution is straightforward and similar to the
one discussed in appendix D.2.1, we will evaluate the imaginary part of the medium
contribution in the following section. The real part can be obtained by performing a
principal value integration in accordance with the Kramers-Kronig relation in (D.19).
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Imaginary part

Again, we can use identity (D.17) to determine the imaginary part of L3. The integrand
of (E.25) can be rewritten

Lmed
3 (q0, 0) = −∑

±

∫ d3k
(2π)3

1
Ek

nF(Ek ± µ)

(q0 + 2µ)2 ± 2Ek(q0 + 2µ)
. (E.26)

Here, the sum with index ± denotes a summation over the different signs. The
integrand only depends on k2 rather than the vector ~k. Hence, we can perform
the angle integration without any problems. After transforming the momentum
integration into an energy integration, we have

Lmed
3 (q0, 0) = − 1

2π2 ∑
±

∫ ∞

−∞
dEk Θ(Ek −M)

√
E2

k −M2nF(Ek ± µ)
1

(q0 + 2µ)2 ± 2Ek(q0 + 2µ)
.

(E.27)

Since we are interested in the retarded version of the integral we replace q0 → q0 + iε
as in the mesonic channel. Compared to L2 the sign of ε depends on the integration
variable. Hence, we have to be careful by substitutions within the integral. Neverthe-
less, the following steps are similar to the one performed for L2. The final result, for
the imaginary part of the medium contribution reads

ImLmed
3 (q0, 0) = ∑

±

1
8π(q0 + 2µ)

Θ(∓q0 + 2µ

2
−M)

√
(q0 + 2µ)2 − 4M2nF(∓

q0

2
) .

(E.28)
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Baryons

F.1. Derivation of equation (5.8)

We start with equation (5.2) and (5.3)

DB = D0 + D0(ki + k j + kk)DB (F.1)

= D0 + (D0ki + D0k j + D0kk)DB (F.2)

with (ijk) be an permutation of (123). Under virtue of equation (5.4) for the two-quark
correlation function di it follows

DB = D0 +
(
(1− D0d−1

i ) + D0k j + D0kk

)
DB (F.3)

= D0 +
(

1− D0d−1
i + D0(k j + kk)

)
DB (F.4)

⇔ 0 = D0 − D0d−1
i DB + D0(k j + kk)DB (F.5)

⇔ 0 = 1− d−1
i DB + (k j + kk)DB (F.6)

⇔ DB = di + di(k j + kk)DB . (F.7)

F.2. States of relative motion

In section 5.2 we have introduced the basis states |qm pm〉
αiαjαk
l . Here, particle l carries

the Dirac, flavour and colour structure αi and momentum ki. Therefore, equation (5.38)
is the trivial case in which particle 1 has momentum k1 and structure α1, as well as for
the other two particles with corresponding indices. Hence, equation (5.38) arises by
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Figure F.1. The three different possibilities to define momentum and the Dirac, flavour
and colour structure of a certain particle.

rotating the inner cross in figure F.1 and changing the index of p and q in accordance
with their definition given in the beginning of section 5.2.
The other possible relations can be found by changing the momenta and structure
indices of a certain particle. For example particle 2 carries momentum k1 and struc-
ture α1. Again, a rotation of the inner cross yields

|q1 p1〉α1α2α3
2 = |q2 p2〉α2α3α1

3 = |q3 p3〉α3α1α2
1 . (F.8)

A similar relation can be obtained by defining particle 3 with momentum k1 and
structure α1

|q1 p1〉α1α2α3
3 = |q2 p2〉α2α3α1

1 = |q3 p3〉α3α1α2
2 . (F.9)

F.3. Colour structure for baryons

i j'

a b'

Figure F.2. Interaction kernel of the diquark-quark scattering.

We start with the interaction kernel of the baryons in static approximation shown in
figure F.2 which yields the corresponding operator in colour space

iĈ = i
1

Mx
λb̄′

ixλā
xj′ (F.10)

= −i
1

Mx

(
δā

i δb̄′
j′ − δāb̄′δij′

)
. (F.11)
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In order to investigate the colour structure, we denote a diquark-quark state by

|b̄′, j′〉 , (F.12)

with b′, j′ = R, G, B. Hereby the bared letter is related to the antitriplet diquark. If we
consider this as the incoming state of the diquark-quark vertex, the related outgoing
state expressed by the indices of the upper figure is given by

iĈ|b̄′, j′〉 = −i
1

Mx

(
δā

i δb̄′
j′ − δāb̄′δij′

)
|ā, i〉 . (F.13)

It is well known that for three colours coupled with three anticolours leads to a singlet
and octet states. The singlet state reads

|ψ0〉 =
1√
3
(|R̄, R〉+ |Ḡ, G〉+ |B̄, B〉) , (F.14)

and the octet states are

|ψ1〉 = |R̄, B〉 , (F.15)

|ψ2〉 = |R̄, G〉 , (F.16)

|ψ3〉 = |B̄, G〉 , (F.17)

|ψ4〉 = |B̄, R〉 , (F.18)

|ψ5〉 = |Ḡ, R〉 , (F.19)

|ψ6〉 = |Ḡ, B〉 , (F.20)

|ψ7〉 =
1√
2
(|R̄, R〉 − |Ḡ, G〉) , (F.21)

|ψ8〉 =
1√
3
(|R̄, R〉+ |Ḡ, G〉 − 2|B̄, B〉) . (F.22)

Indeed, a simple calculation shows that the singlet and octet states are eigenstates the
operator Ĉ with different eigenvalues

iĈ|ψ0〉 = 2i|ψ0〉 (F.23)

and

iĈ|ψi〉 = −i|ψi〉 i = 1, 2, . . . , 8 . (F.24)

The sign change in the octet here is important. Since we find bound states in the
colour singlet state, it follows from the different sign in equation (F.23) and (F.24) that
the octet has to be repulsive in colour space.
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F.4. Baryon Dirac-like equation

We start with the definition of the baryon polarisation loop

i JN(P) := i
∫ d4 p′′

(2π)4 Su(
P
2
+ p′′)ts(

P
2
− p′′) . (F.25)

By multiplying /p′′ with PµPµ/P2 = 1 and switching into the baryon rest frame (~P = 0),
the above equation can be written, in accordance with [33, 34] as

i JN(P) = −g2
Dqqi

∫ d4 p′′

(2π)4

/P(1− /P/p′′

P2 ) + Mu

(P− p′′)2 −M2
u

1
p′′2 −m2

sad
. (F.26)

The antisymmetric term proportional to P0~p′′γ0~γ vanishes due to the integration.
Therefore, the polarisation loop splits into a term proportional to /P and one scalar
term. With

In(P) :=
∫ d4 p′′

(2π)4

(
Pp′′

P2

)n 1
(P− p′′)2 −M2

u

1
p′′2 −m2

sad
(F.27)

the polarisation loop finally reads

i JN(P) = −ig2
Dqq

(
/P(I0(P)− I1(P)) + Mu I0(P)

)
. (F.28)

F.5. Baryon polarisation loop

The baryon polarisaion loop in the baryon rest frame reads

J(P0, ~P = 0) = Js(P0, ~P = 0)1 + Jv(P0, ~P = 0)γ0 (F.29)

= −ig2
Dqq

∫ d4 p
(2π)4

(P0 − p0)γ0 + M1

(P− p)2 −M2 + iε′
1

p2 −m2
sad + iε′

. (F.30)

This can be rewritten to

J(P0, ~P = 0) = −g2
Dqq

∫ d4 p
(2π)4

(P0 − p0)γ0 + M1

(P− p)2 −M2
1

p2 −m2
sad

(F.31)

= −ig2
Dqq

∫ d4 p
(2π)4 ((P0 − p0)γ0 + M1)× (F.32)

× 1

(P0 − p0)− EQ
p

1

(P0 − p0) + EQ
P

1
p0 − ED

p

1
p0 + ED

p
,
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where we have introduced the energy of the diquark (ED
p )

2 = p2 + m2
sad and quark

(EQ
p )

2 = P2
0 + M2, respectively. After a partial fraction decomposition of the denomi-

nator we find

J(P0, ~P = 0) = −ig2
Dqq

∫ d4 p
(2π)4 ((P0 − p0)γ0 + M1)× (F.33)

× 1

4EQ
p ED

p

(
1

(P0 − p0)− EQ
p + iε

− 1

(P0 − p0) + EQ
p − iε

)
×

×
(

1
p0 − ED

p + iε
− 1

p0 + ED
p − iε

)
.

Now, we will evaluate the scalar and vector contribution separately to obtain the
related imaginary parts. The real parts of the integral, necessary for the inverse
nucleon propagator, are given by a principal value integration already introduced in
the chapters before.

Evaluation of Js(P)

The scalar part, in accordance with equation (F.32), is given by

Js(P0, ~P = 0) = −ig2
Dqq M

∫ d4 p
(2π)4

× 1

4ED
p EQ

p

(
1

(P0 − p0)− EQ
p + iε

− 1

(P0 − p0) + EQ
p − iε

)

×
(

1
p0 − ED

p + iε
− 1

p0 + ED
p − iε′

)
, (F.34)

and is equal to the definition of I′2 in appendix D.13 up to the pre-factors of the
integral. Hence, we not repeat the discussion and refer to appendix D.1.1 instead. The
final result for the imaginary is given by

ImJs(P0) = g2
Dqq M

1
16π

√(
(M + msad)2 − P2

0

) (
(M−msad)2 − P2

0

)
P4

0
Θ(P2

0 − (M + msad)
2) .

(F.35)
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Figure F.3. Real and imaginary part of the integral I5.

Evaluation of Jv(P)

For the vector contribution a similar discussion as for the integral I′2 leads to

Jv(P0) = −g2
Dqq

∫ d3 p
(2π)3

1

4ED
p EQ

p

(
P0 + ED

p

P0 + ED
p + EQ

p − iε
−

P0 + ED
p

P0 − ED
p − EQ

p + iε
− 1

)
(F.36)

= g2
Dqq

∫ d3 p
(2π)3

1
2ED

p

(
P0

P2
0 − (ED

p + EQ
p )2 + iε

)
(F.37)

= g2
Dqq

1
4π2

∫
dp

p2

2ED
p

(
P0

P2
0 − (ED

p + EQ
p )2 + iε

)
, (F.38)

after performing the p0 integration with the residue theorem. To obtain the imaginary
part of the upper expression, we can use the identity given in (D.17) again. This
yields

ImJv(P0) = g2
Dqq

1
32π

(
m2

sad −M2 − P2
0
)

P3
0

× (F.39)

×
√
[(msad + M)2 − P2

0 ][(msad −M)2 − P2
0 ]Θ(P2

0 − (msad + M)2) .

In figure F.3 the real and imaginary part of Jv(P0)/g2
Dqq =: I5(P0) is shown.
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F.5.1. Medium version of the baryon polarisation loop

The baryon polarisation loop within the Matsubara formalism is given by

− ΠB(iν + µ + µD, ~P = 0)
g2

Dqq

= T ∑
{iω}

∫ d3 p
(2π)2 ((iν− iω + µ)γ0 + M1)

1

(iν− iω + µ)2 − (EQ
p )2

1
(iω + µD)2 − (ED

p )
2 .

(F.40)

As in the previous chapters iν and iω are related to a fermionic and bosonic Matsubara
frequency, respectively. The emerging chemical potential µD = 2µ denotes the diquark
chemical potential. Again, we can identify the two integral Js and Jv, but now in their
medium version. Both contribution will be discussed separately.

Medium version of Js(P0)

The scalar contribution of the polarisation loop reads

− Js(P0, µ, µD, T)
g2

Dqq
= MT ∑

{iω}

∫ d3 p
(2π)3

1

(iν− iω + µ)2 − (EQ
p )2

1
(iω + µD)2 − (ED

p )
2 .

(F.41)

Performing the residue theorem backwards with the Bose-Einstein distribution in-
troduced in section C.1 to evalute the sum over the Matsubara frequencies leads
to

L4(P0, µ, µD, T) := − Js(P0)

g2
Dqq

(F.42)

= M
∫ d3 p

(2π)3

∮
C

dz
2iπ

nB(z)
1

(iν− z + µ)2 − (EQ
p )2

1
(iω + µD)2 − (ED

p )
2 .

(F.43)

Again, the contour C can be deformed to run clockwise around the four poles

z1± = ±ED
p − µD (F.44)

z2± = iν± EQ
p + µ , (F.45)
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which leads, after performing the Residue theorem and taking into account some of
the relations in section C.1, to

L4(P0, µ, µD, T) = −M
∫ d3 p

(2π)3
1

4ED
p EQ

p

(
1

iν + µ + µD − sp
− 1

iν + µ + µD + sp

− nB(ED
p + µD)

(
1

iν + µ + µD + dp
− 1

iν + µ + µD + sp

)
+ nB(ED

p − µD)

(
1

iν + µ + µD − sp
− 1

iν + µ + µD − dp

)
+ nF(EQ

p − µ)

(
1

iν + µ + µD + dp
− 1

iν + µ + µD − sp

)
+ nF(EQ

p + µ)

(
1

iν + µ + µD + sp
− 1

iν + µ + µD − dp

))
.

(F.46)

We can immediately identify the vacuum contribution

Lvac
4 (P0, µ, µD, T) := −M

∫ d3 p
(2π)3

(
1

4ED
p EQ

p

(
1

iν + µ + µD − sp
− 1

iν + µ + µD + sp

)
(F.47)

and medium part

Lmed
4 (P0, µ, µD, T) := −M

∫ d3 p
(2π)3

1

4ED
p EQ

p

(
1

iν + µ + µD − sp
− 1

iν + µ + µD + sp

− nB(ED
p + µD)

(
1

iν + µ + µD + dp
− 1

iν + µ + µD + sp

)
+ nB(ED

p − µD)

(
1

iν + µ + µD − sp
− 1

iν + µ + µD − dp

)
+ nF(EQ

p − µ)

(
1

iν + µ + µD + dp
− 1

iν + µ + µD − sp

)
+ nF(EQ

p + µ)

(
1

iν + µ + µD + sp
− 1

iν + µ + µD − dp

))
.

(F.48)

At µ = µD = 0 the vacuum contribution is equal to (F.34).
Moreover, we note that for µD = 2µ the baryon polarisation loop depends on 3µ.
Compared to the diquarks we expect this result in some way since a baryon is a bound
state of three quarks. Hence, it should feel three times the chemical potential of a
quark.
The vacuum part can be calculated with the analytical continuation iν 7→ P0, and the

123



Appendix F. Baryons

standard techniques provided in the previous section of the appendix. The medium
part, meanwhile, can be analysed with the same continuation. After a straightforward
calculation we can separate a fermionic and a bonsonic contribution. For the fermionic
part we find

Lmed,F
4 (P0, µ, µD, T) := M ∑

±

∫ d3 p
(2π)3

1

2EQ
p

nF(EQ
p ± µ)

1

(P0 + µ + µD ± EQ
p )2 − (EQ

p )2
,

(F.49)

while the bosonic contribution reads

Lmed,B
4 (P0, µ, µD, T) := ∑

±
±M

∫ d3 p
(2π)3

1
2ED

p
nB(ED

p ± µD)
1

(P0 + µ + µD ± EQ
p )2 − (EQ

p )2
.

(F.50)

Since both integrals only depend on ~p2 we can use spherical coordinates and using
analogous techniques as in the previous discussions of similar integrals. Therefore,
we make another replacement P0 7→ P0 + iε in order to obtain the retarded version of
the upper integrals. Then, it follows that the imaginary parts are given by

ImLmed,F
4 (P̃, µ, T) =∑

±
sign(P̃± Ẽ)

M
8π|P̃|

√(
Ẽ
)2 −M2×

× nF(±Ẽ± µ)Θ(±Ẽ−M) , (F.51)

ImLmed,B
4 (P̃, µD, T) =∑

±
±sign(P0 ± Ẽ)

M
8π|P̃|

√(
Ẽ
)2 −m2

sad×

× nB(∓Ẽ± µD)Θ(∓Ẽ−msad) , (F.52)

with

Ẽ :=
m2

sad −M2 − P̃2

2P̃
(F.53)

and

P̃ := P0 + µ + µD (F.54)

Medium version of Jv(P0)

The vector contribution Jv(P0) is given by

− Jv(P0, µ, µD, T)
g2

Dqq
= T ∑

{iω}

∫ d3 p
(2π)3

iν− iω + µ

(iν− iω + µ)2 − (EQ
p )2

1
(iω + µD)2 − (ED

p )
2 .

(F.55)
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The steps to evaluate this expression, is analogous to the one on the previous discus-
sion. Hence, we only will give important results within the calculations. Therefore, it
is convenient to define the integral L5(P0, µ, µD, T) as follow

L5(P0, µ, µD, T) := −
∫ d3 p

(2π)3
1

4ED
p EQ

p

(
−
(

ED
p ++µ + µDP0

P0 + µ + µD + sp
−

EQ
p

P0 + µ + µD − sp
− 1

)

+ nB(ED
p + µD)(P0 + µ + µD + ED

p )

(
1

P0 + µ + µD + dp
− 1

P0 + µ + µD + sp

)
+ nB(ED

p − µD)(P0 + µ + µD − ED
p )

(
1

P0 + µ + µD − sp
− 1

P0 + µ + µD − dp

)
+ nF(EQ

p − µ)EQ
p

(
1

P0 + µ + µD + dp
− 1

P0 + µ + µD − sp

)
+ nF(EQ

p + µ)EQ
p

(
1

P0 + µ + µD + sp
− 1

P0 + µ + µD − dp

))
,

(F.56)

with sp := ED
p + EQ

p and dp := ED
p − EQ

p . We already performed the continuation
iν 7→ P0. Note that the first term represents the vacuum contribution for µ = µD = 0,
and is equal to equation (F.36). It can be evaluated as shown in the corresponding
section, but in consideration of the chemical potentials. Again, we obtain a medium
part

Lmed
5 (P0, µ, µD, T) :=

− d3 p
(2π)3

1

4ED
p EQ

p

(
+ nB(ED

p + µD)(P0 + µ + µD + ED
p )

(
1

(P0 + µ + µD + ED
p )

2 − (EQ
p )2

)

+ nB(ED
p − µD)(P0 + µ + µD − ED

p )

(
1

(P0 + µ + µD − ED
p )

2 − (EQ
p )2

)

− nF(EQ
p − µ)2ED

p EQ
p

(
1

(P0 + µ + µD − EQ
p )2 − (ED

p )
2

)

+ nF(EQ
p + µ)2ED

p EQ
p

(
1

(P0 + µ + µD + EQ
p )2 − (ED

p )
2

))
(F.57)

which can be separated into a fermionic and bosonic contribution as well. Both
contributions only depend on ~p2 and are given by

Lmed,F
5 (P0, µ, µD, T) := ∑

±
±1

2

∫ d3 p
(2π)3 nF(EQ

p ∓ µ)
1

(P0 + µ + µD ∓ EQ
p )2 − (ED

p )
2

,

(F.58)
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Lmed,B
5 (P0, µ, µD, T) :=

−∑
±

∫ d3 p
(2π)3

1
2ED

p
nB(ED

p ∓ µD)(P0 + µ + µD ± ED
p )

1

(P0 + µ + µD ± ED
p )

2 − (EQ
p )2

.

(F.59)

The corresponding imaginary parts, after expressing P0 7→ P0 + iε to obtain the
retarded version of the integrals and using (D.17), read

ImLmed,F
5 (P0, µ, µD, T) :=∑

±

1
16π|P̃|

sign(P̃± Ẽ)ẼnF(±Ẽ∓ µ)×

×
√

Ẽ2 −M2Θ(±Ẽ−M) (F.60)

and

ImLmed,B
5 (P0, µ, µD, T) :=∑

±
∓ 1

16π|P̃|
sign(P̃∓ Ẽ)(P̃∓ Ẽ)nB(∓Ẽ± µD)×

×
√

Ẽ2 −M2Θ(∓Ẽ−M) . (F.61)

with the definitions (F.53), (F.54) for Ẽ and P̃, respectively.
Again the real part of expression (F.51), (F.52), (F.60) and (F.61) can be obtained with a
principal value integration under virtue of relation (D.19).

.
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