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Structural aspects

We turn now to describe some important general features of quantum
field theory so that one can obtain a better overall view of the theory.
This will be done by continuing to use the scalar theory as an illustra-
tion. We shall first investigate the structure of the interacting propagator
— the two-point Green’s function. This structure will tell us how to con-
struct single-particle states for an interacting theory. The single-particle
state construction will then be extended to multiparticle states, and the
relationship of n-point Green’s functions to scattering amplitudes will be
obtained. This relationship is called the “reduction formula”. The in-
teracting propagator can also describe unstable particles, and this will
be explained including an outline of how such particles are produced and
detected and how very short-lived particles appear as resonances in scat-
tering amplitudes. The effective action will then be introduced, and it will
be shown to be the generating functional of connected amplitudes. As a
by-product, the cluster decomposition theorem will be described and the
fact that the power of Planck’s constant  counts the number of closed
loops in a graph will be explained. Finally, the Legendre transform of the
effective action will be examined. It is the generating function of single-
particle irreducible, connected graphs. Its restriction to constant fields
defines the effective potential which is a useful instrument for describing
spontaneously broken symmetry. We already have a precursor to these
topics in the discussion of spontaneous symmetry breakdown in many-
particle systems in Chapter 2, Section 7, and that work should provide
additional motivation for this later exposition.

6.1 Lehmann representation

We return to Minkowski space time and turn to discuss the structure of
the Green’s function of two interacting Heisenberg field operators which
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follows from simple assumptions — axioms — of a basic physical charac-
ter. With sufficient work one could, in fact, derive the assumed axioms
from the functional integral representation. However, since any physically
sensible theory must have these properties, we shall follow the easy path
of simply assuming the axioms.

THe Green’s function is a vacuum matrix element, and so we start with
a consideration of the nature of the vacuum state. Since the energy-
momentum operators P# commute, [P*, P] = 0, they possess simultane-
ous eigenvalues. We assume that a unique vacuum state |0) exists™ which
is an eigenstate of these operators with zero eigenvalues,

PH0) = 0. (6.1.1)
It is a deep bit of physics that the momentum operator plays the dual

role as the generator of space-time translations. This fact is reflected in
its commutator with the generators of Lorentz transformations .J,,

— i[ S s PAl = gua Py — gunby- (6.1.2)

Hence, in view of Eq. (6.1.1),
0= [Ju, PA|0) = = PyJ,|0) . (6.1.3)
Since |0) is the unique state which is annihilated by Py, this implies that
Jul0) =100 (6.1.4)

where the j,. are some set of numbers. These numbers must form a
representation of the Lorentz group, they must obey the Lorentz group
Lie algebra that is satisfied by the J,, operators,

i[']ﬂl/v Jag} = gyat]#ﬂ —_ .. (6.1.5)

This requirement follows by multiplying Eq. (6.1.4) by J.g and subtract-
ing the result where J,4 is interchanged with J,,,.. It is impossible for the
numbers j,,,, to satisfy this requirement except for the trivial representa-
tion j,, = 0. Hence

Juw|0) =0, (6.1.6)

and we see that the vacuum state is necessarily a Lorentz invariant state.
The Lorentz invariance of the vacuum state is not a separate postulate;
it follows from the assumption that this state is the unique state of zero
energy and momentum.

For simplicity, we still consider an Hermitian scalar field, ¢(z) = ¢( :c)]L ,
which we take to be the renormalized field. It should be emphasized,

* A theory with spontaneous symmetry breaking has a whole family of equivalent vacuum
states. In such a case we assume that a particular vacuum state has been singled out.
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however, that this is a scalar field in some arbitrary (but renormalizable)
theory, not necessarily the simple A¢* which we have been considering.
The unordered two-point function is given by

G (2 - 2') = (0lg(2)¢(=)]0) (6.1.7)
Writing
$(z) = e Fp(0)e' T, (6.1.8)

and using the fact that the vacuum state has no energy or momentum,
we have

G (z - ') = (0]¢(0)e T 5(0)10) . (6-1.9)

Let us now use the resolution of the identity provided by some complete
set of orthonormal states

1=3 " |n)(n|. (6.1.10)

Here the summation is a complicated one which involves a summation
over states with an arbitrary number of particles with an integration over
all the particle momenta in each of these multiparticle states. We need not
specify the precise nature of the states |n) save that they shall be required
to be eigenstates of the (commuting) energy-momentum operators P*,

Pt|n) = |n) pi, - (6.1.11)
Accordingly,
G (@ = o) =3 ™= (016(0) m) {nlé(0)[0)
=3 e 0]g(0)n) . (6.1.12)

A constant can always be added to ¢(x) to ensure that (0|¢(x)|0) = 0,
which we shall assume has been done. Thus there is no loss of generality
in assuming that the sum in Eq. (6.1.12) excludes the vacuum state n = 0.
The energies of all the intermediate states must be positive, 0 >0, for
otherwise the vacuum state of zero energy would not be the ground state
it would not be stable. The invariant total mass squared, —p2, of the
n-th intermediate state is just the total squared energy of this state when
a boost is made to put the total spatial momentum p,, of the state to
zero. This total mass squared cannot be negative, and it can vanish only
if the theory contains a massless particle. We shall assume that the latter
is not the case and require that p# is a time-like vector, —p2 > M?, with
Af > 0. Within these constraints on p/;,

/st/ (d*p) §(p° + )8 (p —pn) = 1. (6.1.13)
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Using this effective representation of the identity, we may make a “change
of variables” by inserting it inside the sum and interchange sum and
integral to write

Gz - ) / ds/ (d*p) 5(p* + s)eP@)

x Zné(‘” p —pn)l<01¢(0)ln>12- (6.1.14)
In virtue of the Lorentz invariance of the theory,
> 89 = pa)l{01¢(0)|m)* = p(=p)/(27)" (6.1.15)

defines a Lorentz scalar, a function p(—p?) which depends only upon
the invariant —p®. This function appears as the sum of squared matrix
elements and so it is real and non-negative,

p(—p?)* = p(—p*) 2 0. (6.1.16)
We have now secured

G (x - 2') = (0]|p(z)¢(2)|0)

:/ stp(s) AR (g —2'5 s), (6.1.17)
M
in which
+) / (d*p) 1 0ve) 2 )
ANz —2';s) = / 5n)? B(p")6(p* + s)e”? : (6.1.18)

This is the Lehmann representation. ,
Performing the p° integral in Eq. (6.1.18) with the aid of the é-function
gives

d3p 1 9 o
ANz -2’5 s) :/EQW)g @ew =) (6.1.19)

P’ = Es(p) = /P*+s (6.1.20)

is the energy of a particle of momentum p and mass /s. Recalling
Eq. (3.2.29), this identifies AH)(z —2’; s) as the vacuum matrix element

A (z -2’5 5) = (Ol(x)p()|0){” (6.1.21)

where

for a free field of mass s. Indeed, the single-particle part of the resolution
of the identity placed between the two free ¢ fields in Eq. (6.1.21) produces
the integral representation given in Eq. (6.1.19). We thus find that the
two-field function of a general interacting scalar field can be expressed
as a superposition of the corresponding free field functions of variable
mass. If the theory were that of a free field of mass m, one would have

p(s) =6(s —m?) .
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1 Causality

Interchanging = «» ' in Eq. (6.1.17) (or equivalently taking the complex
conjugate) gives the vacuum matrix of the two fields in the reverse order.
Subtracting this from the original form yields the commutator represen-
tation

Ol (@), N0 = [ dspl)Ace =’ 9), (6.1.22)
where
Az —a';s) =AMz —o'; 5) — AP (@ — z; 9)]. (6.1.23)

The Fourier representation (6.1.18) shows that A (z — 2'; s) is not
changed by the interchange of the spatial coordinates, x < x’, for this is
equivalent to reversing the sign of the spatial momentum, p — —p, which
leaves the remainder of the integral invariant. Hence

Az —12'; 5) = / (d’p) ie(P*)8(p* + 5)ePz==) (6.1.24)
1 (27r)3 ?
in which
0 a0y oy J 1, pP>0
) =069 - 8- = { 1} B0 (6.1.25)
The same procedure applied to the free field matrix element gives
Az —a'; s) = (0fi[é(x), p(z)]|0) . (6.1.26)
The equal-time commutator vanishes,
(d’p) . ip-(x-x!
Az =25 8)|jp :/ Gn) /dpoze(po)é(p2 + 5)eP(x—X)
=0, (6.1.27)

since the integrand is odd in p°. Now A.(x —x'; s) is a Lorentz invariant.
Any space-like interval (x — x')? — (t — #')2 > 0 can be sent by a Lorentz
transformation into the purely spatial interval x — X’ # 0, t —# = 0.
Hence, Lorentz invariance together with Eq. (6.1.27) implies that the com-
mutator function vanishes for any space-like separation of its coordinates,

(z—2')>>0 : Az —a2';5)=0. (6.1.28)

We conclude from the commutator representation (6.1.22) that for any
space-like separation (z — ') > 0,

(0l[¢(=), o(=")]10) = 0. (6.1.29)

This is the quantum field theory expression of causality. The commutator
of two fields in space-like relation, an interval that cannot be bridged by
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b #0

Fig. 6.1. Causality: A source produces an initial state expectation value of a
field which is non-vanishing only in the future light cone of the source.

communication, even with a light signal, must vanish. Note that scalar
field ¢ carries spin zero. Spin zero fields comsmute for space-like separation.

To make this connection with causality explicit, we consider the vacuum
expectation value of the field in the presence of an external source function
p(z),

(0 — |p(x)|0-)7.

Note that this is not the “remote past—distant future” matrix element
which is produced by the functional integral, the matrix element which
enters into the description of a scattering experiment. Rather, it is the
“diagonal” matrix element, the expectation value in the initial vacuum
state of the field operator ¢ at the space-time point x. This matrix element
gives the average value which the field ¢ will be observed to have at the
spatial position x at the time 20 if the initial state is the vacuum state.
The expansion to first order in the external source involves the retarded
commutator according to the solution of Problem 1:

0160 = (@) 0" ~ ) Olilg(e), 9()]10)o(at) +---
(6.1.30)

This result makes the relationship of the commutator function with cau-
sality clear: Since the commutator vanishes for space-like separations, the
source produces a field response only within its future light cone. That is,
if the source is restricted to be non-vanishing only in some finite space-
time region — if it has a finite space-time “support”, then the expectation
value of ¢ will be non-vanishing only in the future light cone of the points
of this support as shown in the sketch in Fig. 6.1.

Spin zero fields cannot anti-commute at space-like separation. To see
this, we note that, just as in the commutator construction, the vacuum
value of the anti-commutator has the representation

Olto(e), N0 = [ dsp(s)aB(z —a’: 5). (6.1.31)
J M2
in which
AV (z; s) = AP (2 s)+ AP (—z; s). (6.1.32)
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It follows directly from Eq. (6.1.18) that A (z; s) = A (—z; s) for
t = 0, and Lorentz invariance extends this equality to all space-like z.
Moreover, at space-like separation, the free-field unordered and time-
ordered functions are essentially equal, At) = —iA,. Hence we may
use the result (4.5.17) to conclude that for space-like separations

1 e 0]
22 >0 : AN (z; ) = 5—7;2—/ d¢ e~ =s/4 5 ¢ (6.1.33)
0
Hence for any space-like separation, (z — z/)? > 0,

(01{¢(z), $(a’)}[0) = /;’ dsp()AD(@—2';5)>0.  (6.1.34)

Therefore, if the anti-commutator of two spin zero fields were to vanish
for space-like separation, the integrand in Eq. (6.1.34) must vanish since
p(s) is non-negative. That is, this spectral weight must vanish identically,

p(s) =0. (6.1.35)

But Eq. (6.1.15) then implies that (0{¢(0)|n) = 0, for all the states n,
which further implies that the field ¢ annihilates the vacuum state,

$(2)|0) = 0. (6.1.36)

At this point, we need to quote a general theorem which we shall simply
state without proof since this proof is lengthy and would take us too far
astray: If ¢(x)|0) = 0 then ¢(z) = 0. No field theory exists in which a
local field annihilates the vacuum state. One concludes that a spin zero
field cannot anticommute for any space-like separation.

What has been described is an elementary example of the general Spin—
Statistics Theorem: At space-like separations integer spin fields commute
while %—integer spin fields anticommute.

The Lehmann representation (6.1.17) expresses the vacuum matrix el-
ement of two field operators in the fully interacting theory in terms of a
superposition of the corresponding matrix elements of free fields of mass
s. We have just seen how this basic representation can be used to form
representations of the commutator or anti-commutator functions — they
are the same superposition of the corresponding free-field functions of
mass s. This also carries over to the time-ordered product

Gy (z—2') = (0[iT¢(z)¢(2")|0)
= (2" — 2")(0|¢(z)b(x)[0) + i0(2" — 2°)(0]¢p(z") ()]0} ,
(6.1.37)

which appears as

Gi(z—2') = /MOZ dsp(s)As(z—2'; ). (6.1.38)
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Physical Limit

M?

z-plane

Fig. 6.2. Analytic structure of the Green’s function.

The free-field propagator was discussed at length in Chapter 3, Section
2. It is given by

Ay(z — 'y ) = (0iTe(x)p(z') |0y
=if(z°~2") A (z—2; ) + i0(2"0~ A (2 25 )
4 ip(z—xz’
:/ (d'p) em=r) (6.1.39)
(2m)4p? 4+ s — i€
Thus the Fourier transform of the interacting Green’s function has the
dispersion relation form®

” ! (6.1.40)
G+(P):/Mzdsp(3)m‘ ey
The Green’s function in momentum space G4 (p) appears as the boundary
value of analytic function G(z), z — —p? + ie where
o] 1 4

G(z)= [ dspls)

M2 s —z

(6.1.41)

defines a function analytic in the whole z plane save for a cut along the
positive real axis which starts at z = M?, as shown in Fig. 6.2.

t Although the representation (6.1.17) for the unordered function a{ways e)'(ists in the dlst'rl»
bution theory sense, the dispersion relation (6.1.40) for the Green’s functhn may pot exist
unless subtractions are made. The point is that the products of the", two dl.StI:IbutIOnS, t}}e
# step functions and the G, may not be a we]l-deﬁned distribution. This is the case in
the perturbative expansion of the A¢? theory where p(s) does not decregse as s — 00, a(xild
the integral in Eq. (6.1.40) does not converge. In such cases a subtraction must be made,

with the dispersion relation written as

pls) 1
s — 80

G+(p):A"(p2+SO)/dS PO

Since we are concerned only with the formal aspects of the theory, we shall neglect such

complications.
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2 Single-particle states

Let us now assume that the field ¢ creates a single-particle state of mass
Mphy from the vacuum state as well as creating other multiparticle states.
Then, separating out the single-particle state with the energy-momentum
relation

P’ =E(p)=,/p?+ mi. (6.1.42)

from the sum (6.1.15) that defines the spectral weight,

d3 /
o) = [T s (0 = )0l P

+ 3 @n)¥sWp - p)(0elny?.  (6.1.43)

multiparticles

Here the same Lorentz invariant normalization for the single-particle state
[p') is used that has been previously employed in the free-field theory.
Hence

{ols(O)|p)* =Z >0 (6.1.44)

defines a positive constant! Z. This is a finite wave-function renormal-
ization constant which must appear since, although the field ¢ is the
renormalized field, it is defined by a minimal subtraction scheme, and it
does not couple the vacuum state to the single-particle state with unit
strength. With p® > 0,

[ @) 55558 0 =)= 558"~ E@)
=6(p* +mipy), (6.1.45)
and so
p(=p*) = Z6(—p* — mly,) + p(—p?) , (6.1.46)

where now p(—p?) stands for the contribution of the multiparticle states
with

pls) =0, s<M2. (6.1.47)

The threshold mass My, must be larger than the particle mass mppy ,
M2 & > mphy , for otherwise the single particle created by ¢ would decay
into the particles associated with M,y; the particle would not be stable

By Lorentz invariance, Z must be a function only of p2. But ~p/2 = m2,
phy’

and so Z
nust be a constant.
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Fig. 6.3. Analytic structure of the Green’s function with a single-particle pole.

and so it would not enter into the spectrum of physical states. Thus

Gi(p) = ———Z N O (6.1.48)

p? +mphy M2 p? +s

The physical mass of the particle is the position of pole of the two-point
Gireen’s function. Moreover, the positive residue of this pole is a finite
wave function renormalization in addition to the minimal but infinite
renormalization that relates the renormalized field ¢ to the bare field ¢q.
The analytic structure is now described by the picture in Fig. 6.3.

6.2 Reduction formula

The Green’s functions of a quantum field theory yield all the (n-particle)
scattering amplitudes of the theory. To see how this goes, we first examine
the construction of single-particle states |p) in terms of the field operator
#(z) acting on the vacuum state |0).

If ¢(z) is a free field, the single-particle state has the construction
(Chapter 3, Section 2)

= /(dSX) ~ir'Ti(F o~ B 0){0]é(x), (6.2.1)
with these states having the normalization
(p'lp) = 2p°(27)°8(p" — p). (6.2.2)
For this free field, the wave function is given by
(0| (x)[0) = ™" . (6.2.3)

For an interacting field theory which has a single-particle state with the
energy-momentum relation

P = (m p/) : (6.2.4)




