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2 Single-particle states

Let us now assume that the field ¢ creates a single-particle state of mass
Mphy from the vacuum state as well as creating other multiparticle states.
Then, separating out the single-particle state with the energy-momentum
relation

P’ =E(p)=,/p?+ mi. (6.1.42)

from the sum (6.1.15) that defines the spectral weight,

d3 /
o) = [T s (0 = )0l P

+ 3 @n)¥sWp - p)(0elny?.  (6.1.43)

multiparticles

Here the same Lorentz invariant normalization for the single-particle state
[p') is used that has been previously employed in the free-field theory.
Hence

{ols(O)|p)* =Z >0 (6.1.44)

defines a positive constant! Z. This is a finite wave-function renormal-
ization constant which must appear since, although the field ¢ is the
renormalized field, it is defined by a minimal subtraction scheme, and it
does not couple the vacuum state to the single-particle state with unit
strength. With p® > 0,

[ @) 55558 0 =)= 558"~ E@)
=6(p* +mipy), (6.1.45)
and so
p(=p*) = Z6(—p* — mly,) + p(—p?) , (6.1.46)

where now p(—p?) stands for the contribution of the multiparticle states
with

pls) =0, s<M2. (6.1.47)

The threshold mass My, must be larger than the particle mass mppy ,
M2 & > mphy , for otherwise the single particle created by ¢ would decay
into the particles associated with M,y; the particle would not be stable

By Lorentz invariance, Z must be a function only of p2. But ~p/2 = m2,
phy’

and so Z
nust be a constant.
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Fig. 6.3. Analytic structure of the Green’s function with a single-particle pole.

and so it would not enter into the spectrum of physical states. Thus

Gi(p) = ———Z N O (6.1.48)

p? +mphy M2 p? +s

The physical mass of the particle is the position of pole of the two-point
Gireen’s function. Moreover, the positive residue of this pole is a finite
wave function renormalization in addition to the minimal but infinite
renormalization that relates the renormalized field ¢ to the bare field ¢q.
The analytic structure is now described by the picture in Fig. 6.3.

6.2 Reduction formula

The Green’s functions of a quantum field theory yield all the (n-particle)
scattering amplitudes of the theory. To see how this goes, we first examine
the construction of single-particle states |p) in terms of the field operator
#(z) acting on the vacuum state |0).

If ¢(z) is a free field, the single-particle state has the construction
(Chapter 3, Section 2)

= /(dSX) ~ir'Ti(F o~ B 0){0]é(x), (6.2.1)
with these states having the normalization
(p'lp) = 2p°(27)°8(p" — p). (6.2.2)
For this free field, the wave function is given by
(0| (x)[0) = ™" . (6.2.3)

For an interacting field theory which has a single-particle state with the
energy-momentum relation

P = (m p/) : (6.2.4)
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we are motivated to try a construction akin to that given in Eq. (6.2.1)
for a free particle. This construction is tested by examining the resulting
“wave function” which is now given by an operation on the interacting
two-point Green’s function. Using the Lehmann representation,

[ @x1e7=i(F 0 - Do) 0lota)ola)l0)
:/(dl%x)e“ip"xw‘p/oti(?o - 30)/(13 [Zé(s - mf)hy) + ,5(3)]

/(dgp) 1 P (X=X )—iEs(p)(t—t')

(27)3 2E4(p)
it ot o0 B Es(p/)+p/0 _iE NEt?) —in s +ip Ot
=Ze sz+/ ds sm——————els(P)(tt)e ip’ X/ +ip0t
ME ole) QES(p’)

(6.2.5)

The first term on the right-hand side of the last equality is just the free-
particle wave function modified by the appearance of the finite wave-
function renormalization constant Z. The second term represents the
contribution of the continuum of states that is also produced when an
interacting field acts on the vacuum state.

To understand the nature of the continuum contribution, it is worth-
while to first review the Riemann-Lebesgue Lemma. This lemma roughly
states that if f(w) is a “smooth” function which vanishes as w — +oo,
then its Fourier transform vanishes in the infinite time limit,

t— 00 : /j:o dwf(w)e ™ - 0. (6.2.6)

The point is that as ¢ — oo, the exponential oscillates ever more rapidly
and adjacent regions of the integration cancel. The proof follows by partial
integration

P

o —iwt _E > i —iwt
/‘mdwf(w)e —t/‘%dwf(w)awe

o df (W) _iun
= t/_mdw o e

_ (;)N/_OC do @) it 6oy

This process can be repeated until a discontinuity or singularity is ob-
tained in the N-th derivative, in which case one has proved that the
Fourier transform vanishes at least as rapidly as 1/t". If all the deriva-
tives of f(w) exist, then the Fourier transform vanishes faster than any
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power of 1/t as t — oo. In view of this lemma, we expect that

. o o Es +p’0 —iE {t—t) _

’t—ltl’lﬁl«»oo ” ds p(s) 5E. e 1) (6.2.8)
so that the continuum contribution vanishes in the infinite time limit.
However the integrand is not smooth at the various n-particle thresholds
— at the points s = M? where the states containing n particles start
to make their contribution. Hence, the continuum contribution does not
vanish faster than any power of 1/|t — t/|.

To estimate the long-time limit of the continuum contribution, we note
that the spectral weight 5(s) has infinitely many thresholds correspond-
ing to 2-particle, 3-particle, ... intermediate states. With s near the
n-particle threshold, s = M2, j(s) is proportional to the phase space for
the production of n-particles (with additional factors of /s — M? appear-
ing if the particles have spin). A straightforward calculation (see Problem
2) shows that near the n-particle threshold™

A(s) o (\/5 - MT%>3,1_5 . (6.2.9)

The leading term in the long-time limit which arises from the threshold
behavior of an n-particle intermediate state is obtained by the approxi-
mation

; s — M2
Ey(p') = /D% +s = Eyp, (p)+ SEur () (6.2.10)

Eu, (p') = /P + M3, (6.2.11)

which is valid in the threshold region where s is near M,,. Thus

with

a0 ~ Es(p/) +p/0 _iE I i
d iB(p) (1)
M3 sPl) 2E;(p') ‘
e ne , s—M?
~ | ds(s—M2)PE 15T gy —iEw, (p)(t—t
e s(s—My) 2 exp{ ZEMn(p’)( ) ¢ exp{—iEn, (p')(t-t)}
1 . E ! ! 6.2.12
~ | — —1 t—1t 2.1

where M is some characteristic elementary particle mass scale.
Taking, say, M ~ 1 GeV corresponds to M =1~ 10723 sec. Therefore
for (t —t') > M~! ~ 107? sec the continuum contribution is negligible.

* The simple square root behavior for a two particle threshold is evident from the calculation
of the dispersion relation for the “bubble” graph found in Problem 2 of Chapter 4.
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For example, with ¢ —¢ ~ 10713 sec, the contribution of an n = 2-particle
threshold is on the order of 1071° . Although the continuum contribution
vanishes only as an inverse power for large time difference, the scale is set
by the very short elementary particle time M ~!. Hence

lim [ (%) (T o — T o)Olg(a)d(2)[0) = Ze P (6.2.13)

[t—t |00

where, in physical terms, the “infinite limit” means time differences [t /|
on the order of 10712 sec or so.

We can now see how to construct a single-particle state for an interact-
ing field system, namely

(bl = lim [ (@®x)e (o — D 0)(0]—= () (6.2.14)
t—too \/—Z_ ’
for this procedure gives the properly normalized wave function

(pig(x)]0) = VZe V7. (6.2.15)
The Hermitian adjoint yields

= Jim [(@e ()50~ To) o). (6:216)

Using the wave function (6.2.15), the scalar product of the two states
constructed by Eqgs. (6.2.14) and (6.2.16) — but with opposite time limits
[t — +o0 for the bra, t — —oo for the ket (or the other way around)] so
as to suppress the continuum contribution — is just that which has been
used for free particles:

{plp') = (27)*2p°6®) (p — p'). (6.2.17)

It should be emphasized that the infinite time limits used to construct the
single-particle states picks out only the pole term in the Green’s function
— the continuum contributions are “washed out” in accordance with the
Riemann-Lebesgue Lemma.

We shall use this method of state construction not only to obtain single-
particle states but also to construct multiparticle states as well. This does
not follow strictly from what we have done. We will not give a rigorous
proof, but the result is so plausible that it is easy to accept. Suppose that
there is an initial ¢-particle wave packet which later collides with the wave
packet of another particle or system of particles which we denote by (.
Initially the two wave packets are separated by a great spatial distance
and there is no interaction between them. Therefore, the initial state |(—)
containing the other system is essentially the vacuum state as far as the
well-separated ¢-particle wave packet is concerned. Hence the initial state
with the additional ¢-particle wave packet is constructed by replacing the
vacuum state in Eq. (6.2.16) by [(—) with the momentum p which appears
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Fig. 6.4. Graphical description of the decomposition of the four-point Green’s
function into disconnected and single-particle irreducible parts.

+

in Eq. (6.2.16) integrated with the momentum-space wave function f (p)
which produces the well-separated ¢-particle wave packet. In the hgnt
in which the ¢-particle wave packet becomes an incident plane-wave with
momentum p, the initial state has the construction
. 1

p.C—) = i 35)ePE(—i)(D o — 00)—=d(z)|C=).  (6.2.18)

.= lim [(@x)er (=80~ To) =6(2)
Similarly, the limit of the outgoing situation wave packet to a plane wave
of momentum p’ is given by

L e,
W+ = Jim [(@0e (@0~ Do +=0(e). (6219

Let us use this procedure to construct the transformation function
(piph + |p1p2—) and thereby the two-particle scattering amplitude from
the four-point Green’s function

Glxy, z2, 23, 74) = (—Td(x1)p(x2)p(23)P(z4)) - (6.2.20)

To do this, we first decompose the Green’s function into disconnected and
irreducible parts as shown by the graphical structure in Fig. 6.4.‘ The first
graphs represent the unscattered, “straight through” propagation of the
particles, but with the “fully dressed” interacting propagat.ors. The ﬁngl
graph represents the processes that give rise to the scattering, but again
with the interacting propagator factors removed to define an amplitude
I’ which is single-particle irreducible.! These graphs correspond to the

t 1t is clear that the sum of all the Feynman graphs fall into the catggories illustrated in
Fig. 6.4. 1t is not obvious, however, that they combine to form precisely the propagator
factors G2 that are shown. This is explicitly proven in Sections 4 and 5 below.
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formula
G(xy1, @2, x3, 14) = G(x1 — r2)G(x3 — 24)
+ Gz — 23)G (22 — 24) + G271 — 24)G (27 — 23)
+ () (d5)Ger = 21) -+ Glos = 201, 72, 73, ),
(6.2.21)

or, in momentum space,

(27)*6(Zp)G(p1,p2 p3 s pa)
= (2m)*8(p1 + p2)G(p1) (27)*8(p3 + pa)G(p3) + perms
+(27)*8(Zp)G (01 G (p2)G(p3) G ()T (p1, D2, p3 ,pa) - (6.2.22)

Using Egs. (6.2.19) and (6.2.18) to construct the states, the transforma-
tion function is given by

o+ lppa=) = [ (@) (T 10— T o)
/ (@xa)e™*4(F 30~ T 40)

7 <T¢(J1)¢(I2)¢($3)¢(x4)> . (6.2.23)

Note that the time-ordering in the matrix element orders the fields appro-
priately, with the fi€ld operators creating the outgoing state appearing on
the left and the field operators creating the incoming state appearing on
the right. Making use of the decomposition (6.2.21) we encounter terms
of the form

~/+oo(d3xl) lplfll(alo— 810)\/7 ( y)
=i(ph|d(y)|0) = iVZe Y, (6.2.24)

and

/_ oQ(aﬁx?,)eim(—@') (830 — ‘530)%0@3 ~2)

=i(0|¢(2)|p1) = iV ZePr* (6.2.25)

Using Eqs. (6.2.24) and (6.2.25) it is easy to check that the “straight
through” propagation terms in the decomposition (6.2.21) connecting
xr1 with z2 and z3 with x4 do not contribute while the other “straight
through” terms give single-particle transformation functions. Also using
Eqgs. (6.2.24) and (6.2.25) it is easy to see that the remaining scattering
term involves the Fourier transform of the I' amplitude. Thus one finds
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that

(P + Ipipa—) =(Pilp1)(palp2) + (1lp2) (Palp1)
~i(2m)*8 W (p) +ph — p1 —p2)T,  (6.2.26)
in which
T =—iZ’T(ph, ph, =p1, =p2). (6.2.27)

Note that as far as the scattering contribution described by T' is concerned,
the state construction just picks out the residue of the single-particle poles
(p? +m hy)“l. A factor of \/Z is removed for each external particle.
This leaves a finite wave function renormalization which must be taken
into account, the factor Z2 in relating the scattering amplitude to the
irreducible vertex I'. We have already learned in Chapter 3, Section 4
how to construct the scattering cross section from the structure (6.2.26).

We have gone through this “derivation” in some detail particularly to
explain how the “straight-through-propagation” factors work out. Let us
now give a simple but heuristic discussion which leads to the “reduction
mnemonic”. First we note that a particle of momentum p’ is added to a
final state by writing

(1 +16-) = [0 i(To - To)—= (¢ + 6(a)lE-) . (62.28)
\/__
where the limit t = 2° — +oo is understood. A partial integration
presents this as

€9 +lemr= [ oy (@0 i(Fo = Do) A Ho@)E
[ (@x)e (T - '80>ﬁ<< Hpla)le-).  (6.2.29)

The second integration at t = —oo gives no “scattering” contribution -
this term has a rapid phase variation that produces a vanishing result
unless it corresponds to destroying a particle of momentum p’ in the
initial state, which gives a “straight-through-propagation” contribution.
The overall time derivative on the right-hand side of the first line of the

—
equation combines to give the form i(J5 — 93). To this can be added the

T
combination V2 — V? which gives no contribution as an integration by
parts establishes. Hence

(9 +le-) = [(@)e -3 + "27<<+|¢< 2)le-)
= [(@a)e (- 82+mphy>% (Hd(@)le-). (6.2.30)
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One now takes p’ slightly off mass shell, —p'? # mghy. Then there are
rapid phase variations at the space-time boundaries, and integrations by
parts can be freely performed to give

¢ +le-) = ——j;(p” +mapy) / (d*z)e (¢ + |p(x)|€~) . (6.2.31)

The physical limit p? + m2,, — 0 picks out the residue of the (p? +
mf)hy)"1 pole of the Fourier transform of the amplitude in Eq. (6.2.31)
and produces the physical state matrix element. Similarly, an additional
particle in an initial state is constructed as

(€ +lepy = tim ) (@0 + @)

P +m§hy—'0
(6.2.32)
As an example of the use of this reduction mnemonic, let us consider the
previous example of the two-particle scattering amplitude. Applying the
mnemonic to Eq. (6.2.22) we see again that that the scattering amplitude
is identified as the residue in the (p? + mf)hy)"1 poles,

(p\ph + | p1p2—) = straight through propagation terms
—(2m) 6(ph + ph — pr — P2)Z°T (P, Py, —p1,—p2),  (6.2.33)
in agreement with Egs. (6.2.26) and (6.2.27).

>

6.3 Unstable particles

Let us first recall the analytic structure of the two-point Green’s function
or propagator when the theory contains a particle whose physical mass
we will now denote simply by m. It has a pole at —p? = m? and a
branch cut starting at —p? = th as shown in Fig. 6.3. The Lehmann
representation (6.1.40) implies that G(p) has no singularities except for
—p? real and positive. In particular a pole in G(p) must lie on the real
—p? axis. Suppose now that the parameters of the theory are changed.
Then the pole and branch point may move towards one another. If further
changes in the parameters are made the pole will move into the branch
point. Then what? Since the pole cannot move onto the complex plane
it must move into new Riemann sheets. As will be described shortly,
the Green’s function originally defined above the cut can be analytically
continued into a second Riemann sheet below the cut. The final position
of the pole in this second sheet is sketched in Fig. 6.5. Parameters giving
poles on unphysical sheets produce an unstable particle if these poles are
close to the real axis.
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Fig. 6.5. When the parameters of the theory are varied, the pole at the mass of
a stable particle can move through the branch point into other Riemann sheets.
Shown here is the final position of the pole in the continuation into the second
sheet which is described in the text.
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Fig. 6.6. Left: Spectral weight for a stable particle. Right: Spectral weight for
an unstable particle.

The continuation of the mass parameter can also be cast in terms of the
spectral weight of the Lehmann representation. Referring to Eq. (6.1.40)
and using
1

T F 1€

e— 0" : Im = +7né(x), (6.3.1)

one sees that this weight is the imaginary part of the propagator,
1
p(=p") = —Im G(p). (6.3.2)

Here G(p) is the physical function obtained by the ¢ — 0% limit of
Eq. (6.1.40). Note that the spectral weight also appears as the disconti-
nuity across the cut in the analytic function G(z) defined by Eq. (6.1.41),

G(z +i€) — G(z — ie) = 2mip(x) . (6.3.3)

In terms of the spectral weight, the stable and unstable particle cases
are described by the sketches in Fig. 6.6. The presence of the unstable
particle poles is reflected in a sharp peak in the spectral weight.

To describe the relevant “second sheet”, we recall that the Green’s func-




