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• Why look at classical Yang-Mills theory?

• Cascade towards UV, scaling of momentum and

occupancy

• Approach to a scaling solution

• Infrared effects: screening and magnetic screening

• How would condensates behave?
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What I really want to study: Quantum YM

theory at αs = 0.3 with intense-field inhomogeneous

expanding initial conditions

What I want to study: Classical YM theory +

quantum fluctuations with intense-field inhomo. expanding

init. condit.

What I would like to study: Classical YM theory

with intense-field expanding initial conditions

What I will study for now: Classical YM,

intense-field but non-expanding.
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What does classical YM do?

Most theories seek equilibrium.

Classical field thy. in continuum has no equilibrium.

Unlimited UV phase space. Equipartition: energy should

move into UV forever

Start with f ∼ 1
g2Nc

for p <
∼ Q, f small for p ≫ Q.

Typical momentum scale pmax grows, typical occupancy f̃

shrinks, with time
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Let’s rigorously define my scales Q and pmax:

ε = 2(N2
c −1)

∫

k2dk

2π2
k f(k) and ε ∼

Q4

g2Nc

, f ∼
1

g2Nc

so we define

ε =
2(N2

c −1)

2π2Ncg2
Q4 or Q4 ≡

2π2Ncg
2ε

2(N2
c −1)

so that, to the extent f is well defined,

Q4 =

∫

k3(g2Nc f(k))dk

Also define “typical momentum scale now”:

p2
max ≡

〈(∇×B)2〉
1
2
〈E2 + B2〉

p2
max ≃

∫

k6 f(k) dk
∫

k4 f(k) dk
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Dynamics: Expect collision rate Γ order Γt ∼ 1.

Estimate Γ ∼ g4f 2pmax. Two expressions:

g4f 2pmaxt ∼ 1 , p4
maxg

2f ∼ Q4 time independent

Solving,

pmax ∼ Q(Qt)
1

7 , f ∼
1

g2Nc

(Qt)
−4

7

see Kurkela and GM arXiv:1107:5050, Blaizot et al. arXiv:1107:5296

What about particle number? Γnumber chg ∼ g4f 2pmax.

Number change could keep up – or there might be

condensates??
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Questions we want to ask

Do we observe expected pmax ≃ Q(Qt)
1

7 scaling?

Does f(p, t) approach scaling solution?

f(p, t) = (Qt)
−4

7 f̃(p(Qt)
−1

7 ) Time-independent

Behavior in infrared: f ∝ p−1, f ∝ p−α (4/3 or 3/2 or...)

Berges Schlichting Sexty

or is there a condensate? (larger IR occupancies than just power IR scaling)

If so, is it electric (plasmons) or magnetic?
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Lattice study. gauge invar. measurables: p2
max/Q

2:

6 very different initial conditions converge, obey

pmax ∼ Q(Qt)
1

7
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Occupancies? Fix to Coulomb gauge. Perturbatively,

∫

d3x eip·x〈Ai
a(x)Aj

b(0)〉 =
δabP

ij
T (p)

|p|
f(p) ,

∫

d3x eip·x〈Ei
a(x)Ej

b (0)〉 =
(

δabP
ij
T (p) |p|

)

f(p)

(with P ij
T = δij − p̂ip̂j) Then we could simply define:

fA(p) =
δijδab

2(N2
c −1)

|p|

∫

d3x eip·x〈Ai
a(x)Aj

b(0)〉coul ,

fE(p) =
δijδab

2(N2
c −1)|p|

∫

d3x eip·x〈Ei
a(x)Ej

b (0)〉coul .

Two estimates of occupancy: A-field and E-field.
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Trust, but verify

Equilibrium behavior for these “occupancies” 256
3 SU(2)

fA: peak (fake?) and fall f ≤ 6/(g2Nc) (magnetic screening?)

fE: rise in IR (Longitudinal occupancy!)
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We made an assumption

We assumed 〈EE(k)〉 remains transverse!

It doesn’t: D · E = 0, not ∇ · E.

Fluctuations: effective random charge density.

perturbatively but working a bit harder,

∫

d3x eip·x〈Ei
a(x)Ej

b (0)〉eq = δabT

(

P ij
T (p) +

m2
D

m2
D+p2

p̂ip̂j

)

Below scale mD, significant longitudinal contrib.

Best solution: separate into fEt
(k), fEl

(k), believe fEt
.

(Works in equilibrium, at least....)
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Scaling works!
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Rather rapid convergence to scaling solution:

6 distinct initial conditions, but soon they all look same.
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“Scaling” solution evolves in IR

fA, fEt
tell same story except in IR
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First look at fA

fA rises, reaches 6/(g2Nc), saturates.
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Now fE versus fEt

fE rises more than 4/3 power, but ..
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fE =
P ij

T δab

2(N 2
c−1)

√

p2 + ω2
pl

∫

d3x eip·x〈Ea
i (x)Eb

j(0)〉coul
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So far, IR occupancy

f(p, t) ∼
1

g2Nc

(Qt)
−4

7 (pmax/p)
4

3

For fA, saturates at f = 6/(g2Nc). fE a bit lower.

Part. number with f ≥ 1
g2Nc

falls with time as

ncond./ntot ∼ (Qt)
−5

7 . Fairly small coefficient.

Could there be a condensate? If so, how would it evolve?

We can put one in by hand!

Evolve for a while, fix Coulomb gauge, insert uniform E

field:
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Energies with E-spike
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Occupancies with E-spike

at E-minimum at E-maximum
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Conclusions

• Classical Yang-Mills dynamics: cascade to UV

• Scaling with time, pmax ∼ Q(Qt)
1

7 and f ∼ 1
g2Nc

(Qt)
−4

7

• f(p, t) approaches scaling solution, with f(p > pmax)

exponential and f(p < pmax) ∝ p
−4

3

• IR corrections to scaling – mostly saturation of A-fields

at f ∼ 6/g2Nc and screening effects on E-fields

• No evidence of occupancies larger than above. Plasmon

condensate possible, not realized and would decay fast
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