Relativistic Hydrodynamics and Heavy Ion Collisions

- Studying the strong interactions in a new regime
- Hydrodynamics for hot strongly-interacting matter
- Shear viscosity and its role
- Rigorous definitions of hydro coefficients
- A (new) limit on how small shear viscosity can be
- Conclusions

1932: nucleus of protons, neutrons bound by a strong force

1940's to 1960's: more strongly-interacting particles found $\pi^{\pm}, \pi^{0}, K^{\pm}, K^{0}_{l,s}, \eta, \rho^{\pm 0}, \phi, \dots$ *n*-spin "Mesons" $p, n, \Lambda^{0}, \Delta^{++,+,0,-}, \Sigma^{\pm 0}, \Xi, \Omega, \dots$ $n+\frac{1}{2}$ spin, conserved #: "Baryons"

1970's: All originate from substructure.

- Quarks: uds(cbt) spin- $\frac{1}{2}$ charge $+\frac{2}{3}, -\frac{1}{3}$ and 3 colors
- Gluons: stick quarks together into $q\bar{q}$ or qqq states

Charges, spins and masses explained

UW Seattle, 10 December 2012: page 2 of 34

Linear confinement

Electromagnetism: force falls with distance

$$F = \frac{e_1 e_2 \hat{r}}{4\pi r^2}$$

Strong force: beyond 10^{-15} m, independent of distance between quark and antiquark. Anchor q, hang something from "rope" between it and \bar{q} :

Strong force between q, \bar{q} enough to hold up an elephant!

UW Seattle, 10 December 2012: page 3 of 34

Potential Energy starts to exceed mc^2 to make $q\bar{q}$ pair. Pair spontaneously forms, preventing need for "long string" connecting original q, \bar{q} . hadronization

confinement, and impossibility to see isolated quark.

UW Seattle, 10 December 2012: page 4 of 34

Asymptotic freedom

At short distance $r \ll 10^{-15}$ m, $1/r^2$ law:

inter-gluon force
$$F_{q\bar{q}} \sim \frac{g^2}{4\pi r^2}$$
, except $g^2 = g^2(r)$
at small r , $g^2(r)$ gets small $g^2/4\pi\hbar c \ll 1$
Potential energy $V \sim g^2(r)/4\pi r$.
Heisenberg: $p \ge \hbar/r$. Relativity $E \simeq cp \ge \hbar c/r \gg V$
Short distances: Kinetic Energy $\gg V$. "Free particles"
and lets us compute with "perturbation theory"

Heavy ion collisions

Can we hope to see this free-particle behavior?

Heat nuclear matter hot enough and you should.

Relevant temperature $\frac{\hbar c}{10^{-15}\text{m}} = 200\text{MeV} = 2.4 \times 10^{12}\text{Kelvin}$. Only way to get there is to accelerate nuclei to very high energy and collide them. *heavy ion collisions*

Bad news: most energy in each nucleus goes through the other. But we still get high T: LHC (1.38×10^6 MeV per nucleon) gets to $T \sim 500$ MeV.

Achieving a new state of matter?!

UW Seattle, 10 December 2012: page 6 of 34

LHC collides lead nuclei (82p + 126n = 208 nucleons)

leading to 3200 charged, > 1600 neutral particles between $\theta = 40^{\circ}$ and $\theta = 140^{\circ}$ (-1 < η < 1)

Each n, p gets "torn open," spilling out many g, q, \bar{q} inside

UW Seattle, 10 December 2012: page 7 of 34

Hot ball of 5000 excitations

5000 excitations is around $20 \times 20 \times 12$ across. Enough to show collective or "fluid" behavior?

Hydrodynamics: Many "subsystems" big enough for *local* equilibration in each (Different regions with different $T, \vec{v},...$). Not obvious but plausible

Testing for local equilibration

Nuclei generically strike off-center

leading to irregular shaped region of plasma

"Almond sliver" with long axis, short axis, and very short initial thickness along beam direction.

UW Seattle, 10 December 2012: page 9 of 34

Behavior IF no re-interactions (transparency)

Just fly out and hit the detector.

Detector will see xy plane *isotropy*

UW Seattle, 10 December 2012: page 10 of 34

local CM motions

Pressure contours Expansion pattern Anisotropy leads to anisotropic (local CM motion) flow.

UW Seattle, 10 December 2012: page 11 of 34

Free particle propagation:

- System-average CM flow velocities $\langle v_{x,\text{CM}}^2 \rangle > \langle v_{y,\text{CM}}^2 \rangle$
- Must have local CM $\langle p_x^2 \rangle < \langle p_y^2 \rangle$ so total $\langle p_x^2 \rangle = \langle p_y^2 \rangle$

Efficient re-interaction:

- System-average CM flow still has $\langle v_{x,\rm CM}^2 \rangle > \langle v_{y,\rm CM}^2 \rangle$
- system changes *locally* towards $\langle T_{\text{local CM}}^{xx} \rangle = \langle T_{\text{local CM}}^{yy} \rangle$
- Adding these together, $\langle T_{tot,labframe}^{xx} \rangle > \langle T_{tot,labframe}^{yy} \rangle$

Net "Elliptic Flow"
$$v_2 \equiv rac{p_x^2 - p_y^2}{p_x^2 + p_y^2}$$
 measures re-interaction

UW Seattle, 10 December 2012: page 12 of 34

Measured elliptic flow vs. theory fits

Hydrodynamic fits – based on assuming much rescattering

Luzum Romatschke 0804.4015, data STAR min-bias

Elliptic flow, differential in particle transverse momentum. Two guesses at initial conditions (left and right), Perfect rescattering (top) vs incomplete re-scattering (lower)

UW Seattle, 10 December 2012: page 13 of 34

Perfect Rescattering: Ideal Hydrodynamics

System in local equilibrium. List all conserved quantities:

 $E, \vec{p}, Q_{\rm el}, B$ [baryon number]

Define local densities e, π , ρ , n, space varying. Local properties fixed by Equation of State:

 $-\Omega = P = P(e,\pi,\rho,n) \quad \text{ Only conserved quantities determine equilibrium.}$

Use Ω , thermodynamics to find conserved currents:

 $T^{\mu\nu}, \quad J^{\mu}_Q, \quad J^{\mu}_{\rm B}$

Current conservation equations: 1 condition per unknown.

UW Seattle, 10 December 2012: page 14 of 34

Ideal Hydrodynamics

Relativity: write $(e, \pi) = \frac{\varepsilon}{\sqrt{1-v^2/c^2}}(u^0, \vec{u})$: u^{μ} flow 4-vector, $u^0 = \frac{1}{\sqrt{1-v^2/c^2}}, \ \vec{u} = \frac{\vec{v}/c}{\sqrt{1-v^2/c^2}}$ At rest, $T_{00} = \varepsilon$ and $T_{ij} = P\delta_{ij}$. Relativity:

$$T^{\mu\nu} = (\varepsilon + P)u^{\mu}u^{\nu} + Pg^{\mu\nu}$$

with $g^{\mu\nu}$ the metric tensor. Conservation:

$$\nabla_{\mu}T^{\mu\nu} = 0$$

small \vec{v}/c : turns into usual Euler fluid eq.

UW Seattle, 10 December 2012: page 15 of 34

Nonideal Hydro

Each region feels information about neighboring regions diffusing across its boundary.

 \vec{v} nonuniformity means nonvanishing $\nabla_i v_j$ which will influence center region (diffusion of information)

Decompose: scalar, antisymm, traceless symm tensor

$$\nabla_i v_j = \frac{\delta_{ij}}{3} \nabla \cdot v + \frac{1}{2} (\nabla_i v_j - \nabla_j v_i) + \frac{1}{2} \left(\nabla_i v_j + \nabla_j v_i - \frac{2\delta_{ij}}{3} \nabla \cdot v \right)$$

UW Seattle, 10 December 2012: page 16 of 34

What each tensor piece means

scalar divergence can change scalar pressure $P \Rightarrow P_{\text{equil.}} - \zeta \nabla \cdot v$ symm. tensor shear flow can change symm. tensor stress tensor $T_{ij} \Rightarrow T_{ij,\text{equil.}} - \eta(\nabla_i v_j + \nabla_j v_i - ..)$ pseudovector vorticity cannot change either

UW Seattle, 10 December 2012: page 17 of 34

What is shear viscosity?

Consider non-uniform fluid flow of *particles*:

(Plotting ϕ =direction, r = # particles in that ϕ)

UW Seattle, 10 December 2012: page 18 of 34

UW Seattle, 10 December 2012: page 19 of 34

How big do I expect viscosity to be?

MKS: $\eta \sim \frac{\text{Force/Area}}{dv/dt} \sim \frac{300 \text{ MeV} \times 10^{-24} \text{ s}}{(10^{-15} \text{ m})^3} = 5 \times 10^{10} \text{ Pa s Huge!}$

"Specific" viscosity $\eta/\hbar s$ should be ~ 1 Water STP: $\eta/\hbar s = 33$

Hi-T: nearly-free q, g: kinetic-theory calculation Leading-order Arnold,GM,Yaffe 2003 partial next-order GM, to appear η/s small at 200MeV but pert. expansion shows poor convergence

UW Seattle, 10 December 2012: page 20 of 34

And bulk viscosity?

High-T: perturbatively ζ/s very small Arnold Dogan GM, hep-ph/0608012

Phase transition: $\zeta \to \infty$. *near* transition, ζ grows in predictable way based on universality arguments

If QCD has transition line, 2-order endpoint in Ising class H-dynamic universality class Son Stephanov hep-ph/0401052 and ζ diverges as $t^{-z\nu+\alpha} \simeq t^{-2}$ GM and Saremi 0805.4201

Could be important near 150MeV but not as well explored as η

UW Seattle, 10 December 2012: page 21 of 34

Hydrodynamic Modeling of Heavy Ion Collisions

Navier-Stokes: $\nabla_{\mu}T^{\mu\nu} = 0$ but with

$$T^{\mu\nu} = \varepsilon u^{\mu} u^{\nu} + (P - \zeta \nabla \cdot v)(g^{\mu\nu} + u^{\mu} u^{\nu}) - \eta \operatorname{shear}^{\mu\nu}$$

Problems!!!

- Acausal: shear viscosity is transverse momentum diffusion. Diffusion $\partial_t P_{\perp} \sim \nabla^2 P_{\perp}$ has instantaneous prop. speed. Müller 1967, Israel+Stewart 1976
- Unstable: v > c prop + non-uniform flow velocity \rightarrow propagate from future into past, exponentially growing solutions. Hiscock 1983

Numerical implementations really face these problems

UW Seattle, 10 December 2012: page 22 of 34

Israel-Stewart approach

Add one second order term: Israel Stewart 1976

$$T^{\mu\nu} = T^{\mu\nu}_{\text{equil.}} + \Pi^{\mu\nu}, \quad \Pi^{\mu\nu} = -\eta \sigma^{\mu\nu} + \eta \tau_{\pi} u^{\alpha} \partial_{\alpha} \sigma^{\mu\nu}$$

Make (1'st order accurate) $\eta \sigma \rightarrow -\Pi$ in order-2 term:

$$\tau_{\pi} u^{\alpha} \partial_{\alpha} \Pi^{\mu\nu} \equiv \tau_{\pi} \dot{\Pi}^{\mu\nu} = -\eta \sigma^{\mu\nu} - \Pi^{\mu\nu}$$

Relaxation eq driving $\Pi^{\mu\nu}$ towards $-\eta\sigma^{\mu\nu}$. "Telegraph Equation" Momentum diff. no longer instantaneous. Causality, stability are restored (depending on τ_{π})

But why only one 2'nd order term???

UW Seattle, 10 December 2012: page 23 of 34

Second order hydrodynamics

It is more consistent to include all possible 2'nd order terms. Simplifying assumptions: 5 possible terms Baier et al, [arXiv:0712.2451]

$$\Pi_{2 \text{ ord.}}^{\mu\nu} = \eta \tau_{\pi} \left[u^{\alpha} \partial_{\alpha} \sigma^{\mu\nu} + \frac{1}{3} \sigma^{\mu\nu} \partial_{\alpha} u^{\alpha} \right] + \lambda_{1} \left[\sigma_{\alpha}^{\mu} \sigma^{\nu\alpha} - (\text{trace}) \right] \\ + \lambda_{2} \left[\frac{1}{2} (\sigma_{\alpha}^{\mu} \Omega^{\nu\alpha} + \sigma_{\alpha}^{\nu} \Omega^{\mu\alpha}) - (\text{trace}) \right] \\ + \lambda_{3} \left[\Omega^{\mu}{}_{\alpha} \Omega^{\nu\alpha} - (\text{trace}) \right] + \kappa \left(R^{\mu\nu} - \dots \right) , \\ \Omega_{\mu\nu} \text{ vorticity} , \qquad \sigma_{\mu\nu} \text{ shear flow}$$

Starting point for most numerical studies

UW Seattle, 10 December 2012: page 24 of 34

What are these coefficients?

Rigorously defined in terms of "Kubo formulae"

Example: diffusion of particle number.

If number density ρ , chem. potential μ nonuniform $\vec{\nabla}\mu \neq 0$, particles should "flow" from large- μ to small- μ . Flow \vec{j} must be related to $\vec{\nabla}\mu$.

Kubo: balance $\vec{\nabla}\mu$ with compensating (fictitious) \vec{E} -field. Response to $\vec{\nabla}\mu$ same as response to \vec{E} . Easier to consider μ constant, $\vec{E} \neq 0$, and study $\vec{j} = \sigma \vec{E}$. Now do Quantum Mechanics with this fake \vec{E} -field

Consider state $|\psi\rangle$, evolves in modified $H = H_0 + H_I$ with $H_I = \int d^3x \vec{j} \cdot \vec{A}$ ($\vec{E} = d\vec{A}/dt$)

Evaluate \vec{j} after E has been "turned on"

$$\begin{aligned} \langle \vec{j}(t) \rangle &= \langle \psi | e^{i \int_0^t H_I dt'} \vec{j} e^{-i \int_0^t H_I dt'} | \psi \rangle \\ &\simeq \int_0^t dt' \int d^3 x A_i(t') \langle \psi | i \left[j_i(x,t'), \vec{j}(t) \right] | \psi \rangle \end{aligned}$$

Conductivity, particle diffusion determined by a *retarded* correlation function of the current with itself, *in* equilibrium

Fluctuation-dissipation: dissipative σ determined by unequal-time fluctuations

 $\nabla_i n$ vector, current \vec{j} couple to *E*-field $\nabla_i v_j$ tensor, stress T_{ij} couple to *spacetime curvature* h_{ij} Viscosity determined by stress-stress correlator

$$\eta = \frac{d}{d\omega} \int^t dt' e^{-i\omega(t-t')} \int d^3x \, \langle \psi | \, i \Big[T_{xy}(x,t') \,, \, T_{xy}(t,0) \,\Big] \, |\psi\rangle$$

All higher-order coefficients τ_{π} , κ , λ_1 , λ_2 , λ_3 defined in terms of similar correlators, with more derivatives and (some terms) with more stress tensors GM Sohrabi PRL 2011

$$\lambda_{1,2,3} \text{ involve } \int^t dt_1 \int^{t_1} dt_2 \left\langle \psi \right| \left[T_{xy}(t_2), \left[T_{xz}(t_1), T_{yz}(t) \right] \right] \left| \psi \right\rangle$$

UW Seattle, 10 December 2012: page 27 of 34

Values of these "extra" coefficients

Same problems computing them as computing η . But certain dimensionless ratios may be more robust

Hi-T using kinetic theory York and GM 0811.0729

Related strongly-coupled theory N=4 SYM, two groups, 0712.2451, 0712.2456

Ratio	QCD value	SYM value
$\frac{\eta \tau_{\pi}(\varepsilon + P)}{\eta^2}$	5 to 5.9	2.6137
$\frac{\lambda_1(\varepsilon + P)}{\eta^2}$	4.1 to 5.2	2
$\frac{\lambda_2(\varepsilon + P)}{\eta^2}$	-10 to -11.8	-2.77
$\frac{\kappa(\varepsilon + P)}{\eta^2}$	small	4
$rac{\lambda_3(\varepsilon + P)}{\eta^2}$	small	0

UW Seattle, 10 December 2012: page 28 of 34

Is second-order hydro consistent?

Hydrodynamics predicts long-lived shear, sound modes. solving Navier-Stokes, dispersion of these modes:

$$\omega_{\text{shear}} = i \frac{\eta}{\varepsilon + P} k^2, \qquad \omega_{\text{sound}} = v_{\text{sound}} k + i \frac{2\eta}{3(\varepsilon + P)} k^2$$

Equivalently, lifetime $\tau \sim \frac{\varepsilon + P}{\eta} \lambda^2$ grows as λ^2

Hydro modes propagate long distances, survive long times Imperils *hidden assumption* that equilibration is fast, local process (allowed expansion in derivatives)

Causes long time tails, well known in gas kinetics community

UW Seattle, 10 December 2012: page 29 of 34

Hydro Waves Contribute to Viscosity!

Consider shear flow:

Sound waves transport x-momentum in y-direction, out of flowing region. Transport of x-momentum in y-direction is viscosity! Effects are calculable, Kovtun GM Romatschke 1104.1586

UW Seattle, 10 December 2012: page 30 of 34

Naive estimate: sound waves as "particles"

"stumbling drunk" with step length λ , time between steps $t = \lambda/c$: diffusion constant is $\lambda^2/t \sim c\lambda$.

Mean free path of a sound wave $\lambda \sim (\epsilon + P)/(\eta k^2)$. Equipartition: Energy T/2, Mom. T/2c per sound mode Contribution of sound modes to momentum diffusion

$$\eta_{\rm from \ soundwaves} \sim \int d^3k \ T\lambda \sim \int d^3k \frac{T(\epsilon + P)}{k^2 \eta}$$

Finite. Time scale to establish this contribution:

$$\eta \tau_{\pi} \sim \int d^3k \ T \lambda t \sim \int d^3k \frac{T(\epsilon + P)^2}{k^4 \eta^2} \qquad \text{Divergent!!}$$

UW Seattle, 10 December 2012: page 31 of 34

More detailed computation

Contribution to viscosity

$$\eta_{\rm new} \simeq \frac{17}{240\pi^2} \frac{T^3}{\hbar^2 c^3} \left(\frac{\hbar s}{\eta}\right)^2$$

Irrelevant if $\eta/\hbar s$ large or $s \gg (T/\hbar c)^3$ But grows as η gets small, setting floor on η . For QCD, that floor is around $\eta/\hbar s = 0.1$.

Stress-stress correlator is non-analytic. Higher-order coefficients τ_{π}, \ldots scale-dependent Wilsonian coefficients. Below some scale they show power-law scale dependence. 2-order hydro is OK if that scale is long – OK if $\eta/\hbar s = 0.2$ but not if $\eta/\hbar s = 0.1$.

UW Seattle, 10 December 2012: page 32 of 34

Comparison of Hydro with Experiment

Several groups here Song Bass Heinz 1103.2380 are doing hydro fits. $\eta/\hbar s \sim 0.1$ —0.2 depending on initial condition model More observables (v_3, v_4, p_T , centrality) may constrain initial condition model. Active field of research!

UW Seattle, 10 December 2012: page 33 of 34

Conclusions

- Hydro seems sensible framework in heavy ion coll.
- Need 2'nd order Hydro, 6 hydro coefficients!
- Pert. computation of 2'nd order Hydro: dim'less ratios same order as $\mathcal{N}{=}4\mathrm{SYM},$ differ in detail
- Kubo relations for nonlinear coefficients found. κ, λ_3 special (really thermodynamic)
- Hydro waves contribute to hydro coefficients!
- Self-consistency issues if η too small, and very low freq.