Are there really Condensates in QCD?

I will argue, NO.

Particle number violation is too fast

Condensate is non-gauge invariant – at best, large IR occ.

Electric, N-O instab: – at best they cannot be large

Numerical evidence – seems to say NO!

Universität Heidelberg, 12 Dez. 2011: Seite 1 aus 7

Particle number violation

is efficient! See hep-ph/0209353.

Rate of hard particles hard-splitting: g^4T , same as large-angle elastic rate.

High-occupancy: typical momentum Q, occupancy $f \gg 1$, then $\Gamma_{\rm split} \sim \alpha^2 f^2 Q$, same as large-angle elastic.

Reason: soft scattering with hard splitting. Soft scatt faster than hard by $(\alpha f)^{-1}$, collinear radiation costs αf .

Soft particle-violation is even faster!

Braaten Pisarski Phys.Rev.D42 (1990) 2156 "Calculation of the Gluon Damping Rate in Hot QCD" Soft gluons, p < gT, have $\Gamma \sim g^2T$. Γ arises from the sum of

"pole-pole, pole-cut, and cut-cut. The pole-pole terms are kinematically forbidden The term from a transverse gluon pole plus cut gives +1.353; that from a plasmon pole plus cut gives +2.300; and the cut-cut term gives +2.982."

"Each of these contributions has a direct physical interpretation. The damping rate is the difference between the production and absorption rates for a given particle....The pole-cut contributions come from $2 \leftrightarrow 2$ scattering processes The cut-cut terms come from $2 \leftrightarrow 3$ scattering processes."

Gauge invariance

A condensate in a gauge-nonsinglet field is not gauge invariant.

Magnetic screening at ultrasoft scale (where $f \sim 1/\alpha$, which is g^2T near equil): condensate gets scrambled into $p \sim g^2T$ fields, that is, high IR occ rather than exact zero mode.

At best, "condensate" means "large IR occupancies"

Universität Heidelberg, 12 Dez. 2011: Seite 4 aus 7

Strong-field instabilities

Condensates in the soft-magnetic sector cannot be: Nielsen-Olesen instabilities.

Electric fields: Schwinger mechanism if E too big. Need plasmon pair production in time scale $t \sim 1/\omega_{\rm pl}$. Requires $E > m^2/e$.

So $E < m^2/e$ to avoid Schwinger-mechanism energy loss

Best reason: I don't see it!

Fixed-box, initial conditions with large IR occupancy and much less in the UV. Classical-field simulations.

Look for E field and A field in Coulomb gauge

 $E^2(k)$ is "effective temperature". Condensate means k = 0or very-small-k should have a huge peak in E^2 , "higher effective temperature".

 $k^2 A^2(k)$ is "effective magnetic temp." Peak would indicate magnetic-condensate. Fall-off indicates magnetic screening, eg, $k^2 \rightarrow m_{\text{mag}}^2$.

Universität Heidelberg, 12 Dez. 2011: Seite 6 aus 7

Universität Heidelberg, 12 Dez. 2011: Seite 7 aus 7