Photons and Transport at NLO

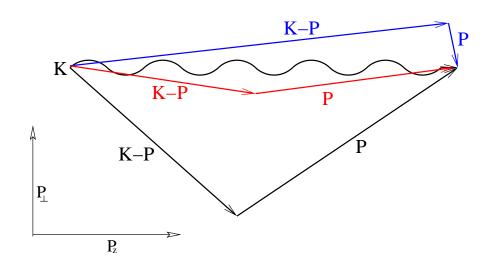
with Jacopo Ghiglieri, Juhee Hong, Aleksi Kurkela, Egang Lu, Derek Teaney

- Photon calculation "guts:" emergence of condensates
- Photon results
- Condensates from the lattice?
- ullet \hat{q}_{\parallel} and transport
- Viscosity and diffusion: the complication

Phase space again

$$\frac{\overline{\mathcal{M}}}{\gamma \text{ produc: } \sum_{\psi_f} \langle \psi_i | A^\mu \bar{\psi} \gamma_\mu \psi | \psi_f \rangle \langle \psi_f | A^\nu \bar{\psi} \gamma_\nu \psi | \psi_i \rangle}$$

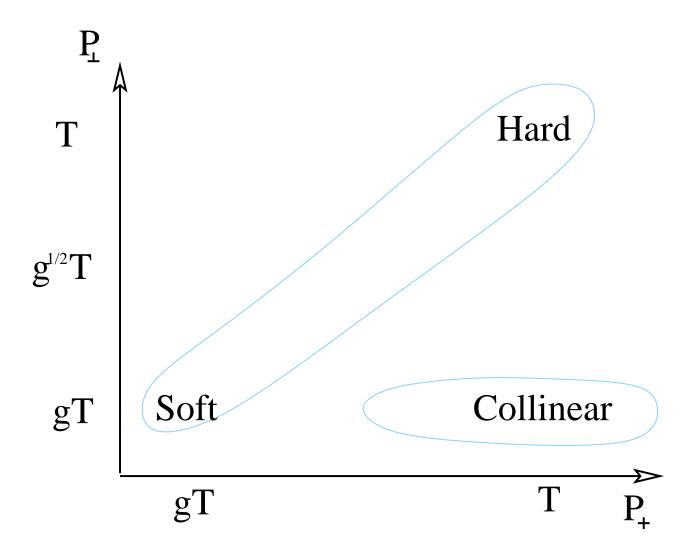
In \mathcal{M} , $\psi, \bar{\psi}$ momenta p, k-p must add to k of photon:



Black: way off-shell, but big phase space Blue: less phase sp, but soft enhancement Red: both can be almost on-shell.

Call these regions Hard, Soft, and Collinear.

The P_{\perp} , P_{+} plane:



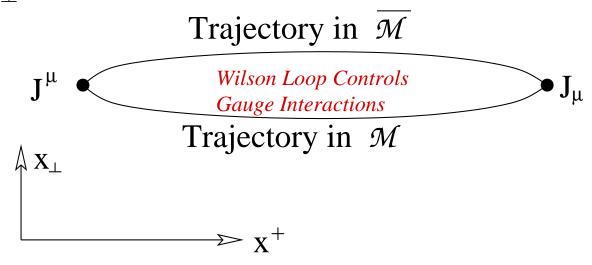
ECT* Trento, 18 June 2013: Pagina 3 di 18

Collinear case

Since P, K - P collinear, move in approx. same direction.

 J^{μ} in \mathcal{M} and J_{μ} in $\overline{\mathcal{M}}$ not at same x-point.

Collinear \Rightarrow almost on-shell \Rightarrow can have large x separation; $x^- \ll x_\perp \ll x^+$:



Involves condensate $C(x_{\perp})$.

ECT* Trento, 18 June 2013: Pagina 4 di 18

Nontrivial analysis AMY hep-ph/0109064,hep-ph/0111107 (see Peter's talk?)

$$\frac{dN_{\gamma}}{d^{3}\mathbf{k}d^{4}x} = \frac{\alpha_{\mathrm{EM}}}{\pi^{2}k} \int_{-k/2}^{\infty} \frac{dp^{+}}{2\pi} \frac{n_{f}(k+p)\left[1-n_{f}(p)\right]}{2\left[p\left(p+k\right)\right]^{2}} \left[p^{2}+(p+k)^{2}\right] \times \lim_{\mathbf{x}_{\perp}\to 0} 2\operatorname{Re}\partial_{\mathbf{x}_{\perp}}\mathbf{f}(x_{\perp})$$

$$2\nabla_{\perp}\delta^{2}(x_{\perp}) = \left[\mathcal{C}(x_{\perp}) + \frac{ik}{2p^{+}(k+p^{+})}(m_{\infty}^{2} + \nabla_{x_{\perp}}^{2})\right]\mathbf{f}(x_{\perp})$$

To evaluate this at NLO I need:

- $C(x_{\perp})$ at NLO [Condensates!!]
- small $p^+ \sim gT$ behavior: $\lim_{p^+ \ll T} [\text{integrand}] \to (p^+)^0$
- higher-order-in-Eikonal corrections

Some condensates are Euclidean!

 $C(x_{\perp})$: Wilson loop with space-separated lightlike lines. All points at spacelike or lightlike separation.

Soft contribution is Euclidean!! S. Caron-Huot, 0811.1603

Calculate it with *simple* perturbation theory (EQCD)

Calculate it on the lattice?!

NLO corrections to $C(x_{\perp})$ computed. NNLO would be nonperturbative; but may be possible via lattice.

How Things Get Euclideans. Caron-Huot

Consider correlator $G^{<}(x^0, \mathbf{x})$ with $x^z > |x^0|$. Fourier representation

$$G^{<}(x^0, \mathbf{x}) = \int d\omega \int dp_z d^2 p_\perp e^{i(x^z p^z + \mathbf{x}_\perp \cdot \mathbf{p}_\perp - \omega x^0)} G^{<}(\omega, p_z, p_\perp)$$

Use $G^{<}(\omega, \mathbf{p}) = n_b(\omega)(G_R(\omega, \mathbf{p}) - G_A(\omega, \mathbf{p}))$ and define $\tilde{p}^z = p^z - (t/x^z)\omega$:

$$G^{<} = \int d\omega \int d\tilde{p}^z d^2 p_{\perp} e^{i(x^z \tilde{p}^z + \mathbf{x}_{\perp} \cdot \mathbf{p}_{\perp})} n_b(\omega) \left(G_R(\omega, \tilde{p}^z + \omega \frac{x^0}{x^z}, \mathbf{p}_{\perp}) - G_A \right)$$

Perform ω integral: upper half-plane for G_R , lower for G_A , pick up poles from n_b :

$$G^{<}(x^0, \mathbf{x}) = T \sum_{\omega_n = 2\pi nT} \int dp^z d^2 p_{\perp} e^{i\mathbf{p}\cdot\mathbf{x}} G_E(\omega_n, p_z + i\omega_n(x^0/x^z), p_{\perp})$$

Large separations: $n \neq 0$ exponentially small. n = 0 contrib. is x^0 independent!

ECT* Trento, 18 June 2013: Pagina 7 di 18

Soft momenta

Diagrams:

Cut diagrams: hard momentum is on-shell, $p^-=0$.

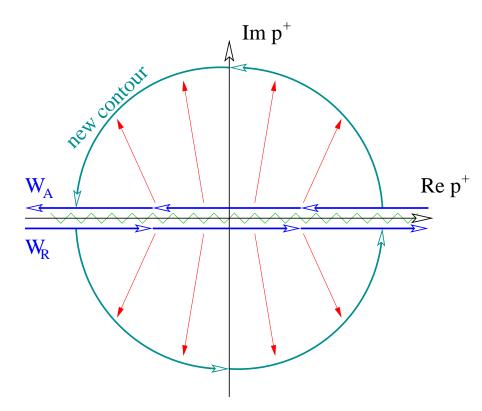
Write out Q, remaining P integrals and use KMS:

$$\int_{\sim qT} d^2 p_{\perp} dp^+ \int_{\sim qT} d^4 Q n_b(k^0) (G_{\rm R} - G_{\rm A})$$

 G_{R} : retarded function of sum of all 4 diagrams' guts.

Momentum p^+ is **null**. Any R/A function is analytic in upper/lower half plane for time-like **or null** p-variable. Analytically continue in p^+ !!

Deform p^+ contour into complex plane



Now $p^+ \gg p_\perp, Q$. (On mass-shell) Expand in $p^+ \gg p_\perp, Q$

$$G_{\rm R}[{\rm 4~diagrams}] = C_0(p^+)^0 + C_1(p^+)^{-1} + \dots$$

 C_0 is on-shell width, gives linear in p^+ divergence.

 C_1 is on-shell dispersion correction, dp^+/p^+ gives const.

ECT* Trento, 18 June 2013: Pagina 9 di 18

We can do this continuation because the J^{μ} correlators are null-separated. It becomes simple because null-separated correlators are simple.

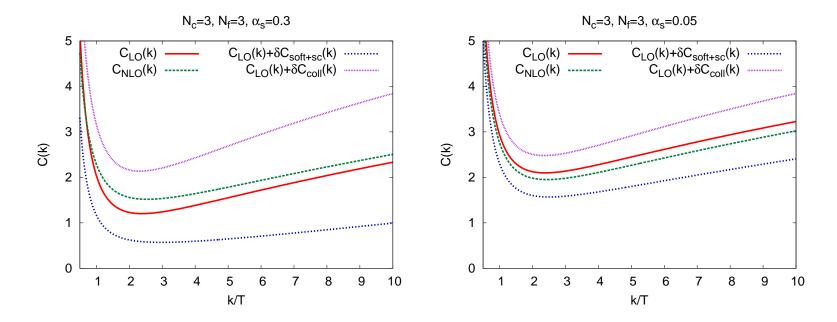
- C_0 term: arises at NLO. equals the small- p^+ limit of the collinear calculation. completes treatment of that region.
- C_1 term: real dispersion-correction. Really simple:

$$\gamma$$
-rate $\propto \int rac{d^2 p_\perp}{(2\pi)^2} rac{m_\infty^2}{p_\perp^2 + m_\infty^2}$

where m_{∞}^2 is dispersion correction. Has leading-order piece (hard modes) and subleading piece (dispersion correction of soft modes). both are known.

Remaining region—similar story. Null-separation physics, all condensates.

Summing it up: two corrections



Upward correction: more scattering at NLO.

Downward correction: fewer soft gluons, less dispersion corr.

Numerical conspiracy: effects nearly cancel [Accidental!]

Main lesson

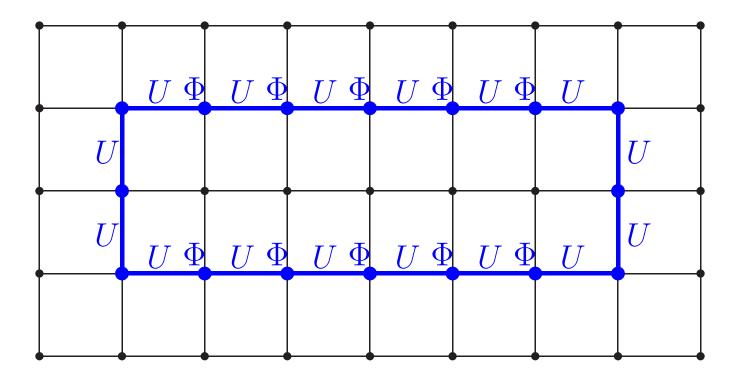
All the sticky IR physics shows up in a few condensates. Some are dispersion corrections – physically simple. Some are Euclidean – get directly on the lattice.

Bad news: $\mathcal{O}(g)$ corrections big even for $\alpha_s=0.1$ or $1000~T_c$.

Good news: A few condensates. Determine them nonperturbatively, maybe get down to $5 T_c$?

Get them on the lattice?

$\mathcal{C}(x_{\perp})$ on the lattice



Short side: x_{\perp} Wilson line $\exp \int iA_{\perp} \cdot x_{\perp} \Rightarrow U_{\perp}U_{\perp} \dots$

Long side: x^+ Wilson line $\exp \int i(A^z + A^0) dz \Rightarrow U_z e^{a\Phi} U_z e^{a\Phi} U_z \dots$

The latter is a new beast. Lattice renormalization properties? Under investigation.

The two \hat{q} s

One thing which arises in the calculation is \hat{q}_{\perp} ,

$$\hat{q}_{\perp} \equiv \int \frac{d^2 q_{\perp}}{(2\pi)^2} q_{\perp}^2 \, \mathcal{C}(q_{\perp}) = \lim_{x_{\perp} \to 0} \nabla_{x_{\perp}}^2 \mathcal{C}(x_{\perp})$$

⊥-momentum diffusion. Reduces to

$$\hat{q}_{\perp} = \frac{g^2 C_R}{d_A} \int_{-\infty}^{\infty} dx^+ F_{+\perp}^a(0,0) U_{ab}(0,0; x^+,0) F_{+\perp}^b(x^+,0)$$

a transverse-force-force correlator.

Can also define its cousin (not needed)

$$\hat{q}_{\parallel} = \frac{g^2 C_R}{d_A} \int_{-\infty}^{\infty} dx^+ F_{+-}^a(0,0) U_{ab}(0,0;x^+,0) F_{+-}^b(x^+,0)$$

correlator of force along direction of motion.

\hat{q}_{\perp} on the lattice

 \hat{q} is a limit of $\mathcal{C}(x_{\perp})$ at small x_{\perp} :



plus Φ -difference contribution. Much more UV sensitive:

- Leading-Order: quadratic divergent cancel if well-designed
- NLO (1-loop): linear divergence, requires matching
- NNLO (2-loop): log divergence, requires matching

And \hat{q}_{\parallel} ?

Transverse force – "bumps" on Wilson line are to the side. Longitudinal force – "bump" in x^+, x^- plane. time direction; not all spacelike-separated.

But contour deformation method still works. Related to hard dispersion-correction of gluons

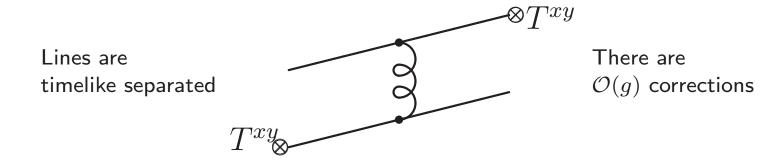
$$\hat{q}_{\parallel} \sim \int \frac{d^2 p_{\perp}}{(2\pi)^2} \frac{m_{\infty,g}^2}{p_{\perp}^2 + m_{\infty,g}^2}$$

With some matching, useful ingredient in other transport coeff. and in jet medium-modification

Other transport coefficients?

We want Baryon Diffusion D and (especially) shear $\eta!$ Both controlled by high-energy $E=\operatorname{several} T$ particles Lightlike correlators should again dominate:

NLO effects arise along particle's lightlike trajectory. Problem: transfer of stress to someone else



ECT* Trento, 18 June 2013: Pagina 17 di 18

Conclusions

- NLO corrections to transport are large but simple
- Need a few condensates at lightlike-separated points
- Most can be extracted from the lattice
- Shear and diffusion will be harder. Stay tuned