
Analytic Structure of TxyTxy at High-T

• Reminder: heavy ion collisions

• Reminder: hydrodynamics

• Issue of analytic structure

• Kinetic theory and collision operators

• Poles vs Cuts with incomplete information
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Heavy ion collisions

Accelerate two heavy nuclei to high energy, slam together.

Just before: Lorentz contracted nuclei
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After the scattering: region where nuclei overlapped:

“Flat almond” shaped region of q, q̄, g which scattered.

∼10 thousand random v quarks+gluons
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Behavior IF no re-interactions (transparency)

Just fly out and hit the detector.

Detector will see xy plane isotropy
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Opposite limit: Ideal Hydrodynamics

⇒

Pressure contours Expansion pattern

Anisotropy → anisotropic flow, v2 ≡ (p2x − p2y)/(p
2
x + p2y).
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Which limit works best?

Significant elliptical flow is observed.

Ideal hydro overpredicts flow

Nonuniform flow should lead to viscous corrections

Good description requires these viscous effects

We need to understand viscous corrections.
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Nonuniform flow patterns: ∂ivj 6= 0

∂ivj is rank-2 tensor. ℓ = 2, 1, 0 components:

Shear flow Vorticity Divergence .

Shear flow → Tij stress: Tij = −η(∂ivj + ∂jvi)ℓ=2.
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How do I (theorist) get shear flow?

Start with equilibrium: Schwinger-Keldysh

〈O(x, t)〉 = Tr eiHtO(x)e−iHte−βH

=

∫

D[Φ1,Φ2,Φ3]O[Φ2] exp

(

−i

∫

0

d4y L(Φ1)

)

× exp

(

+i

∫

0

d4y L(Φ2)

)

exp

(

−

∫ β

0

d4yLEucl(Φ3)

)

Squeeze my geometry! gµν = ηµν + hµν with ∂thij = ∂ivj

hµν couples to Tµν , so we get

〈Tij(x, t)〉flow =

∫

d3ydt′ ihkl

〈[

Tij(x, t) , Tkl(y, t
′)
]〉

Θ(t− t′)
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Shear flow and correlators

Therefore, viscosity η determined by retarded correlator

η = i∂ωG
TxyTxy

ret (ω, k)|k=0,ω→0

Stable hydro code: Txy = −η(∂iuj + ∂jui) implemented as

τπ∂tTij = −η(∂ivj + ∂jvi)ℓ=2 − Tij Israel Stewart 1976,1979

Amounts to an Ansatz for the analytic form of Gret

GTT
ret (ω, k = 0) =

−η

τπ − iτ 2πω

Single pole at ω = −i/τπ. Residue= −iητ−2
π .
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What does GTT
ret (ω, k = 0) really look like?

What is actual analytic structure of GTT
ret ?

True QCD: I have no idea. Probably not 1 pole.

Theories we can solve: usual suspects:

• Strongly coupled N = 4 SYM theory (Holography)

• Weakly coupled relativistic field theory

Let’s see what we can learn in each!
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Theories with Holographic Dual

Kovtun Starinets

2005:

(x, y) = (Re, Im) of

ω/2πT plotted

k = 2πT not 0,

but k = 0 similar.

-4 -2 2 4

-5

-4

-3

-2

-1
x

y

Many well-isolated poles, Re and Im parts

Interpreted in terms of BH Quasinormal Modes
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Weak Coupling in Scalar λφ4

Easier to study Wightman correlator

G>
TxyTxy

(ω, k = 0) =
∫

d3x dt eiωt 〈Txy(x, t)Txy(0, 0)〉

=
1

1− e−ω/T
ImGret

TxyTxy
(ω, k = 0)

What is functional dependence on ω?

Are there distinct poles? Purely imaginary, or real parts?

Or are there cuts? Where, what discontinuity?

Or both? What is nonanalyticity nearest the real axis?
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Why we need resummations

Simplest diagram: 1 loop

Blobs are Txy insertions

Propagators carry

4-momentum ±P µ

Propagators are “cut”, eg,

∆(p) = 2π[1+f(p)]δ(p2)

on-shell Delta function (at free level). Divergent:

∝
∫

d4p f(p)[1+f(p)] δ(p2) δ(p2)
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Therefore you need

To get finite answer you

MUST include scattering,

width: on-shell δ becomes

Lorentzian

∫

d4pf [1+f ]
(

δ(p2)
)2

=⇒
∫

d4pf [1+f ]

(

Γp0

(p2)2 + Γ2p20

)2

Divergence becomes T 5/Γ ∼ T 4/λ2 (Γ is 2-loop, ∝ λ2)

Except then ∂µ〈Tµν(x)Tαβ(0)〉 6= 0

Leiden, 16 November 2017: Page 14 of 40



Ladder resummation

Higher loops involve

more powers of 1/Γ.

Compensate λ2 loop

“cost”. Also restore

stress-tensor

conservation.

Each “rail” at different (matching pair of) momentum than

last. Each rail ∝ λ−2, each “rung” ∝ λ2. Jeon hep-ph/9409250;

Jeon Yaffe hep-ph/9512263

Neglecting these gets answer wrong by factor ≃ 3.
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Effective kinetic theory

Effective theory resums these ladders.

Contribution of rung-pair described by

δf(k, t) = f0(k)[1 + f0(k)]χ(k, t)

(f0 Bose distribution). Time evolution Boltzmann Eq

∂tχ(k, t) = S(k)δ(t)− C[χ] (C is integral operator)

= S(k)δ(t)−
∫

d3p Cp,k χ(p)

= S(k)δ(t)−
∫

d3p
[

Γkδ
3(p− k)− Ck→p

]

χ(p)

First(loss), second(gain) term in [ ] from rails/rungs.
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What is collision operator C?

Represents possibility for particle p to change occupancy

due to particle l. For scalar theory,

p’p

k k’

C(p, l) =

∫

d3kd3p′d3k′

(2π)92p2p′2k2k′

× |M(p,k,p′,k′)|2(2π)4δ4(p+k−p′−k′)

× f(p)f(k)[1±f(p′)][1±f(k′)]

×
(

δ(p− l) + P2(cos θpk)δ(k − l)

−P2(cos θpp′ )δ(p
′ − l)− P2(cos θpk′ )δ(k′ − l)

)

p, k incoming, p′k′ outgoing energies, |M|2 = λ2

with P2(x) = (3x2 − 1)/2 the ℓ = 2 Legendre polynomial

p-space nonlocal, multiple integrals. Ugh!
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Connection to η

Correlator 〈Txy(t)Txy(0)〉 given by

Txy(t) =

∫

d3k χ(k)S(k)f0[1+f0] ≡ 〈χ|S〉

C is positive symmetric operator under inner product

〈χ|φ〉 ≡

∫

d3k χ(k)φ(k)f0[1+f0]

In terms of inner product, Boltzmann equation is

∂t|χ〉 = δ(t)|S〉 − C|χ〉

and

η =
1

6T

∫

dt〈S|χ(t)〉 =
1

3T
〈S|C−1|S〉

Only problem: C is a nasty integral operator. Need C−1!
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Eigenspectrum of C

Space of |χ〉 is L2: ∞-dimensional.

Any positive symmetric operator has eigenspectrum

C =
∑

i

λi|ξi〉〈ξi|+
∫

D
dλ′λ′|ξ(λ′)〉〈ξ(λ′)|

discrete (pole) plus continuous (cut) spectrum, D the

portion of ℜ+ which is cut.

Eigenvectors obey orthogonality

〈ξi|ξj〉 = δij , 〈ξi|ξ(λ
′)〉 = 0 , 〈ξ(λ′)|ξ(λ′′)〉 = δ(λ′ − λ′′)
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Spectral decomposition solves Boltzmann equation:

|χ(t)〉 =
∑

i

e−λit|ξi〉〈ξi|S〉 +
∫

D
dλ′e−λ′t|ξ(λ′)〉〈ξ(λ′)|S〉

Value of η is

3Tη =
∑

i

λ−1
i

(

〈S|ξi〉
)2

+
∫

D
dλ′λ′−1

(

〈S|ξ(λ′)〉
)2

Retarded function has poles at ω = −iλi, residue
(

〈ξi|S〉
)2
,

and cuts along −iD with discontinuity
(

〈ξ(λ′)|S〉
)2

If only I could find this decomposition explicitly.
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Test function method

Work in finite-dimensional subspace spanned by test

functions:

|χ〉 =
N
∑

i=1

ci|φi〉

Test functions I will use:

φi,Yaffe(k) =
ki+1TM−i−2

(k + T )M−1
, i = 1, . . . , N , N ≥ M

Need to orthonormalize (easy). Large M : basis more

complete everywhere. Large N −M : more complete UV.

AMY used N = M but we don’t have to.
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Test function method

Find “vector”

Si = 〈S|φi〉 =
∫

d3pS(p)φi(p)f0[1+f0]

Find “matrix” (Hard! C = multi-dimensional integration)

Cij = 〈φi|C|φj〉 =
∫

d3pd3kφi(p)φj(k)Ck,pf0[1+f0]

Eigenspectrum of Cij : matrix. Automatically discrete

spectrum

Leiden, 16 November 2017: Page 22 of 40



Test function method

Discontinuities purely on negative imaginary axis.

Always in kinetic theory! (Im parts higher in g2)

Method automatically “predicts” discrete spectrum of poles.

Just because we work in finite-dimensional subspace.

Try to tell if it’s really poles or cuts by varying basis size,

seeing whether poles stay put or “fill in” denser and denser.
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What does a cut look like

if I can only see poles + zeros?

Consider the function

f(x) = ln(1 + x)

Cut from −1 to −∞
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Suppose we only had information from the point x = 0.

Taylor:

∞
∑

n=1

(−1)n+1xn

n

Does terrible job!
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Why so bad?

Taylor is same as assuming function has n zeros and no

poles.

Not good description of a cut!

Assume instead that function has 1 more zero than pole:

Padé

PN,N−1(x) =

∑N
n=1 dnx

n

1 +
∑N−1

n=1 cnxn

Taylor expand P (x) to order 2N − 1

Choose unique dn, cn such that Taylor series of P and

Taylor series of ln(1 + x) agree through 2N − 1 terms

Does a far better job!
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Padé Approximations of ln(1 + x)

Here are (1, 0), (2, 1),

(3, 2), and (4, 3) Padé

approximants of

ln(1 + x).
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What is this mess at x < −1?

Padé is:

d1x+ d2x
2 + . . .

1 + c1x+ c2x2 + . . .
=

A(x− z1)(x− z2) . . .

(x− p1)(x− p2) . . .

product of zeros and poles, at z1, . . . and p1, . . .

Cut got replaced by series of zeros and poles.

Trying to describe a cut as a series of zeros and poles.
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For last two,

one zero is off

edge of plot.
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What if there is also a true pole?

Consider function

f(x) =

√

(x+ 2)(x+ 3)/6

x+ 1

Pole at x = −1

Cut from x = −2 to x = −3

Fit it with an (N,N) Padé approximant

(Taylor series is, once again, crap)
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Pole/zero fitting of a pole and cut

Even (1,1) Padé is

great!

Pole treated as pole.

Cut = N zeros, N − 1

poles
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Pole/zero fitting of a pole and cut

Pole stays put as

increase Padé size.

zeros/poles get tighter

together.

Note: not evenly

spaced

I can tell that there is an isolated pole in front of cut!
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4 basis elements
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10 basis elements
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16 basis elements
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20 basis elements
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Bases, different UV sensitivity
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My interpretation

• Looks to me like a cut!

• Dominant contribution from one scale

• Cut discontinuity falls fast at smaller ω

• Discontinuity also falls fast at larger ω

• Large/small ω from small/large-k particles (?)
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Summary

• Considering 〈TxyTxy(ω ≪ T, k = 0)〉

• λφ4 theory at weak coupling has a cut at strictly

imaginary ω

• Cut has a narrow region of large discontinuity

• Extends to larger ω with small discontinuity

(forever? yes at small λ, cut off by thermal mass...)

• Extends to small ω with small discontinuity

(all the way to ω = 0? If so, exponentially small)
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But note!

Actually GTT
ret (ω, k = 0) should be non-analytic right up to

ω = 0 due to long-time tails

Perturbation theory misses them: g4 vs g−4

Holography misses them: N 0
c vs N 2

c

Disc. of cut should involve half-int power of ω

Can N−2
c corrections be computed in AdS/CFT?
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