Analytic Structure of $T_{xy}T_{xy}$ at High-T

- Reminder: heavy ion collisions
- Reminder: hydrodynamics
- Issue of analytic structure
- Kinetic theory and collision operators
- Poles vs Cuts with incomplete information

Heavy ion collisions

Accelerate two heavy nuclei to high energy, slam together.

Just before: Lorentz contracted nuclei

Leiden, 16 November 2017: Page 2 of 40

After the scattering: region where nuclei overlapped: "Flat almond" shaped region of q, \bar{q}, g which scattered.

 ${\sim}10$ thousand random ${\bf v}$ quarks+gluons

Leiden, 16 November 2017: Page 3 of 40

Behavior IF no re-interactions (transparency)

Just fly out and hit the detector.

Detector will see xy plane *isotropy*

Leiden, 16 November 2017: Page 4 of 40

Opposite limit: Ideal Hydrodynamics

Pressure contours Expansion pattern Anisotropy \rightarrow anisotropic flow, $v_2 \equiv (p_x^2 - p_y^2)/(p_x^2 + p_y^2)$.

Leiden, 16 November 2017: Page 5 of 40

Which limit works best?

Significant elliptical flow is observed. *Ideal* hydro *overpredicts* flow Nonuniform flow should lead to *viscous corrections* Good description requires these viscous effects

We need to understand viscous corrections.

Nonuniform flow patterns: $\partial_i v_j \neq 0$

 $\partial_i v_j$ is rank-2 tensor. $\ell = 2, 1, 0$ components:

Shear flow

Vorticity

Divergence

Shear flow $\rightarrow T_{ij}$ stress: $T_{ij} = -\eta (\partial_i v_j + \partial_j v_i)_{\ell=2}$.

Leiden, 16 November 2017: Page 7 of 40

How do I (theorist) get shear flow?

Start with equilibrium: Schwinger-Keldysh

$$\langle \mathcal{O}(x,t) \rangle = \operatorname{Tr} e^{iHt} \mathcal{O}(x) e^{-iHt} e^{-\beta H} = \int \mathcal{D}[\Phi_1, \Phi_2, \Phi_3] \mathcal{O}[\Phi_2] \exp\left(-i \int_0 d^4 y \,\mathcal{L}(\Phi_1)\right) \times \exp\left(+i \int_0 d^4 y \,\mathcal{L}(\Phi_2)\right) \exp\left(-\int_0^\beta d^4 y \mathcal{L}_{\operatorname{Eucl}}(\Phi_3)\right)$$

Squeeze my geometry! $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ with $\partial_t h_{ij} = \partial_i v_j$

 $h_{\mu\nu}$ couples to $T^{\mu\nu}$, so we get

$$\langle T_{ij}(x,t) \rangle_{\text{flow}} = \int d^3y dt' \, ih_{kl} \left\langle \left[T_{ij}(x,t) \,, \, T_{kl}(y,t') \right] \right\rangle \Theta(t-t')$$

Leiden, 16 November 2017: Page 8 of 40

Shear flow and correlators

Therefore, viscosity η determined by retarded correlator

$$\eta = i\partial_{\omega}G_{\text{ret}}^{T_{xy}T_{xy}}(\omega,k)|_{k=0,\omega\to0}$$

Stable hydro code: $T_{xy} = -\eta(\partial_i u_j + \partial_j u_i)$ implemented as

$$\tau_{\pi}\partial_t T_{ij} = -\eta(\partial_i v_j + \partial_j v_i)_{\ell=2} - T_{ij} \quad \text{Israel Stewart 1976,1979}$$

Amounts to an *Ansatz* for the analytic form of $G_{\rm ret}$

$$G_{\rm ret}^{TT}(\omega, k=0) = \frac{-\eta}{\tau_{\pi} - i\tau_{\pi}^2\omega}$$

Single pole at $\omega = -i/\tau_{\pi}$. Residue $= -i\eta\tau_{\pi}^{-2}$.

Leiden, 16 November 2017: Page 9 of 40

What does $G_{\rm ret}^{TT}(\omega, k = 0)$ really look like?

What is actual analytic structure of G_{ret}^{TT} ? True QCD: I have no idea. Probably not 1 pole.

Theories we can solve: usual suspects:

- Strongly coupled $\mathcal{N} = 4$ SYM theory (Holography)
- Weakly coupled relativistic field theory

Let's see what we can learn in each!

Theories with Holographic Dual

Many well-isolated poles, Re and Im parts Interpreted in terms of BH Quasinormal Modes

Leiden, 16 November 2017: Page 11 of 40

Weak Coupling in Scalar $\lambda \phi^4$

Easier to study Wightman correlator

$$G_{T_{xy}T_{xy}}^{>}(\omega, k=0) = \int d^{3}x \, dt \, e^{i\omega t} \left\langle T_{xy}(x, t) T_{xy}(0, 0) \right\rangle$$
$$= \frac{1}{1 - e^{-\omega/T}} \operatorname{Im} G_{T_{xy}T_{xy}}^{\operatorname{ret}}(\omega, k=0)$$

What is functional dependence on ω ?

Are there distinct poles? Purely imaginary, or real parts? Or are there cuts? Where, what discontinuity? Or both? What is nonanalyticity nearest the real axis?

Why we need resummations

Simplest diagram: 1 loop Blobs are T_{xy} insertions Propagators carry 4-momentum $\pm P^{\mu}$

Propagators are "cut", eg,

$$\Delta(p) = 2\pi [1 + f(p)]\delta(p^2)$$

on-shell Delta function (at free level). Divergent:

$$\propto \int d^4p \; f(p) [1 + f(p)] \, \delta(p^2) \, \delta(p^2)$$

Leiden, 16 November 2017: Page 13 of 40

Therefore you need

To get finite answer you **MUST** include scattering, width: on-shell δ becomes Lorentzian

$$\int d^4 p f[1+f] \Big(\delta(p^2) \Big)^2 \implies \int d^4 p f[1+f] \left(\frac{\Gamma p^0}{(p^2)^2 + \Gamma^2 p_0^2} \right)^2$$

Divergence becomes $T^5/\Gamma \sim T^4/\lambda^2$ (Γ is 2-loop, $\propto \lambda^2$) Except then $\partial_{\mu} \langle T^{\mu\nu}(x) T^{\alpha\beta}(0) \rangle \neq 0$

Ladder resummation

Higher loops involve more powers of $1/\Gamma$. Compensate λ^2 loop "cost". Also restore stress-tensor conservation.

Each "rail" at different (matching pair of) momentum than last. Each rail $\propto \lambda^{-2}$, each "rung" $\propto \lambda^2$. Jeon hep-ph/9409250;

Jeon Yaffe hep-ph/9512263

Neglecting these gets answer wrong by factor $\simeq 3$.

Leiden, 16 November 2017: Page 15 of 40

Effective kinetic theory

Effective theory resums these ladders. Contribution of rung-pair described by

$$\delta f(k,t) = f_0(k) [1 + f_0(k)] \chi(k,t)$$

(f_0 Bose distribution). Time evolution Boltzmann Eq

$$\begin{aligned} \partial_t \chi(k,t) &= S(k)\delta(t) - \mathcal{C}[\chi] & (\mathcal{C} \text{ is integral operator}) \\ &= S(k)\delta(t) - \int d^3p \ \mathcal{C}_{p,k} \ \chi(p) \\ &= S(k)\delta(t) - \int d^3p \Big[\Gamma_k \delta^3(p-k) - \mathcal{C}_{k \to p}\Big] \chi(p) \end{aligned}$$

First(loss), second(gain) term in [] from rails/rungs.

Leiden, 16 November 2017: Page 16 of 40

What is collision operator C?

Represents possibility for particle p to change occupancy due to particle l. For scalar theory,

p, k incoming, p'k' outgoing energies, $|\mathcal{M}|^2 = \lambda^2$ with $P_2(x) = (3x^2 - 1)/2$ the $\ell = 2$ Legendre polynomial p-space nonlocal, multiple integrals. Ugh!

Leiden, 16 November 2017: Page 17 of 40

Connection to η

Correlator $\langle T_{xy}(t)T_{xy}(0)\rangle$ given by

$$T_{xy}(t) = \int d^3k \ \chi(k)S(k)f_0[1+f_0] \equiv \langle \chi|S \rangle$$

 $\ensuremath{\mathcal{C}}$ is positive symmetric operator under inner product

$$\langle \chi | \phi \rangle \equiv \int d^3k \ \chi(k) \phi(k) f_0[1+f_0]$$

In terms of inner product, Boltzmann equation is

$$\partial_t |\chi\rangle = \delta(t) |S\rangle - \mathcal{C} |\chi\rangle$$

and

$$\eta = \frac{1}{6T} \int dt \langle S | \chi(t) \rangle = \frac{1}{3T} \langle S | \mathcal{C}^{-1} | S \rangle$$

Only problem: C is a nasty integral operator. Need C^{-1} !

Leiden, 16 November 2017: Page 18 of 40

Eigenspectrum of C

Space of $|\chi\rangle$ is \mathcal{L}^2 : ∞ -dimensional.

Any positive symmetric operator has eigenspectrum

$$\mathcal{C} = \sum_{i} \lambda_{i} |\xi_{i}\rangle \langle \xi_{i}| + \int_{D} d\lambda' \lambda' |\xi(\lambda')\rangle \langle \xi(\lambda')|$$

discrete (pole) plus continuous (cut) spectrum, D the portion of \Re^+ which is cut. Eigenvectors obey orthogonality

$$\langle \xi_i | \xi_j \rangle = \delta_{ij}, \quad \langle \xi_i | \xi(\lambda') \rangle = 0, \quad \langle \xi(\lambda') | \xi(\lambda'') \rangle = \delta(\lambda' - \lambda'')$$

Leiden, 16 November 2017: Page 19 of 40

Spectral decomposition solves Boltzmann equation:

$$|\chi(t)\rangle = \sum_{i} e^{-\lambda_{i}t} |\xi_{i}\rangle \langle \xi_{i}|S\rangle + \int_{D} d\lambda' e^{-\lambda't} |\xi(\lambda')\rangle \langle \xi(\lambda')|S\rangle$$

Value of η is

$$3T\eta = \sum_{i} \lambda_{i}^{-1} \left(\langle S | \xi_{i} \rangle \right)^{2} + \int_{D} d\lambda' \lambda'^{-1} \left(\langle S | \xi(\lambda') \rangle \right)^{2}$$

Retarded function has poles at $\omega = -i\lambda_i$, residue $(\langle \xi_i | S \rangle)^2$, and cuts along -iD with discontinuity $(\langle \xi(\lambda') | S \rangle)^2$

If only I could find this decomposition explicitly.

Leiden, 16 November 2017: Page 20 of 40

Test function method

Work in finite-dimensional subspace spanned by test functions:

$$|\chi\rangle = \sum_{i=1}^{N} c_i |\phi_i\rangle$$

Test functions I will use:

$$\phi_{i,\text{Yaffe}}(k) = \frac{k^{i+1}T^{M-i-2}}{(k+T)^{M-1}}, \qquad i = 1, \dots, N, \quad N \ge M$$

Need to orthonormalize (easy). Large M: basis more complete everywhere. Large N - M: more complete UV. AMY used N = M but we don't have to.

Leiden, 16 November 2017: Page 21 of 40

Test function method

Find "vector"

$$S_i = \langle S | \phi_i \rangle = \int d^3 p S(p) \phi_i(p) f_0[1 + f_0]$$

Find "matrix" (Hard! C = multi-dimensional integration)

$$C_{ij} = \langle \phi_i | \mathcal{C} | \phi_j \rangle = \int d^3 p d^3 k \phi_i(p) \phi_j(k) \mathcal{C}_{k,p} f_0[1 + f_0]$$

Eigenspectrum of C_{ij} : matrix. Automatically discrete spectrum

Leiden, 16 November 2017: Page 22 of 40

Test function method

Discontinuities purely on negative imaginary axis. Always in kinetic theory! (Im parts higher in g^2)

Method automatically "predicts" discrete spectrum of poles. Just because we work in finite-dimensional subspace.

Try to tell if it's really poles or cuts by varying basis size, seeing whether poles stay put or "fill in" denser and denser.

What does a cut look like if I can only see poles + zeros?

Leiden, 16 November 2017: Page 24 of 40

Suppose we only had information from the point x = 0.

Taylor:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

Does terrible job!

Leiden, 16 November 2017: Page 25 of 40

Why so bad?

Taylor is same as assuming function has n zeros and no poles.

Not good description of a cut!

Assume instead that function has 1 more zero than pole: Padé

$$P_{N,N-1}(x) = \frac{\sum_{n=1}^{N} d_n x^n}{1 + \sum_{n=1}^{N-1} c_n x^n}$$

Taylor expand P(x) to order 2N - 1Choose unique d_n, c_n such that Taylor series of P and Taylor series of $\ln(1+x)$ agree through 2N - 1 terms

Does a far better job!

Leiden, 16 November 2017: Page 26 of 40

Padé Approximations of $\ln(1+x)$

Here are (1, 0), (2, 1), (3, 2), and (4, 3) Padé approximants of $\ln(1 + x)$.

Leiden, 16 November 2017: Page 27 of 40

What is this mess at x < -1?

Padé is:

$$\frac{d_1 x + d_2 x^2 + \dots}{1 + c_1 x + c_2 x^2 + \dots} = \frac{A(x - z_1)(x - z_2)\dots}{(x - p_1)(x - p_2)\dots}$$

product of zeros and poles, at z_1, \ldots and p_1, \ldots

Cut got replaced by series of zeros and poles.

Trying to describe a cut as a series of zeros and poles.

Leiden, 16 November 2017: Page 29 of 40

What if there is also a true pole?

Consider function

$$f(x) = \frac{\sqrt{(x+2)(x+3)/6}}{x+1}$$

Pole at x = -1Cut from x = -2 to x = -3

Fit it with an (N, N) Padé approximant (Taylor series is, once again, crap)

Leiden, 16 November 2017: Page 30 of 40

Pole/zero fitting of a pole and cut

Leiden, 16 November 2017: Page 31 of 40

Pole/zero fitting of a pole and cut

I can tell that there is an isolated pole in front of cut!

Leiden, 16 November 2017: Page 32 of 40

Leiden, 16 November 2017: Page 33 of 40

Leiden, 16 November 2017: Page 34 of 40

Leiden, 16 November 2017: Page 35 of 40

Leiden, 16 November 2017: Page 36 of 40

Bases, different UV sensitivity

Leiden, 16 November 2017: Page 37 of 40

My interpretation

- Looks to me like a cut!
- Dominant contribution from one scale
- Cut discontinuity falls fast at smaller ω
- Discontinuity also falls fast at larger ω
- Large/small ω from small/large-k particles (?)

Summary

- Considering $\langle T_{xy}T_{xy}(\omega \ll T, k=0) \rangle$
- $\lambda \phi^4$ theory at weak coupling has a cut at strictly imaginary ω
- Cut has a narrow region of large discontinuity
- Extends to larger ω with small discontinuity (forever? yes at small λ , cut off by thermal mass...)
- Extends to small ω with small discontinuity (all the way to $\omega = 0$? If so, exponentially small)

But note!

Actually $G_{\rm ret}^{TT}(\omega, k = 0)$ should be non-analytic right up to $\omega = 0$ due to long-time tails Perturbation theory misses them: g^4 vs g^{-4} Holography misses them: N_c^0 vs N_c^2 Disc. of cut should involve half-int power of ω

Can N_c^{-2} corrections be computed in AdS/CFT?

Leiden, 16 November 2017: Page 40 of 40