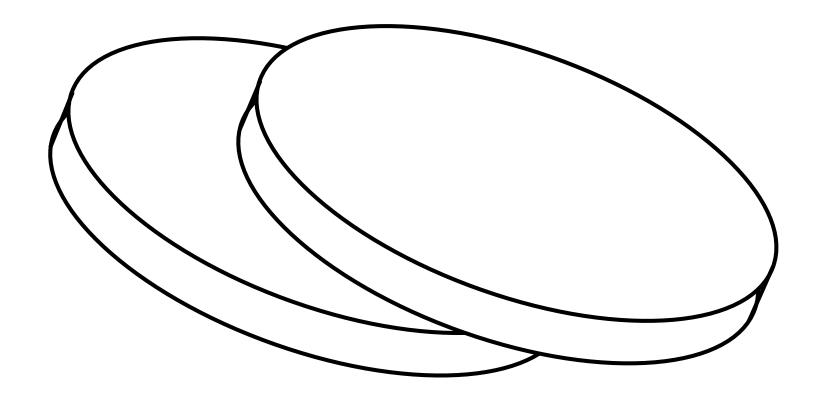
Second Order Hydro in QCD

Guy D. Moore, Mark Abraao York

- Why do hydrodynamics in QCD?
- Why find 2'nd order coefficients and what are they?
- Kinetic theory: setup
- Kinetic theory: details
- Interesting physics along the way
- Conclusions

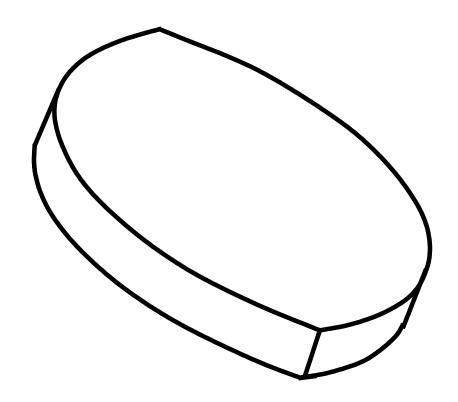
Heavy ion collisions

Accelerate two heavy nuclei to high energy, slam together.



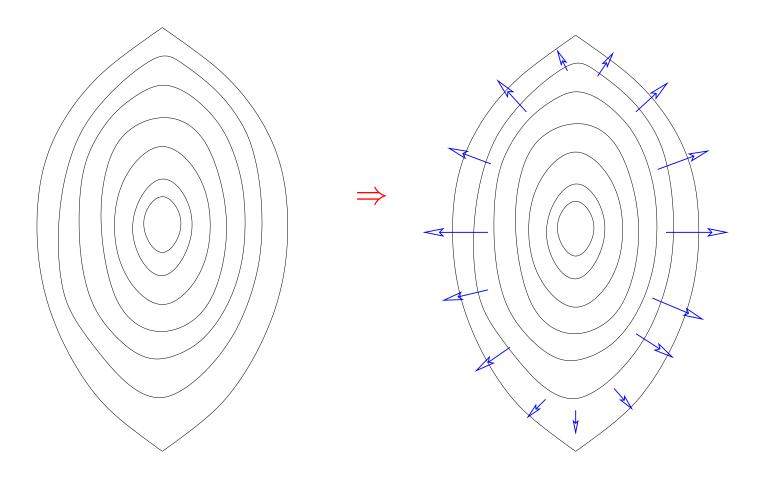
Just before: Lorentz contracted nuclei

After the scattering: region where nuclei overlapped: "Flat almond" shaped region of q, \bar{q}, g which scattered.



 \sim 2 thousand random ${f v}$ quarks+gluons: isotropic in xy plane

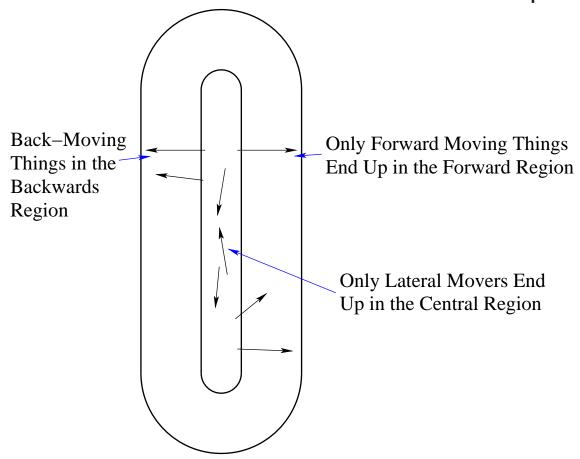
local CM motions



Pressure contours Expansion pattern
Anisotropy leads to anisotropic (local CM motion) flow.

Momentum Selection

Side-on view of the flat almond as it expands



Space aniso. \rightarrow aniso. of "particle" p distrib.

Madrid Computense, 7 July 2009: page 5 of 33

Free particle propagation:

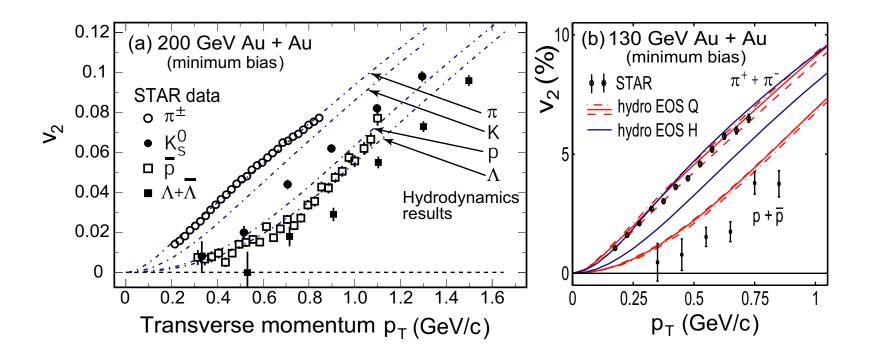
- Particle distributions locally triaxial, $\langle v_x^2 \rangle < \langle v_y^2 \rangle$, but
- System-average CM flow velocities $\langle v_{x,\mathrm{CM}}^2 \rangle > \langle v_{y,\mathrm{CM}}^2 \rangle$
- Total particle distribution $\langle v_x^2 \rangle = \langle v_y^2 \rangle$

Efficient scattering:

- Drives system locally towards $\langle v_{x,\mathrm{relative}}^2 \rangle = \langle v_{y,\mathrm{relative}}^2 \rangle$
- System-average CM flow still has $\langle v_{x,\mathrm{CM}}^2 \rangle > \langle v_{y,\mathrm{CM}}^2 \rangle$
- Adding these together, $\langle v_{x,\mathrm{tot}}^2 \rangle > \langle v_{y,\mathrm{tot}}^2 \rangle$

Net "Elliptic Flow"
$$v_2 \equiv \frac{v_x^2 - v_y^2}{v_x^2 + v_y^2}$$
 measures scattering

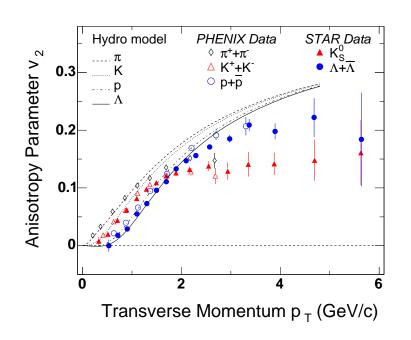
Elliptic flow is measured

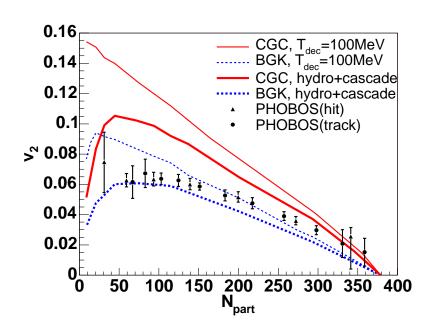


STAR experiment, minimum bias...

We should try to understand it theoretically.

First attempt: ideal hydro





Works, DEPENDING on initial conditions.

Corrections to ideality exist, but are "small" (?)

Can we quantify that?

Ideal Hydrodynamics

Ideal hydro: stress-energy conservation

$$\partial_{\mu}T^{\mu\nu}=0$$
 (4 equations, 10 unknowns)

plus local equilibrium assumption:

$$T^{\mu\nu} = T^{\mu\nu}_{eq} = \epsilon u^{\mu} u^{\nu} + P(\epsilon) \Delta^{\mu\nu},$$

$$u^{\mu} u_{\mu} = -1, \Delta^{\mu\nu} = g^{\mu\nu} - u^{\mu} u^{\nu}$$

depends on 4 parameters (ϵ , 3 comp of u^{μ}): closed.

Ideal hydro works well: corrections *eg*, *viscosity* small Claim: "Most Perfect Liquid" exotic behavior. Quantify!

Nonideal Hydro

Assume that ideal hydro is "good starting point," look for small systematic corrections.

Near equilibrium iff $t_{\rm therm} \ll t_{\rm vary}, l_{\rm vary}/v$ (so ∂ small)

Allows expansion of corrections in gradients:

$$T^{\mu\nu} = T^{\mu\nu}_{eq} + \Pi^{\mu\nu}[\partial, \epsilon, u]$$

$$\Pi^{\mu\nu} = \mathcal{O}(\partial\mu, \partial\epsilon) + \mathcal{O}(\partial^2\mu, (\partial\mu)^2, \dots) + \mathcal{O}(\partial^3\dots)$$

For Conformal theory $T^{\mu}_{\mu}=0=\Pi^{\mu}_{\mu}$, 1-order term unique:

$$\Pi^{\mu\nu} = -\eta \sigma^{\mu\nu} \,, \quad \sigma^{\mu\nu} = \Delta^{\mu\alpha} \Delta^{\nu\beta} \left(\partial_{\alpha} u_{\beta} + \partial_{\beta} u_{\alpha} - \frac{2}{3} g_{\alpha\beta} \partial \cdot u \right)$$

Coefficient η is shear viscosity.

Viscous hydro

So why not consider (Navier-Stokes)

$$T^{\mu\nu} = \epsilon u^{\mu}u^{\nu} + P\Delta^{\mu\nu} - \eta\sigma^{\mu\nu} ?$$

Because in relativisitc setting, it is

- Acausal: shear viscosity is transverse momentum diffusion. Diffusion $\partial_t P_\perp \sim \nabla^2 P_\perp$ has instantaneous prop. speed. Müller 1967, Israel+Stewart 1976
- Unstable: v>c prop + non-uniform flow velocity \rightarrow propagate from future into past, exponentially growing solutions. Hiscock 1983

Problem only on short length scales where $\eta |\sigma| \sim P$. But numerics must treat these scales (or "numerical viscosity" which exceeds η is present)

Madrid Computense, 7 July 2009: page 11 of 33

Israel-Stewart approach

Add one second order term:

$$\Pi^{\mu\nu} = -\eta \sigma^{\mu\nu} + \eta \tau_{\Pi} u^{\alpha} \partial_{\alpha} \sigma^{\mu\nu}$$

Make (1'st order accurate) $\eta \sigma \to -\Pi$ in order-2 term:

$$\tau_{\Pi} u^{\alpha} \partial_{\alpha} \Pi^{\mu\nu} \equiv \tau_{\Pi} \dot{\Pi}^{\mu\nu} = -\eta \sigma^{\mu\nu} - \Pi^{\mu\nu}$$

Relaxation eq driving $\Pi^{\mu\nu}$ towards $-\eta\sigma^{\mu\nu}$.

Momentum diff. no longer instantaneous.

Causality, stability are restored (depending on τ_{Π})

But why only one 2'nd order term???

Second order hydrodynamics

It is more consistent to include all possible 2'nd order terms. Assume *conformality* and *vanishing chem. potentials*:

5 possible terms Baier et al, [arXiv:0712.2451]

$$\Pi_{2 \text{ ord.}}^{\mu\nu} = \eta \tau_{\Pi} \left[u^{\alpha} \partial_{\alpha} \sigma^{\mu\nu} + \frac{1}{3} \sigma^{\mu\nu} \partial_{\alpha} u^{\alpha} \right] + \lambda_{1} \left[\sigma_{\alpha}^{\mu} \sigma^{\nu\alpha} - (\text{trace}) \right]$$

$$+ \lambda_{2} \left[\frac{1}{2} (\sigma_{\alpha}^{\mu} \Omega^{\nu\alpha} + \sigma_{\alpha}^{\nu} \Omega^{\mu\alpha}) - (\text{trace}) \right]$$

$$+ \lambda_{3} \left[\Omega^{\mu}{}_{\alpha} \Omega^{\nu\alpha} - (\text{trace}) \right] + \kappa \left(R^{\mu\nu} - \dots \right) ,$$

$$\Omega_{\mu\nu} \equiv \frac{1}{2} \Delta_{\mu\alpha} \Delta_{\nu\beta} (\partial^{\alpha} u^{\beta} - \partial^{\beta} u^{\alpha}) \quad [\text{vorticity}] .$$

Now, besides η , we have 5 more unknown coefficients.

Second order: philosophy

(nonideal) hydro only consistent if η makes small corr.

These au_{Π} , $\lambda_{1,2,3}$ make smaller corrections. κ irrelevant.

Make reasonable estimate for τ_{Π} , λ_{123} , test sensitivity

Guy argues: Ratios should be relatively robust

- Forget $\frac{\eta}{s}$. Think of $\frac{\eta}{P+\epsilon}=t_{\eta}$ a timescale. Pert: $1/g^4T$
- Next order: $\frac{\lambda_1}{P+\epsilon}=t_\lambda^2$, $\frac{\eta \tau_\Pi}{P_\epsilon}=t_\pi^2$ Pert: $1/g^8T^2$
- All are thermalization times. One expects $t_{\lambda} \sim t_{\eta} \sim t_{\pi}$.

Determine ratios where you can, use as priors in fit

Two toy models of QCD

To date, coeff's computed in $toy\ model$ for QCD: $\mathcal{N}{=}4$ SYM theory at $N_{\rm c}, g^2N_{\rm c} \to \infty$ (conformal, vast number DOF, many scalars, infinite

COUPling,...) Baier et al [arXiv:0712.2451], Tata group, [arXiv:0712.2456]

I know another toy model for QCD:

Weakly coupled $N_{\rm c}=3$, $N_{\rm f}=0,\dots 6$ QCD in pert. theory! (asymptotically free, mass gap, right number DOF, finite coupling...)

Leading order calculation: theory conformal, same coeff's Toolkit for calculation: kinetic theory (valid at leading order)

Kinetic theory

Weak coupling: IR-safe corr. funcs nearly Gaussian. Adequate description in terms of 2-point function.

Value of 2-pt function has interpretation as particle number: $\phi^\dagger\phi$ is $\frac{1}{2}+\hat{N}$ number operator of free thy.

Leading-order: free propagation. Scatterings "rare".

Allows extra approximation: $\Delta x \sim 1/p \sim 1/T$ small compared to free path $\lambda \sim 1/g^2T$. Propagation classical, $[x,p] \simeq 0$ "classical phase space" behavior.

Kinetic theory

State, all measurables described by particle distrib. $f_a(x, p)$:

$$T^{\mu\nu}(x) = \sum_{a} \int_{p} 2P^{\mu}P^{\nu} f_{a}(x,p), \qquad \int_{p} \equiv \int \frac{d^{3}p}{(2\pi)^{3}2p^{0}}$$

(Assumes weak coupling, slow x^{μ} dependence, little else)

Dynamics: Boltzmann equation (Schwinger-Dyson eq):

$$2P^{\mu}\partial_{\mu_x}f(x,p) = -\mathcal{C}[p, f(x,q)]$$

LHS: particle propagation. $p^0 \equiv \sqrt{\mathbf{p}^2} \equiv p$

RHS: scattering (Im self-energy). Local in x but not p.

Theory dependence all contained in detailed form of C[f].

In our case, described in detail in AMY5: hep-ph:0209353

Two gradient expansions

Hydrodynamics description relies on

$$(t_{\rm therm}, vt_{\rm therm}) \ll (t_{\rm vary}, l_{\rm vary})$$

slow variation in time, space. Expandable order-by-order.

Kinetic theory description relies on

$$(t_{\text{deBroglie}} \sim T^{-1}, \lambda_{\text{deBroglie}}) \ll (\Gamma^{-1}, \lambda_{\text{mfp}})$$

where $\Gamma^{-1} \leq t_{\text{therm}}$ is inverse scatt rate.

We don't know how to do this expansion order-by-order! g^2 corrections lie outside kinetic description.

Expansion in (hydro) gradients

$$f(x,p) = f_0(\beta(x), u(x), p) + f_1(\partial, \beta, u, p) + f_2(\partial^2, \beta, u, p)$$

Subscript counts order in derivatives. β , u and ϵ , \vec{P} dual LHS of Boltzmann has 1 deriv: RHS has 0.

$$\mathcal{O} \text{ 0: } \mathcal{C}[p, f_0(x, q)] = 0 \rightarrow f_{0,a} = \frac{1}{\exp(-\beta u^{\mu} P_{\mu}) \pm 1}$$

$$\mathcal{O}$$
 1: $2P^{\mu}\partial_{\mu_x}f_0(\beta(x),u(x),p)=-\mathcal{C}_1[p,f(q)]$

where C_1 is C expanded to lin. order in f_1 .

$$\mathcal{O}$$
 2: $2P^{\mu}\partial_{\mu_x}f_1 = -\mathcal{C}_{11}[p, f(q)] - \mathcal{C}_2[p, fq]$

with \mathcal{C}_{11} 2 order in f_1 , \mathcal{C}_2 lin. order in f_2

First order in expansion

Organize it as

$$f_1(q) = -C_{1,qp}^{-1} 2P^{\mu} \partial_{\mu} f_0(-\beta u^{\nu} P_{\nu})$$

Gradients of free-theory distribution act as source for f_1 .

$$2P^{\mu}\partial_{\mu}f_0 = -f_0'\beta P^{\mu}P^{\nu}(\partial_{\mu}u_{\nu} + u_{\mu}\partial_{\nu}\beta)$$

Organize source in spherical harmonics. $\ell = 0, 1$ determine u, β :

$$\partial_t \beta = \frac{\beta}{3} \partial_i u_i$$
 and $\partial_t u_i = \frac{1}{\beta} \partial_i \beta$

Remaining term is nontrivial:

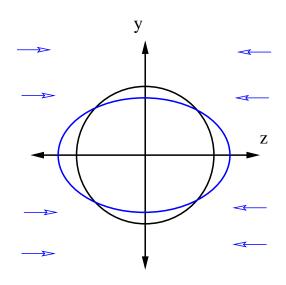
$$f_1(q) = C_{1,qp}^{-1}(p_i p_j - p^2 \delta_{ij}/3)\beta \sigma_{ij} f_0'$$

Solution always of form $f_1(p) = \frac{\beta^3}{2} \sigma_{ij} (p_i p_j - p^2 \frac{\delta_{ij}}{3}) \chi(-\beta u_\mu P^\mu)$

Madrid Computense, 7 July 2009: page 20 of 33

Physics so far: viscosity

Consider system under compression: momentum distribution becomes prolate spheroidal (limited by scattering)



Viscosity measures $T_{\mu\nu}$ of this distortion, so $\eta/P=4\eta/(P+\epsilon)$ measures extent of prolateness.

Prolateness can differ at different |p|; $\chi(\beta p)$ tells how this varies, η gives some average.

Second order Boltzmann Equation

$$2P^{\mu}\partial_{\mu_x}f_1 = -\mathcal{C}_{11}[p, f(q)] - \mathcal{C}_2[p, fq]$$

Organize it as

$$f_2 = -\mathcal{C}_1^{-1} \Big(2P^{\mu} \partial_{\mu} f_1 + \mathcal{C}_{11}[f_1] \Big)$$

Term on right acts like a source for 2'nd order departure f_2 . Two pieces: effect of inhomogeneity on 1'st order departure, nonlinearity of collision operator in departure from equilib.

Determining Π^{ij} only requires $\ell=2$ moment of f_2 , which simplifies calculation: only need $\ell=2$ of RHS.

Term $2P^{\mu}\partial_{\mu}f_1$

Inhomogeneous flow when f already skewed. Consider

$$2P^{\mu}\partial_{\mu}\sigma_{\alpha\beta}(P^{\alpha}P^{\beta} - g^{\alpha\beta}p^{2}/3)\beta^{3}\chi(-\beta u^{\gamma}P_{\gamma})$$

Two types of terms: ∂_{μ} acts on $\sigma_{\alpha\beta}\beta^3$, or on χ (Dirk: NOTE)

First term:

$$P^{\mu}P^{\nu}P^{\alpha}\left(\partial_{\mu}\sigma_{nu\alpha}+3\sigma_{\nu\alpha}\partial_{\mu}\ln\beta\right)\beta^{3}\chi$$

Only contributions to Π^{ij} when 2 P's space, one time.

$$Ep_i p_j \left(\partial_0 \sigma_{ij} + 2 \partial_i \sigma_{0j} + 3 \sigma_{ij} \partial_0 \ln \beta \right)$$

Contributes to τ_{Π} , λ_2 , λ_1 . Second term: contributes to λ_1 .

What we get so far

One contribution to τ_{Π} , λ_2 , and λ_1 .

Automatically in ratio 1:-2:-1. Therefore

$$\lambda_2 = -2\eta \tau_{\Pi}$$

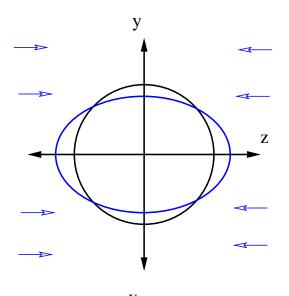
Extra independent (positive) contribution to λ_1 .

Detailed values depend on functional form of $\chi(\beta E)$. Specific Ansatz (Grad 14-moment) gives specific values:

$$\frac{\eta \tau_{\Pi}}{\epsilon + P} = \frac{6\zeta(4)\zeta(6)}{\zeta^2(5)} \left(\frac{\eta}{\epsilon + P}\right)^2, \quad \frac{\lambda_1}{\eta \tau_{\Pi}} = 1.$$

But we solve for $\chi(\beta E)$ -slightly different value

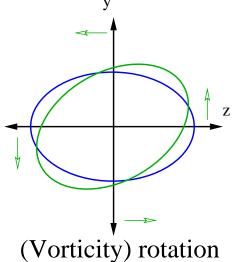
What do these coefficients mean?



Contraction \rightarrow prolateness.

 τ_{Π} : how long prolateness lasts after contraction ends.

 λ_1 : induced prolateness depends on how prolate it already is!



Vorticity means rotation.

 λ_2 : how much prolateness gets rotated in a rotating system.

Depends on how long prolateness lives.

Hence relation $\lambda_2 = -2\eta \tau_{\Pi}$.

Hard part: \mathcal{C}_{11}

Nonlinear term in collision operator:

"extra" particles scattering from other "extra" particles

Theory dependent. Consider $2 \leftrightarrow 2$ scattering (present in most theories):

$$C[p, f[q]] = \int_{kp'k'} (2\pi)^4 \delta^4(P + K - P' - K') |\mathcal{M}^2| \times \left(f(p)f(k)[1 \pm f(p')][1 \pm f(k')] - f(p')f(k')[1 \pm f(p)][1 \pm f(k)] \right)$$

First order expansion: define $\bar{f}_1 = f_0(1 \pm f_0) f_1$.

$$\left(f(p)f(k)[1\pm f(p')][1\pm f(k')] - f(p')f(k')[1\pm f(p)][1\pm f(k)]\right)
= 0 + f_0(p)f_0(k)[1\pm f_0(p')][1\pm f_0(k')] \left(\bar{f}_1(p) + \bar{f}_1(k) - \bar{f}_1(p') - \bar{f}_1(k')\right)$$

That's what we needed in defining C_1 . Used twice already!

Madrid Computense, 7 July 2009: page 26 of 33

Next order: $f_0(p)f_0(k)[1\pm f_0(p')][1\pm f_0(k')]$ times

$$\bar{f}_{1}(p)\bar{f}_{1}(k)f_{0}(p)f_{0}(k)\left(e^{\frac{p+k}{T}}-1\right) + \bar{f}_{1}(p')\bar{f}_{1}(k')f_{0}(p')f_{0}(k')\left(1-e^{\frac{p+k}{T}}\right) + \left[\bar{f}_{1}(p)\bar{f}_{1}(p')f_{0}(p)f_{0}(p')\left(e^{\frac{p}{T}}-e^{\frac{p'}{T}}\right) + (p'\to k')\right] + (p\to k) + (p,p'\to k,k')\right]$$

Note that $\bar{f}_1(p) \propto \sigma_{ij}(p_i p_j - \delta_{ij} p^2/3)$. In evaluating $\langle S_{ij} | \mathcal{C}_{11}[f_1] \rangle$ we meet angular integrations:

$$\begin{aligned} \operatorname{defining} p_{\langle i}q_{j\rangle} &= \frac{3p_{i}q_{j} + 3q_{i}p_{j} - 2p \cdot q\delta_{ij}}{6} \,, x_{pq} \equiv p \cdot q \,, \\ \sigma_{lm}\sigma_{rs} \int d\Omega_{\mathrm{global}}p_{\langle i}p_{j\rangle}q_{\langle l}q_{m\rangle}r_{\langle r}r_{s\rangle} \\ &= \frac{4}{35} \left(\sigma_{il}\sigma_{jl} - \frac{\delta_{ij}}{3}\sigma_{lm}\sigma_{lm}\right) \\ &\times \left(3x_{pq}x_{pr}x_{qr} - x_{pp}x_{qr}^{2} - x_{qq}x_{pr}^{2} - x_{rr}x_{pq}^{2} + 2x_{pp}x_{qq}x_{rr}/3\right) \end{aligned}$$

Using these, one can bludgeon C_{11} term to death. Contributes only to λ_1 .

Madrid Computense, 7 July 2009: page 27 of 33

Subtlety!

Preceding assumed that matrix element $|\mathcal{M}^2|$ is f independent.

In gauge and Yukawa theories, f enters \mathcal{M} through screening!

Change in $f_0 \to f_0 + f_1$ changes screening, leading to correction to $|\mathcal{M}|^2$ linear in f_1 .

This is where things get hard.

So I won't tell you about it except one detail.

Antiscreening and plasma instability

Plasmas screen all interactions $except \ \omega \to 0$ magnetic. Deep consequence of dimensional reduction: in 3D theory, rotation+gauge inv mean F^2 , not A^2 op can appear.

Nonzero f_1 : plasma is not rotation non-invariant. Former (equilibrium!) argument fails: magnetic "mass" possible. But \int_{Ω} of screening effect is zero!

Angular average zero, value in some directions nonzero \rightarrow Screening is negative in some directions (plasma instabilities)

Plasma instability for us

We are working perturbatively – won't see full instability.

$$G^{\mu\nu} = \frac{1}{G_0^{-1} - \delta\Pi} \simeq G_0^{\mu\nu} + G_0^{\mu\alpha} \delta\Pi_{\alpha\beta} G_0^{\beta\nu}$$

Now $\delta\Pi$ doesn't vanish but $G_0 \sim 1/q^2$:

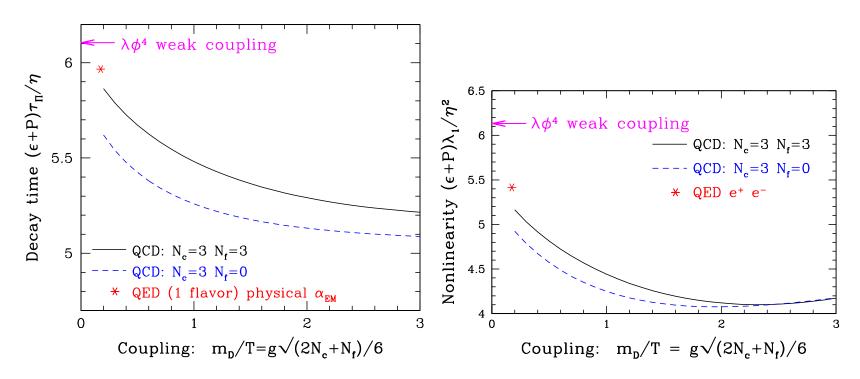
$$G^{\mu\nu}(q) \sim \frac{1}{q^2} + \delta \Pi \frac{1}{q^4}$$

more IR singular. Potential for log IR singularity. Turns out to cancel in angular stuff for $2 \leftrightarrow 2$, but not for $1 \leftrightarrow 2$ (splitting).

Splitting rate is IR log singular. I don't have exact results!

Results

 $\lambda_3 = \kappa = 0$. $\lambda_2 = -2\eta \tau_{\Pi}$. τ_{Π} , λ_1 nontrivial:



Size of uncertainty is thinner than lines in plots!

Ratios are very stable with value of coupling.

QCD vs SYM comparison

Ratio	QCD value	SYM value
$\frac{\tau_{\Pi}(\epsilon+P)}{\eta}$	5 to 5.9	2.6137
$\frac{\lambda_1(\epsilon+P)}{\eta^2}$	4.1 to 5.2	2
$\frac{\lambda_2(\epsilon+P)}{\eta^2}$	-10 to -11.8	-2.77
$\frac{\kappa(\epsilon+P)}{\eta^2}$	0	4
$\frac{\lambda_3(\epsilon+P)}{\eta^2}$	0	0

Good news: Not qualitatively different.

Bad news: "exact" kinetic theory relation $\lambda_2 = -2\eta \tau_\Pi$ not actually general.

Conclusions

- Hydro seems sensible framework in heavy ion coll.
- Shear viscosity should be quantified!
- Requires expansion to 2'nd order in gradients
- Calculation in pert. QCD is intricate.
- Ratios are relatively robust. But Pert Thy and SYM give rather different predictions in detail.

Limitation of kinetic theory method? How does one compute non-kinetic corrections?