Analytics of $T_{xy}T_{xy}(k=0)$ in $\lambda\phi^4$ theory

Andrei keeps asking me

"What is analytical structure of

$$\int d^4x e^{i\omega t} \langle T_{xy}(t,x) T_{xy}(0,0) \rangle = \langle TT \rangle(\omega,0)$$

in complex ω plane at weak coupling?"

I will try to address this in $\lambda \phi^4$ theory Limited tools make it hard to find true analytical form, just some limited information we will have to interpret.

Oxford, 8 March 2017: Page 1 of 37

What I will talk about

- What happens to a cut when you fit it with poles+zeros?
- How can you tell if it's just a cut, or a mix of poles and cuts?
- Kinetic theory review
- Analytics and poles/cuts in $\lambda \phi^4$

Oxford, 8 March 2017: Page 2 of 37

What does a cut look like if I can only see poles + zeros?

Oxford, 8 March 2017: Page 3 of 37

Suppose we only had information from the point x = 0.

Taylor:

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

Does terrible job!

Oxford, 8 March 2017: Page 4 of 37

Why so bad?

Taylor is same as assuming function has n zeros and no poles.

Not good description of a cut!

Assume instead that function has 1 more zero than pole: Padé

$$P_{N,N-1}(x) = \frac{\sum_{n=1}^{N} d_n x^n}{1 + \sum_{n=1}^{N-1} c_n x^n}$$

Taylor expand P(x) to order 2N - 1Choose unique d_n, c_n such that Taylor series of P and Taylor series of $\ln(1+x)$ agree through 2N - 1 terms

Does a far better job!

Padé Approximations of $\ln(1+x)$

Here are (1, 0), (2, 1), (3, 2), and (4, 3) Padé approximants of $\ln(1 + x)$.

Oxford, 8 March 2017: Page 6 of 37

What is this mess at x < -1?

Padé is:

$$\frac{d_1 x + d_2 x^2 + \dots}{1 + c_1 x + c_2 x^2 + \dots} = \frac{A(x - z_1)(x - z_2)\dots}{(x - p_1)(x - p_2)\dots}$$

product of zeros and poles, at z_1, \ldots and p_1, \ldots

Cut got replaced by series of zeros and poles.

Trying to describe a cut as a series of zeros and poles.

Oxford, 8 March 2017: Page 8 of 37

What if there is also a true pole?

Consider function

$$f(x) = \frac{\sqrt{(x+2)(x+3)/6}}{x+1}$$

Pole at x = -1Cut from x = -2 to x = -3

Fit it with an (N, N) Padé approximant (Taylor series is, once again, crap)

Oxford, 8 March 2017: Page 9 of 37

Pole/zero fitting of a pole and cut

Oxford, 8 March 2017: Page 10 of 37

Pole/zero fitting of a pole and cut

I can tell that there is an isolated pole in front of cut!

Oxford, 8 March 2017: Page 11 of 37

Back to TT correlation function

Shear viscosity determined by correlator

$$\eta = \frac{1}{6T} \lim_{\omega \to 0} \int d^3x dt e^{i\omega t} \langle T_{xy}(x,t) T_{xy}(0,0) \rangle$$

What is functional dependence on ω , keeping $\int d^3x$ (vanishing \vec{k})?

Are there distinct poles? Purely imaginary, or real parts?

Or are there cuts? Where, what discontinuity?

Or both? What is nonanalyticity nearest the real axis?

Oxford, 8 March 2017: Page 12 of 37

Why we need resummations

Simplest diagram: 1 loop Blobs are T_{xy} insertions Propagators carry 4-momentum $\pm P^{\mu}$

Propagato

are "cut", eg,

$$\Delta(p) = 2\pi [1 + f(p)]\delta(p^2)$$

on-shell Delta function (at free level). Divergent:

$$\int d^4p 2\pi \ f(p) [1+f(p)] \ \delta(p^2) \ \delta(p^2)$$

Oxford, 8 March 2017: Page 13 of 37

Therefore you need

To get finite answer you **MUST** include scattering, width: on-shell δ becomes Lorentzian

$$\int d^4 p f[1+f] \left(\delta(p^2)\right)^2 \implies \int d^4 p f[1+f] \left(\frac{\Gamma p^0}{(p^2)^2 + \Gamma^2 p_0^2}\right)^2$$

Divergence becomes $T^5/\Gamma \sim T^4/\lambda^2$ (Γ is 2-loop, $\propto \lambda^2$)

Oxford, 8 March 2017: Page 14 of 37

Ladder resummation

Higher loops involve more powers of $1/\Gamma$. Compensate λ^2 loop "cost". Also restore stress-tensor conservation.

Each "rail" at different (matching pair of) momentum than last. Each rail $\propto \lambda^{-2}$, each "rung" $\propto \lambda^2$.

Neglecting these gets answer wrong by factor $\simeq 3$.

Oxford, 8 March 2017: Page 15 of 37

Effective kinetic theory

Effective theory resums these ladders. Contribution of rung-pair described by

$$\delta f(k,t) = f_0(k) [1 + f_0(k)] \chi(k,t)$$

(f_0 Bose distribution) Evolves with time according to

$$\partial_t \chi(k,t) = S(k)\delta(t) - \mathcal{C}[\chi]$$

= $S(k)\delta(t) - \int d^3p \ \mathcal{C}_{p,k} \ \chi(p)$
= $S(k)\delta(t) - \int d^3p \Big[\Gamma_k \delta^3(p-k) - \mathcal{C}_{k\to p}\Big]\chi(p)$

First(loss), second(gain) term in [] from rails/rungs.

Oxford, 8 March 2017: Page 16 of 37

Connection to η

Correlator $\langle T_{xy}(t)T_{xy}(0)\rangle$ given by

$$T_{xy}(t) = \int d^3k \ \chi(k) S(k) f_0[1+f_0]$$

 $\ensuremath{\mathcal{C}}$ is positive symmetric operator under this inner product

$$\langle \chi | \phi \rangle \equiv \int d^3k \ \chi(k) \phi(k) f_0[1+f_0]$$

In terms of inner product,

$$\partial_t |\chi\rangle = \delta(t) |S\rangle - \mathcal{C} |\chi\rangle$$

and

$$\eta = \frac{1}{6T} \int dt \langle S | \chi(t) \rangle = \frac{1}{3T} \langle S | \mathcal{C}^{-1} | S \rangle$$

Oxford, 8 March 2017: Page 17 of 37

Eigenspectrum of C

Space of $|\chi\rangle$ is \mathcal{L}^2 : ∞ -dimensional.

Any positive symmetric operator has eigenspectrum

$$\mathcal{C} = \sum_{i} \lambda_{i} |\xi_{i}\rangle \langle \xi_{i}| + \int_{D} d\lambda' \lambda' |\xi(\lambda')\rangle \langle \xi(\lambda')|$$

discrete (pole) plus continuous (cut) spectrum, D the portion of \Re^+ which is cut. Eigenvectors obey orthogonality

$$\langle \xi_i | \xi_j \rangle = \delta_{ij}, \quad \langle \xi_i | \xi(\lambda') \rangle = 0, \quad \langle \xi(\lambda') | \xi(\lambda'') \rangle = \delta(\lambda' - \lambda'')$$

Spectral decomposition solves Boltzmann equation:

$$|\chi(t)\rangle = \sum_{i} e^{-\lambda_{i}t} |\xi_{i}\rangle \langle \xi_{i}|S\rangle + \int_{D} d\lambda' e^{-\lambda't} |\xi(\lambda')\rangle \langle \xi(\lambda')|S\rangle$$

Value of η is

$$3T\eta = \sum_{i} \lambda_{i}^{-1} \left(\langle S | \xi_{i} \rangle \right)^{2} + \int_{D} d\lambda' \lambda'^{-1} \left(\langle S | \xi(\lambda') \rangle \right)^{2}$$

Retarded function has poles at $\omega = -i\lambda_i$, residue $(\langle \xi_i | S \rangle)^2$, and cuts along -iD with discontinuity $(\langle \xi(\lambda') | S \rangle)^2$

If only I could find this decomposition explicitly.

Oxford, 8 March 2017: Page 19 of 37

Test function method

Work in finite-dimensional subspace spanned by test functions:

$$|\chi\rangle = \sum_{i=1}^{N} c_i |\phi_i\rangle$$

Test functions I will use:

$$\phi_{i,\text{Yaffe}}(k) = \frac{k^{i+1}T^{M-i-2}}{(k+T)^{M-1}}, \qquad i = 1, \dots, N, \quad N \ge M$$

Need to orthonormalize (easy). Large M: basis more complete everywhere. Large N - M: more complete UV. AMY used N = M but we don't have to.

Oxford, 8 March 2017: Page 20 of 37

Test function method

Find "vector"

$$S_i = \langle S | \phi_i \rangle = \int d^3 p S(p) \phi_i(p) f_0[1 + f_0]$$

Find "matrix"

$$C_{ij} = \langle \phi_i | \mathcal{C} | \phi_j \rangle = \int d^3 p d^3 k \phi_i(p) \phi_j(k) \mathcal{C}_{k,p} f_0[1 + f_0]$$

Eigenspectrum of C_{ij} : discrete spectrum as before

Oxford, 8 March 2017: Page 21 of 37

Test function method

Discontinuities purely on negative imaginary axis. But this is from kinetic theory, not this approximate method. Method automatically "predicts" discrete spectrum of poles. Like our Padé approximation – "forces" nonanalyticity structure through approximation scheme.

Try to tell if it's really poles or cuts by varying basis size, seeing whether poles stay put or "fill in" denser and denser.

Oxford, 8 March 2017: Page 23 of 37

Oxford, 8 March 2017: Page 24 of 37

Oxford, 8 March 2017: Page 25 of 37

Oxford, 8 March 2017: Page 26 of 37

Oxford, 8 March 2017: Page 27 of 37

Oxford, 8 March 2017: Page 28 of 37

Oxford, 8 March 2017: Page 29 of 37

Oxford, 8 March 2017: Page 30 of 37

Oxford, 8 March 2017: Page 31 of 37

Oxford, 8 March 2017: Page 32 of 37

Oxford, 8 March 2017: Page 33 of 37

Oxford, 8 March 2017: Page 34 of 37

Expand UV power allowed

Oxford, 8 March 2017: Page 35 of 37

My interpretation

- Looks to me like a cut!
- Dominant contribution from one scale
- Cut discontinuity falls fast at smaller ω
- Discontinuity also falls fast at larger ω
- Large/small ω from small/large-k particles??

Conclusions

It looks to me like

- Considering $\langle T_{xy}T_{xy}(\omega \ll T, k=0) \rangle$
- $\lambda \phi^4$ theory at weak coupling has a cut at strictly imaginary ω
- Cut has a narrow region of large discontinuity
- Extends to larger ω with small discontinuity (forever? yes at small λ , cut off by thermal mass...)
- Extends to small ω with small discontinuity (all the way to $\omega = 0$? If so, exponentially small)