## Analytics of $T_{x y} T_{x y}(k=0)$ in $\lambda \phi^{4}$ theory

Andrei keeps asking me
"What is analytical structure of

$$
\int d^{4} x e^{i \omega t}\left\langle T_{x y}(t, x) T_{x y}(0,0)\right\rangle=\langle T T\rangle(\omega, 0)
$$

in complex $\omega$ plane at weak coupling?"
I will try to address this in $\lambda \phi^{4}$ theory
Limited tools make it hard to find true analytical form, just some limited information we will have to interpret.

## What I will talk about

- What happens to a cut when you fit it with poles+zeros?
- How can you tell if it's just a cut, or a mix of poles and cuts?
- Kinetic theory review
- Analytics and poles/cuts in $\lambda \phi^{4}$


## What does a cut look like

## if I can only see poles + zeros?

Consider the function

$$
f(x)=\ln (1+x)
$$

Cut from -1 to $-\infty$


Suppose we only had information from the point $x=0$.

Taylor:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^{n}}{n}
$$

Does terrible job!


## Why so bad?

Taylor is same as assuming function has $n$ zeros and no poles.
Not good description of a cut!
Assume instead that function has 1 more zero than pole:
Padé

$$
P_{N, N-1}(x)=\frac{\sum_{n=1}^{N} d_{n} x^{n}}{1+\sum_{n=1}^{N-1} c_{n} x^{n}}
$$

Taylor expand $P(x)$ to order $2 N-1$
Choose unique $d_{n}, c_{n}$ such that Taylor series of $P$ and Taylor series of $\ln (1+x)$ agree through $2 N-1$ terms

Does a far better job!

## Padé Approximations of $\ln (1+x)$

Here are $(1,0),(2,1)$, $(3,2)$, and $(4,3)$ Padé approximants of $\ln (1+x)$.


## What is this mess at $x<-1$ ?

Padé is:

$$
\frac{d_{1} x+d_{2} x^{2}+\ldots}{1+c_{1} x+c_{2} x^{2}+\ldots}=\frac{A\left(x-z_{1}\right)\left(x-z_{2}\right) \ldots}{\left(x-p_{1}\right)\left(x-p_{2}\right) \ldots}
$$

product of zeros and poles, at $z_{1}, \ldots$ and $p_{1}, \ldots$

Cut got replaced by series of zeros and poles.
Trying to describe a cut as a series of zeros and poles.

For last two, one zero is off edge of plot.


## What if there is also a true pole?

Consider function

$$
f(x)=\frac{\sqrt{(x+2)(x+3) / 6}}{x+1}
$$

Pole at $x=-1$
Cut from $x=-2$ to $x=-3$

Fit it with an $(N, N)$ Padé approximant
(Taylor series is, once again, crap)

## Pole/zero fitting of a pole and cut



Pole treated as pole.
Cut $=N$ zeros, $N-1$ poles

## Pole/zero fitting of a pole and cut



Pole stays put as increase Padé size.
zeros/poles get tighter together.
Note: not evenly spaced

I can tell that there is an isolated pole in front of cut!

## Back to $T T$ correlation function

Shear viscosity determined by correlator

$$
\eta=\frac{1}{6 T} \lim _{\omega \rightarrow 0} \int d^{3} x d t e^{i \omega t}\left\langle T_{x y}(x, t) T_{x y}(0,0)\right\rangle
$$

What is functional dependence on $\omega$, keeping $\int d^{3} x$ (vanishing $\vec{k}$ )?

Are there distinct poles? Purely imaginary, or real parts?
Or are there cuts? Where, what discontinuity?
Or both? What is nonanalyticity nearest the real axis?

## Why we need resummations



Simplest diagram: 1 loop
Blobs are $T_{x y}$ insertions
Propagators carry
4-momentum $\pm P^{\mu}$
are "cut", eg,

$$
\Delta(p)=2 \pi[1+f(p)] \delta\left(p^{2}\right)
$$

on-shell Delta function (at free level). Divergent:

$$
\int d^{4} p 2 \pi f(p)[1+f(p)] \delta\left(p^{2}\right) \delta\left(p^{2}\right)
$$

## Therefore you need

To get finite answer you MUST include scattering, width: on-shell $\delta$ becomes Lorentzian


$$
\int d^{4} p f[1+f]\left(\delta\left(p^{2}\right)\right)^{2} \Longrightarrow \int d^{4} p f[1+f]\left(\frac{\Gamma p^{0}}{\left(p^{2}\right)^{2}+\Gamma^{2} p_{0}^{2}}\right)^{2}
$$

Divergence becomes $T^{5} / \Gamma \sim T^{4} / \lambda^{2}\left(\Gamma\right.$ is 2-loop, $\left.\propto \lambda^{2}\right)$

## Ladder resummation

Higher loops involve more powers of $1 / \Gamma$. Compensate $\lambda^{2}$ loop "cost". Also restore stress-tensor

conservation.
Each "rail" at different (matching pair of) momentum than last. Each rail $\propto \lambda^{-2}$, each "rung" $\propto \lambda^{2}$.

Neglecting these gets answer wrong by factor $\simeq 3$.

## Effective kinetic theory

Effective theory resums these ladders.
Contribution of rung-pair described by

$$
\delta f(k, t)=f_{0}(k)\left[1+f_{0}(k)\right] \chi(k, t)
$$

( $f_{0}$ Bose distribution) Evolves with time according to

$$
\begin{aligned}
\partial_{t} \chi(k, t) & =S(k) \delta(t)-\mathcal{C}[\chi] \\
& =S(k) \delta(t)-\int d^{3} p \mathcal{C}_{p, k} \chi(p) \\
& =S(k) \delta(t)-\int d^{3} p\left[\Gamma_{k} \delta^{3}(p-k)-\mathcal{C}_{k \rightarrow p}\right] \chi(p)
\end{aligned}
$$

First(loss), second(gain) term in [] from rails/rungs.

## Connection to $\eta$

Correlator $\left\langle T_{x y}(t) T_{x y}(0)\right\rangle$ given by

$$
T_{x y}(t)=\int d^{3} k \chi(k) S(k) f_{0}\left[1+f_{0}\right]
$$

$\mathcal{C}$ is positive symmetric operator under this inner product

$$
\langle\chi \mid \phi\rangle \equiv \int d^{3} k \chi(k) \phi(k) f_{0}\left[1+f_{0}\right]
$$

In terms of inner product,

$$
\partial_{t}|\chi\rangle=\delta(t)|S\rangle-\mathcal{C}|\chi\rangle
$$

and

$$
\eta=\frac{1}{6 T} \int d t\langle S \mid \chi(t)\rangle=\frac{1}{3 T}\langle S| \mathcal{C}^{-1}|S\rangle
$$

Oxford, 8 March 2017: Page 17 of 37

## Eigenspectrum of $\mathcal{C}$

Space of $|\chi\rangle$ is $\mathcal{L}^{2}: \infty$-dimensional.
Any positive symmetric operator has eigenspectrum

$$
\mathcal{C}=\sum_{i} \lambda_{i}\left|\xi_{i}\right\rangle\left\langle\xi_{i}\right|+\int_{D} d \lambda^{\prime} \lambda^{\prime}\left|\xi\left(\lambda^{\prime}\right)\right\rangle\left\langle\xi\left(\lambda^{\prime}\right)\right|
$$

discrete (pole) plus continuous (cut) spectrum, $D$ the portion of $\Re^{+}$which is cut.
Eigenvectors obey orthogonality

$$
\left\langle\xi_{i} \mid \xi_{j}\right\rangle=\delta_{i j}, \quad\left\langle\xi_{i} \mid \xi\left(\lambda^{\prime}\right)\right\rangle=0, \quad\left\langle\xi\left(\lambda^{\prime}\right) \mid \xi\left(\lambda^{\prime \prime}\right)\right\rangle=\delta\left(\lambda^{\prime}-\lambda^{\prime \prime}\right)
$$

Spectral decomposition solves Boltzmann equation:
$|\chi(t)\rangle=\sum_{i} e^{-\lambda_{i} t}\left|\xi_{i}\right\rangle\left\langle\xi_{i} \mid S\right\rangle+\int_{D} d \lambda^{\prime} e^{-\lambda^{\prime} t}\left|\xi\left(\lambda^{\prime}\right)\right\rangle\left\langle\xi\left(\lambda^{\prime}\right) \mid S\right\rangle$
Value of $\eta$ is

$$
3 T \eta=\sum_{i} \lambda_{i}^{-1}\left(\left\langle S \mid \xi_{i}\right\rangle\right)^{2}+\int_{D} d \lambda^{\prime} \lambda^{\prime-1}\left(\left\langle S \mid \xi\left(\lambda^{\prime}\right)\right\rangle\right)^{2}
$$

Retarded function has poles at $\omega=-i \lambda_{i}$, residue $\left(\left\langle\xi_{i} \mid S\right\rangle\right)^{2}$, and cuts along $-i D$ with discontinuity $\left(\left\langle\xi\left(\lambda^{\prime}\right) \mid S\right\rangle\right)^{2}$

If only I could find this decomposition explicitly.

## Test function method

Work in finite-dimensional subspace spanned by test functions:

$$
|\chi\rangle=\sum_{i=1}^{N} c_{i}\left|\phi_{i}\right\rangle
$$

Test functions I will use:

$$
\phi_{i, \text { Yaffe }}(k)=\frac{k^{i+1} T^{M-i-2}}{(k+T)^{M-1}}, \quad i=1, \ldots, N, \quad N \geq M
$$

Need to orthonormalize (easy). Large $M$ : basis more complete everywhere. Large $N-M$ : more complete UV. AMY used $N=M$ but we don't have to.

## Test function method

Find "vector"

$$
S_{i}=\left\langle S \mid \phi_{i}\right\rangle=\int d^{3} p S(p) \phi_{i}(p) f_{0}\left[1+f_{0}\right]
$$

Find "matrix"

$$
C_{i j}=\left\langle\phi_{i}\right| \mathcal{C}\left|\phi_{j}\right\rangle=\int d^{3} p d^{3} k \phi_{i}(p) \phi_{j}(k) \mathcal{C}_{k, p} f_{0}\left[1+f_{0}\right]
$$

Eigenspectrum of $C_{i j}$ : discrete spectrum as before

## Test function method

Discontinuities purely on negative imaginary axis.
But this is from kinetic theory, not this approximate method.
Method automatically "predicts" discrete spectrum of poles.
Like our Padé approximation - "forces" nonanalyticity structure through approximation scheme.

Try to tell if it's really poles or cuts by varying basis size, seeing whether poles stay put or "fill in" denser and denser.

## 1 basis element



Oxford, 8 March 2017: Page 23 of 37

## 2 basis elements



Oxford, 8 March 2017: Page 24 of 37

## 3 basis elements



Oxford, 8 March 2017: Page 25 of 37

## 4 basis elements



Oxford, 8 March 2017: Page 26 of 37

## 5 basis elements



Oxford, 8 March 2017: Page 27 of 37

## 6 basis elements



Oxford, 8 March 2017: Page 28 of 37

## 7 basis elements



Oxford, 8 March 2017: Page 29 of 37

## 8 basis elements



Oxford, 8 March 2017: Page 30 of 37

## 9 basis elements



Oxford, 8 March 2017: Page 31 of 37

## 10 basis elements



Oxford, 8 March 2017: Page 32 of 37

## 11 basis elements



Oxford, 8 March 2017: Page 33 of 37

## 12 basis elements



Oxford, 8 March 2017: Page 34 of 37

## Expand UV power allowed



Oxford, 8 March 2017: Page 35 of 37

## My interpretation

- Looks to me like a cut!
- Dominant contribution from one scale
- Cut discontinuity falls fast at smaller $\omega$
- Discontinuity also falls fast at larger $\omega$
- Large/small $\omega$ from small/large- $k$ particles??


## Conclusions

It looks to me like

- Considering $\left\langle T_{x y} T_{x y}(\omega \ll T, k=0)\right\rangle$
- $\lambda \phi^{4}$ theory at weak coupling has a cut at strictly imaginary $\omega$
- Cut has a narrow region of large discontinuity
- Extends to larger $\omega$ with small discontinuity (forever? yes at small $\lambda$, cut off by thermal mass...)
- Extends to small $\omega$ with small discontinuity (all the way to $\omega=0$ ? If so, exponentially small)

