
Analytics of TxyTxy(k = 0) in λφ4 theory

Andrei keeps asking me

“What is analytical structure of

∫

d4xeiωt〈Txy(t, x)Txy(0, 0)〉 = 〈TT 〉(ω, 0)

in complex ω plane at weak coupling?”

I will try to address this in λφ4 theory

Limited tools make it hard to find true analytical form,

just some limited information we will have to interpret.
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What I will talk about

• What happens to a cut when you fit it with

poles+zeros?

• How can you tell if it’s just a cut, or a mix of poles and

cuts?

• Kinetic theory review

• Analytics and poles/cuts in λφ4
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What does a cut look like

if I can only see poles + zeros?

Consider the function

f(x) = ln(1 + x)

Cut from −1 to −∞
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Suppose we only had information from the point x = 0.

Taylor:

∞
∑

n=1

(−1)n+1xn

n

Does terrible job!
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Why so bad?

Taylor is same as assuming function has n zeros and no

poles.

Not good description of a cut!

Assume instead that function has 1 more zero than pole:

Padé

PN,N−1(x) =

∑N
n=1 dnx

n

1 +
∑N−1

n=1 cnxn

Taylor expand P (x) to order 2N − 1

Choose unique dn, cn such that Taylor series of P and

Taylor series of ln(1 + x) agree through 2N − 1 terms

Does a far better job!
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Padé Approximations of ln(1 + x)

Here are (1, 0), (2, 1),

(3, 2), and (4, 3) Padé

approximants of

ln(1 + x).
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What is this mess at x < −1?

Padé is:

d1x+ d2x
2 + . . .

1 + c1x+ c2x2 + . . .
=

A(x− z1)(x− z2) . . .

(x− p1)(x− p2) . . .

product of zeros and poles, at z1, . . . and p1, . . .

Cut got replaced by series of zeros and poles.

Trying to describe a cut as a series of zeros and poles.
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For last two,

one zero is off

edge of plot.
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What if there is also a true pole?

Consider function

f(x) =

√

(x+ 2)(x+ 3)/6

x+ 1

Pole at x = −1

Cut from x = −2 to x = −3

Fit it with an (N,N) Padé approximant

(Taylor series is, once again, crap)
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Pole/zero fitting of a pole and cut

Even (1,1) Padé is

great!

Pole treated as pole.

Cut = N zeros, N − 1

poles
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Pole/zero fitting of a pole and cut

Pole stays put as

increase Padé size.

zeros/poles get tighter

together.

Note: not evenly

spaced

I can tell that there is an isolated pole in front of cut!
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Back to TT correlation function

Shear viscosity determined by correlator

η =
1

6T
lim
ω→0

∫

d3xdteiωt〈Txy(x, t)Txy(0, 0)〉

What is functional dependence on ω, keeping
∫

d3x

(vanishing ~k)?

Are there distinct poles? Purely imaginary, or real parts?

Or are there cuts? Where, what discontinuity?

Or both? What is nonanalyticity nearest the real axis?
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Why we need resummations

Simplest diagram: 1 loop

Blobs are Txy insertions

Propagators carry

4-momentum ±P µ

Propagators

are “cut”, eg,

∆(p) = 2π[1+f(p)]δ(p2)

on-shell Delta function (at free level). Divergent:

∫

d4p2π f(p)[1+f(p)] δ(p2) δ(p2)
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Therefore you need

To get finite answer you

MUST include scattering,

width: on-shell δ becomes

Lorentzian

∫

d4pf [1+f ]
(

δ(p2)
)2

=⇒
∫

d4pf [1+f ]

(

Γp0

(p2)2 + Γ2p20

)2

Divergence becomes T 5/Γ ∼ T 4/λ2 (Γ is 2-loop, ∝ λ2)
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Ladder resummation

Higher loops involve

more powers of 1/Γ.

Compensate λ2 loop

“cost”. Also restore

stress-tensor

conservation.

Each “rail” at different (matching pair of) momentum than

last. Each rail ∝ λ−2, each “rung” ∝ λ2.

Neglecting these gets answer wrong by factor ≃ 3.
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Effective kinetic theory

Effective theory resums these ladders.

Contribution of rung-pair described by

δf(k, t) = f0(k)[1 + f0(k)]χ(k, t)

(f0 Bose distribution) Evolves with time according to

∂tχ(k, t) = S(k)δ(t)− C[χ]

= S(k)δ(t)−
∫

d3p Cp,k χ(p)

= S(k)δ(t)−
∫

d3p
[

Γkδ
3(p− k)− Ck→p

]

χ(p)

First(loss), second(gain) term in [] from rails/rungs.
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Connection to η

Correlator 〈Txy(t)Txy(0)〉 given by

Txy(t) =
∫

d3k χ(k)S(k)f0[1+f0]

C is positive symmetric operator under this inner product

〈χ|φ〉 ≡
∫

d3k χ(k)φ(k)f0[1+f0]

In terms of inner product,

∂t|χ〉 = δ(t)|S〉 − C|χ〉

and

η =
1

6T

∫

dt〈S|χ(t)〉 =
1

3T
〈S|C−1|S〉
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Eigenspectrum of C

Space of |χ〉 is L2: ∞-dimensional.

Any positive symmetric operator has eigenspectrum

C =
∑

i

λi|ξi〉〈ξi|+
∫

D
dλ′λ′|ξ(λ′)〉〈ξ(λ′)|

discrete (pole) plus continuous (cut) spectrum, D the

portion of ℜ+ which is cut.

Eigenvectors obey orthogonality

〈ξi|ξj〉 = δij , 〈ξi|ξ(λ
′)〉 = 0 , 〈ξ(λ′)|ξ(λ′′)〉 = δ(λ′ − λ′′)
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Spectral decomposition solves Boltzmann equation:

|χ(t)〉 =
∑

i

e−λit|ξi〉〈ξi|S〉 +
∫

D
dλ′e−λ′t|ξ(λ′)〉〈ξ(λ′)|S〉

Value of η is

3Tη =
∑

i

λ−1
i

(

〈S|ξi〉
)2

+
∫

D
dλ′λ′−1

(

〈S|ξ(λ′)〉
)2

Retarded function has poles at ω = −iλi, residue
(

〈ξi|S〉
)2
,

and cuts along −iD with discontinuity
(

〈ξ(λ′)|S〉
)2

If only I could find this decomposition explicitly.
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Test function method

Work in finite-dimensional subspace spanned by test

functions:

|χ〉 =
N
∑

i=1

ci|φi〉

Test functions I will use:

φi,Yaffe(k) =
ki+1TM−i−2

(k + T )M−1
, i = 1, . . . , N , N ≥ M

Need to orthonormalize (easy). Large M : basis more

complete everywhere. Large N −M : more complete UV.

AMY used N = M but we don’t have to.
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Test function method

Find “vector”

Si = 〈S|φi〉 =
∫

d3pS(p)φi(p)f0[1+f0]

Find “matrix”

Cij = 〈φi|C|φj〉 =
∫

d3pd3kφi(p)φj(k)Ck,pf0[1+f0]

Eigenspectrum of Cij : discrete spectrum as before
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Test function method

Discontinuities purely on negative imaginary axis.

But this is from kinetic theory, not this approximate method.

Method automatically “predicts” discrete spectrum of poles.

Like our Padé approximation – “forces” nonanalyticity

structure through approximation scheme.

Try to tell if it’s really poles or cuts by varying basis size,

seeing whether poles stay put or “fill in” denser and denser.
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1 basis element
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2 basis elements
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3 basis elements
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4 basis elements
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5 basis elements
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6 basis elements
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7 basis elements
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8 basis elements
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9 basis elements
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10 basis elements
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11 basis elements
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12 basis elements
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Expand UV power allowed
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My interpretation

• Looks to me like a cut!

• Dominant contribution from one scale

• Cut discontinuity falls fast at smaller ω

• Discontinuity also falls fast at larger ω

• Large/small ω from small/large-k particles??
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Conclusions

It looks to me like

• Considering 〈TxyTxy(ω ≪ T, k = 0)〉

• λφ4 theory at weak coupling has a cut at strictly

imaginary ω

• Cut has a narrow region of large discontinuity

• Extends to larger ω with small discontinuity

(forever? yes at small λ, cut off by thermal mass...)

• Extends to small ω with small discontinuity

(all the way to ω = 0? If so, exponentially small)
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