

Guy Moore, TU Darmstadt

With Thomas Jahn, Daniel Robaina

- What's **QCD** topology and why is it interesting?
- How can the lattice have topology and why is it hard?
- What's interesting but extra hard at high temperatures?
- Reweighting: methodology, efficacy
- Reweighting: limitations and prognosis

Wien, 1 Dezember 2018 Folie 1 von 25

Dark Matter: a Cosmic Mystery

Atoms: Standard Model.
Dark Energy: Cosmological Constant.
Strange value, but possible
Dark Matter: MYSTERY! NOT SM!

We only know 3 things about dark matter:

- It's Matter: gravitationally clumps.
- It's **Dark**: negligible electric charge, interactions too feeble to be detected except by gravity
- It's **Cold**: negligible pressure by redshift z = 3000

Wien, 1 Dezember 2018 Folie 2 von 25

Another mystery: $\mathbf{T}\text{-symmetry}$ in QED and QCD

T symmetry: "when you run a movie backwards, the *microphysics* is correct."

Statistical mechanics breaks T.

But microphysics very nearly obeys it!

Weak physics breaks \mathbf{T} , but only through very small CKM effects. Observed in handful of experiments, all involving neutral meson oscillation.

No evidence for T viol in E&M or Strong interactions.

Wien, 1 Dezember 2018 Folie 3 von 25

T in E&M

How do E, B fields change when you run movie backwards?

Q's unchanged, but J's flip. E same, but B flips.

Wien, 1 Dezember 2018 Folie 4 von 25

Looking for \mathbf{T} : Neutron EDM

Put neutron in \vec{B} field – spin lines up with \vec{B} .

Is there an Electric Dipole Moment (EDM) aligned with spin? If so: looks different when movie runs backwards, T viol! *Null results down to* $3 \times 10^{-26} e \, cm$

> CRC-TR 211 Strong-interaction matter

Wien, 1 Dezember 2018 Folie 5 von 25

$\mathbf T$ in $\boldsymbol{\mathsf{QCD}}$

QCD field strength $F_a^{\mu\nu}$ group-adjoint, rank-2 tensor. Lagrangian must be group-singlet, Lorentz scalar. 2 possible:

$$S = \int dt \int d^3x \left(\frac{1}{4g^2} F^{\mu\nu}_a F^a_{\mu\nu} + \frac{\Theta}{64\pi^2} \epsilon_{\mu\nu\alpha\beta} F^{\mu\nu}_a F^{\alpha\beta}_a \right)$$

Two unknowns g^2 , Θ . Good news: second term a total deriv.

$$\frac{1}{64\pi^2} \epsilon_{\mu\nu\alpha\beta} F_a^{\mu\nu} F_a^{\alpha\beta} = \partial^{\mu} K_{\mu} ,$$
$$2K_{\mu} = \epsilon_{\mu\nu\alpha\beta} \left(A_a^{\nu} F_a^{\alpha\beta} + \frac{f_{abc}}{3} A_a^{\nu} A_b^{\alpha} A_c^{\beta} \right)$$

Violates \mathbf{T} ! But, integrates to a boundary term.

Wien, 1 Dezember 2018 Folie 6 von 25

Gauge singularities and Topology

 A^{μ} : coordinate choice on connection

Surface around cutout = S^3 .

 $A^{\mu} = \Omega^{-1} \partial^{\mu} \Omega$ pure-gauge on this surface. $\pi_3(SU(N)) = \mathcal{Z}$, index "Instanton number"

$$N_I = \int K_{\mu} d\Sigma^{\mu} = \int d^4x \frac{1}{64\pi^2} \epsilon_{\mu\nu\alpha\beta} F_a^{\mu\nu} F_a^{\alpha\beta}$$

Wien, 1 Dezember 2018 Folie 7 von 25

Axions

QCD needs to be **T** invariant, eg, $\Theta = 0$. Mechanism? Introduce complex scalar φ , U(1)-breaking potential

$$\mathcal{L}_{\varphi} = \partial_{\mu}\varphi^*\partial^{\mu}\varphi + \frac{m_r^2}{8f_a^2}\left(2\varphi^*\varphi - f_a^2\right)^2 + \dots$$

whith ... heavy DOF which gives effective interaction

$$\mathcal{L}_{\varphi,QCD} = \frac{1}{64\pi^2} \epsilon_{\mu\nu\alpha\beta} F_a^{\mu\nu} F_a^{\alpha\beta} \operatorname{Arg} \varphi$$

Replaces Θ with $Arg(\varphi)$ which is dynamical QCD dynamics prefer the **T** respecting value.

and $Arg(\varphi) = Axion$ is CDM candidate!

Wien, 1 Dezember 2018 Folie 8 von 25

Axion dynamics

Axion likely starts in random (space-nonuniform?) state. Dynamics: requires QCD $\epsilon_{\mu\nu\alpha\beta}F_a^{\mu\nu}F_a^{\alpha\beta}$ physics at high-T

Long story short: want to know

$$\chi(T) = \frac{T}{V} \langle N_I^2 \rangle$$

as function of temperature for $T \in [3T_c, 7T_c]$.

Dominated by well-localized gauge-field clumps with $\int \epsilon_{\mu\nu\alpha\beta} F_a^{\mu\nu} F_a^{\alpha\beta} = \pm 1$ "Calorons"

At this temperature: nonperturbative. need lattice QCD

Wien, 1 Dezember 2018 Folie 9 von 25

Why topology is "impossible" on lattice

Continuum: N_I is integer. each N_I value: disconnected region of config. space.

Lattice config. space $[SU(3)]^{4N_tN_xN_yN_z}$ is simply connected.

Lattice configurations must somehow "fill in gaps" between distinct topologies.

Wien, 1 Dezember 2018 Folie 10 von 25

Why topology is possible on lattice

Think about different sizes of calorons on a lattice:

Big caloron: definitely there. Should have $N_I = 1$. Smaller than latt-spacing: should *not* be there, $N_I = 0$ 1-2 latt spacings across: now what? Ambiguous! Topology changes because of "calorons" 1-2*a* across...

Wien, 1 Dezember 2018 Folie 11 von 25

Why topology is hard on the lattice

- Continuum limit: small calorons have large $2\pi/\alpha_s$ value, and are rare. Get rarer with $a^{-7-N_f/3}$.
- High temperatures: all calorons are small, $\rho < 1/T$. Get rarer with $T^{-7-N_f/3}$.

Continuum limit: hard to *move between* caloron sectors. **Poor sampling.**

High temperature: rare to sample $N_I \neq 0$ sectors. Poor statistics even if you could get between sectors.

I will try to study topology at $T \gg T_c!$

Wien, 1 Dezember 2018 Folie 12 von 25

Configuration space

Configurations at small

Lattice effectively provides narrow "bridges" between N_I sectors. Small a: narrower. Hi T: $N \neq 0$ is smaller.

How to measure $\chi(T)$ at $T \gg T_c$

Sample??
$$\chi = \frac{1}{V} \frac{\int \mathcal{D}A_{\mu} e^{-\int d^4x \operatorname{Tr} F^2/2g^2} \Theta(N_I^2 - N_{\text{thresh}}^2)}{\int \mathcal{D}A_{\mu} e^{-\int d^4x \operatorname{Tr} F^2/2g^2}}$$

Reweighting: general idea

Identity:

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}\varphi e^{-S[\varphi]} \mathcal{O}[\varphi]}{\int \mathcal{D}\varphi e^{-S[\varphi]}} = \frac{\int \mathcal{D}\varphi e^{-S[\varphi]} e^{+W[Q[\varphi]]} e^{-W[Q[\varphi]]} \mathcal{O}[\varphi]}{\int \mathcal{D}\varphi e^{-S[\varphi]} e^{+W[Q[\varphi]]} e^{-W[Q[\varphi]]}}$$

Here \mathcal{O} is desired operator, Q is *some* other operator. How to use it: use $e^{-S[\varphi]}e^{W[Q]}$ as sampling weight!

$$\langle \mathcal{O} \rangle = \frac{\sum_{i} e^{-W[Q_i]} \mathcal{O}_i}{\sum_{i} e^{-W[Q_i]}}$$
 Sample-weight: $e^{-S} e^{+W[Q]}$

No matter how ugly $Q[\varphi]$ is, Metropolis always works! Pick Q and W so you sample the things you need.

Plan to use reweighting

Choose function Q, weight W[Q] such that we spend about equal time sampling:

- Ordinary $N_I = 0$ configurations
- Interesting $N_I = \pm 1$ configurations
- Small calorons ("dislocations") you need to get between $N_I = 0$ and $N_I = \pm 1$

Need a way to tell these 3 things apart.

Wien, 1 Dezember 2018 Folie 16 von 25

Aside about $\epsilon_{\mu\nu\alpha\beta}F^{\mu\nu}_{a}F^{\alpha\beta}_{a}$

Not hard to find lattice implementation. (Clover). But:

$$F_{\mu\nu}\tilde{F}_{\text{latt}}^{\mu\nu} = F_{\mu\nu}\tilde{F}_{\text{contin}}^{\mu\nu} + c_1 a^2 D^{\mu} D^{\mu} F_{\mu\nu} \tilde{F}_{\text{contin}}^{\mu\nu} + c_2 a^4 \dots$$

Contaminated. $F\tilde{F}$ integrates to integer, others add garbage. Garbage from short-distance fluct. Remove with gradient flow. Gradient flow $\tau_{\rm F} > 1$: kill fluctuation and small calorons. Less flow $\tau_{\rm F} \sim 0.4$: less fluctuation; small caloron $N_I \sim 1/2$.

Use "incomplete" gradient flow to tell no caloron from small caloron from full caloron.

Wien, 1 Dezember 2018 Folie 17 von 25

Reweighting: summary

- I perform a Markov-chain Monte-Carlo over configurations
- Metropolis step to make some Q-values more common
- Sample is now *enriched* in $N_I = \pm 1$ configs
- Also enhances "tunneling" between topologies
- Good statistics!
- But I **know** the level of over-sampling. Still get correct expectation values.

Wien, 1 Dezember 2018 Folie 18 von 25

Reweighting: cartoon

Reweighting enhances W[Q] sampling of both the "bridge" between Q = 0and Q = 1 configs, and "Bridge" Q=1 the Q = 1 configs. Q=0 Wien, 1 Dezember 2018 Folie 19 von 25

trong-interaction ma

But how do you choose W[Q]?

Question: how much to "reweight" to emphasize $N_I = 1$ configs?

Answer: until $N_I = 1$, $N_I = 0$ roughly equal in sample But that's roughly the thing I am trying to learn! If I choose W[Q = 1] - W[Q = 0] too big, I will only sample $N_I = 1$ and miss $N_I = 0$ – also a problem.

Need some *iterative*, *self-consistent* approach. Key: reduce W[Q] wherever you sample a lot.

Wien, 1 Dezember 2018 Folie 20 von 25

Bootstrap determination of W[Q]

Piecewise-linear W[Q]MC evolution Each step: lower W at current Q-value Reduce rate-of-change with time

Then, fix W[Q] and do a Monte-Carlo "for keeps"

Wien, 1 Dezember 2018 Folie 21 von 25

Does it work?

Monte-Carlo can now see both Q = 0 and Q = 1Transitions between Q-values control statistical power

Wien, 1 Dezember 2018 Folie 22 von 25

Does it work?

 $N_t = 8$, exploring flow depth, Q-threshold, aspect ratio

Wien, 1 Dezember 2018 Folie 23 von 25

Is this a silver bullet?

Still has limitations!

- Requires very short HMC trajectories, *Q*-measurement (numerically inefficient)
- Becomes inefficient at large aspect ratio
- Becomes inefficient in continuum (large N_t) limit
- Unquenched theory not yet explored expect issues at high-T with near-zero modes of Dirac operator

Wien, 1 Dezember 2018 Folie 24 von 25

Conclusions

- Topology is hard for 2 reasons:
 - * Can't get *between* topologies at small a
 - * Can't get to $Q \neq 0$ at high-T
- Reweighting nice general-purpose approach
- Q after modest gradient flow is good reweighting variable
- Overcomes *both* limitations, but
- Not quite a "silver bullet"

Wien, 1 Dezember 2018 Folie 25 von 25

Multicanonical method?

Curve difference \Rightarrow probability ratio, Q = 1/Q = 0Need explicit calculation at *one* T-value

Wien, 1 Dezember 2018 Folie 26 von 25

Future plans

- Implement multicanonical approach (still quenched)
- Cross-check: reweight at two *T*-values
 vs Multicanonical difference between them
- How high-T can we reweight in *unquenched*?
- Deal with near-0 modes in unquenched?
- Quark masses in multicanonical approach?

Wien, 1 Dezember 2018 Folie 27 von 25