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• Why do we want to do relativistic Hydro?

• Why second order hydro, and what are coefficients?

• Perturbative results and limitations

• Kubo Relations for Coefficients

• Self-consistency: hydro’s contrib. to hydro coeff.

• Conclusions
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LHC collides lead nuclei (82p+ 126n = 208 nucleons)

leading to 3200 charged,

> 1600 neutral particles

between θ = 40◦ and

θ = 140◦ (−1 < η < 1)

Each n, p gets “torn open,” spilling out many g, q, q̄ inside
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Hot ball of 5000 excitations

12 particles thick

20
 p

ar
tic

le
s 

w
id

e 5000 excitations is around 20× 20× 12

across. Enough to show collective or

“fluid” behavior?

Hydrodynamics: Many “subsystems” big enough for local

equilibration in each (Different regions with different T,~v,...).

Not obvious but plausible
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Testing for local equilibration

Nuclei generically strike off-center

=⇒

leading to irregular shaped region of plasma

“Almond sliver” with long axis, short axis, and very short

initial thickness along beam direction.
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Behavior IF no re-interactions (transparency)

Just fly out and hit the detector.

Detector will see xy plane isotropy
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local CM motions

⇒

Pressure contours Expansion pattern

Anisotropy leads to anisotropic (local CM motion) flow.
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Free particle propagation:

• System-average CM flow velocities 〈v2x,CM〉 > 〈v2y,CM〉

• Must have local CM 〈p2x〉 < 〈p2y〉 so total 〈p2x〉 = 〈p2y〉

Efficient Equilibration:

• System-average CM flow still has 〈v2x,CM〉 > 〈v2y,CM〉

• system changes locally towards 〈T xx
local CM〉 = 〈T yy

local CM〉

• Adding these together, 〈T xx
tot,labframe〉 > 〈T yy

tot,labframe〉

Net “Elliptic Flow” v2 ≡ p2x−p2y
p2x+p2y

measures re-interaction
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Measured elliptic flow vs. theory fits

Hydrodynamic fits – based on assuming much rescattering
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Elliptic flow, differential in particle transverse momentum.

Two guesses at initial conditions (left and right),

Perfect rescattering (top) vs incomplete re-scattering (lower)
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Ideal Hydrodynamics

Ideal hydro: stress-energy conservation

∂µT
µν = 0 (4 equations, 10 unknowns)

plus local equilibrium assumption:

T µν = T µν
eq = ǫuµuν + P (ǫ)∆µν ,

uµuµ = −1,∆µν = gµν + uµuν

depends on 4 parameters (ǫ, 3 comp of uµ): closed.

works pretty well for heavy ions. But quantify corrections!
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Nonideal Hydro

Each region feels information about neighboring regions

diffusing across its boundary.

~v nonuniformity means

nonvanishing ∇ivj which will

influence center region

(diffusion of information)

Decompose: scalar, antisymm, traceless symm tensor

∇ivj =
δij
3
∇·v+1

2
(∇ivj−∇jvi)+

1

2

(

∇ivj+∇jvi−
2δij
3

∇·v
)
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What each tensor piece means

δij∇ · v ∇ivj −∇jvi ∇ivj +∇jvi − ..

Divergence Vorticity Shear flow

scalar divergence can change scalar pressure P ⇒ Pequil. − ζ∇ · v
symm. tensor shear flow can change symm. tensor stress tensor

Tij ⇒ Tij,equil. − η(∇ivj +∇jvi − ..)

pseudovector vorticity cannot change either
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Application to Nonequilibrium Hydro

Assume that ideal hydro is “good starting point,” look for

small systematic corrections.

Near equilibrium iff ttherm ≪ tvary, lvary/v (so ∂ small)

Allows expansion of corrections in gradients:

Tµν = Tµν
eq +Πµν [∂, ǫ, u]

Πµν = O(∂u, ∂ǫ) +O(∂2u, (∂u)2, . . .) +O(∂3 . . .)

For Conformal theory Tµ
µ = 0 = Πµ

µ, 1-order term unique:

Πµν = −ησµν , σµν = ∆µα∆νβ
(

∂αuβ + ∂βuα − 2

3
gαβ∂ · u

)

Coefficient η is shear viscosity.
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So why not consider (Navier-Stokes)

T µν = ǫuµuν + P∆µν − ησµν ?

Because in relativisitc setting, it is

• Acausal: shear viscosity is transverse momentum diffusion. Diffusion

∂tP⊥ ∼ ∇2P⊥ has instantaneous prop. speed. Müller 1967, Israel+Stewart 1976

• Unstable: v > c prop + non-uniform flow velocity → propagate from

future into past, exponentially growing solutions. Hiscock 1983

Problem: short length scales, η|σ| ∼ P . Numerics must treat

these scales (or there’s “numerical viscosity”)
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Israel-Stewart approach

Add one second order term:

Πµν = −ησµν + ητπ u
α∂ασ

µν

Make (1’st order accurate) ησ → −Π in order-2 term:

τπ u
α∂αΠ

µν ≡ τπ Π̇
µν = −ησµν − Πµν

Relaxation eq driving Πµν towards −ησµν .

Momentum diff. no longer instantaneous.

Causality, stability are restored (depending on τπ)

But why only one 2’nd order term???
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Second order hydrodynamics

It is more consistent to include all possible 2’nd order terms.

Assume conformality and vanishing chem. potentials:

5 possible terms Baier et al, [arXiv:0712.2451]

Πµν
2 ord. = ητπ

[

uα∂ασ
µν+

1

3
σµν∂αu

α
]

+ λ1 [σ
µ
ασ

να−(trace)]

+λ2

[

1

2
(σµ

αΩ
να + σν

αΩ
µα)− (trace)

]

+λ3 [Ω
µ
αΩ

να − (trace)] + κ (Rµν − . . .) ,

Ωµν ≡ 1

2
∆µα∆νβ(∂

αuβ − ∂βuα) [vorticity] .

Let’s learn what we can about this theory, its 6 coeff’s
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Step 1: What do σµν, Ωµν mean?

Same-sign ∂xvy = ∂yvx Opposite-sign ∂xvy = −∂yvx

Shear flow Vorticity

First order: Πxy is symmetric. Can scale with

σxy = ∂xvy + ∂yvx but not with 2Ωµν = ∂xvy − ∂yvx

Sign: fluid must “push back” against shear flow by stability!
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τπ: if shear flow σµν “turns

on”, delay in Πµν “turning

on”

λ2: if shear makes Πµν 6= 0,

vorticity rotates Πµν axis from shear

axis.

Sensible sign if λ2 < 0 (sorry)

λ1: some nonlinearity. λ3: rotate about z axis→ T zz reduced
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What do I expect these coefficients to be?

We can’t calculate in full QCD at T = 1.5Tc :-(

We can calculate in two “toy” models:

• QCD in weak coupling

[bravely extrapolate to realistic coupling]

• Analog theory, N = 4 SYM at strong-coupling

[bravely hope it is enough like QCD]

In N = 4 SYM I find η/s = 1/4π.

In weak-coupling QCD I find . . .
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Perturbative QCD calculation

P. Arnold GM L. G. Yaffe 2003 compute with “souped-up” kinetic theory

2 layers of effective field theory:

• Write down (effective) kinetic theory (Baym’s talk)

• One of matrix elements arises from (LPM) eff. thy:

splitting due to partly-coherent soft scatterings

Needed just to get to leading-order in αs

Range of validity / error estimates?

Requires NLO calculation. Now exists for some quantities,

now know how to incorporate largest NLO (O(gs))

corrections (partial but not complete NLO calculation)
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Perturbative results for η/s

Ouch! Pert thy seems to be very limited!!
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2-order coefficients

Order-2 coefficients: similar poor behavior.

Certain dimensionless ratios are much more robust!

Ratio QCD value SYM value

ητπ(ǫ+P )
η2

5 to 5.9 2.6137
λ1(ǫ+P )

η2
4.1 to 5.2 2

λ2(ǫ+P )
η2

−10 to −11.8 −2.77
κ(ǫ+P )

η2
0 4

λ3(ǫ+P )
η2

0 0

Arguably, we now know these ratios at the factor-of-2 level.

(Probably good enough for hydro!)
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Kubo formulae

We want expressions which relate the transport coefficients

to equilibrium correlation functions in the plasma fluct-diss

Would provide rigorous definition of η, λ123, . . ..

Example: long known that η is given by

η = lim
ω→0

d

dω

∫

d3x dt eiωt
〈[

T xy(x, t) , T xy(0, 0)
]〉

Θ(t)

Similar relations for second-order transport coefficients?
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How to get Kubo relations

Find framework where I can compute Tµν using hydro or using

field theory, both should be valid.

Time-varying geometry does the job:

• Start at t ≪ 0 with flat-space, equilibrium thermal system

ρ = e−HT , gµν = ηµν

• At some time t0 < 0 start deforming metric

gµν = ηµν + hµν(x) in such a way as to force the system to

experience shear and vorticity

• Choose hµν small and slowly varying so you stay near

equilibrium and gradient expansion, hydro are valid
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Give a hydro theorist hxy(z, t), h0x(y) nonzero.

Ask them what T µν(0) will be.

Answer: T µν = (ǫ+ P )uµuν + Pgµν +Πµν

First, find ǫ, u: Hydro says

∇µT
µν = 0 → uµ = (1, 0, 0, 0) +O(∂2) .

Then uµ = (1, h0x, 0, 0), Γ
x
yt etc nonzero.

They give rise to nonzero σxy, Ωxy, etc:

σxy = ∂thxy , Ωxy = −∂yh0x/2

Other terms R〈xy〉, u · ∇σxy found similarly.
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T xy at O(h) and O(∂2), for hxy 6= 0:

T xy = −η∂thxy + ητπ∂
2
t hxy −

κ

2

(

∂2
t hxy + ∂2

zhxy
)

and T xy at O(∂2, h2) for hxz(t), hyz(t), hx0(z), hy0(z) nonzero:

Πxy = η∂t(hxzhyz) +
κ

2

(

hxz∂
2
t hyz+hyz∂

2
t hxz

)

+ λ1∂thxz∂thyz

+ητπ

(

1

2
∂thxz∂zh0y +

1

2
∂thyz∂zh0x

− ∂thxz∂thyz − hxz∂
2
t hyz − hyz∂

2
t hxz

)

−λ2

4
(∂thxz∂zh0y + ∂thyz∂zh0x) +

λ3

4
∂zh0x∂zh0y

So at O(h) T xy depends on η, τπ, κ; at O(h2), depends on all 6!
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Give field theorist hxy(z, t), etc nonzero.

Ask them what T xy will be.

〈Tµν(t)〉 = Tr e−HT eiHtT̂µνe−iHt , Tµν =
−2√−g

∂
√−gL
∂hµν

with H = H[h(t′)]! Schwinger-Keldysh in gµν = ηµν + hµν :

W ≡ ln

∫

C =

D(Φ1,Φ2,Φ3) e
iS1[h1,Φ1]−iS2[h2,Φ2]−S3[Φ3]

S1[h1], S2[h2] depend on independent fields and metrics!

T1 =
−2iδW

δh1
, T2 =

+2iδW

δh2
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Introduce average and difference variables:

hr =
h1+h2

2 , ha = h1 − h2 , Tr =
T1+T2

2 , Ta = T1 − T2

Note, due to signs eiS1−iS2 , Tr =
−2iδW
δha

, Ta = −2iδW
δhr

. Take

δ/δha → 〈T 〉. Then set ha = 0, hr = h, expand in h:

〈Tµν〉h = Gµν
r (0)− 1

2

∫

d4xGµν,αβ
ra (0, x)hαβ(x)

+
1

8

∫

d4xd4yGµν,αβ,γδ
raa (0, x, y)hαβ(x)hγδ(y)

Gµν,αβ...
ra... (0, x . . .) ≡ (−i)n−1(−2i)nδnW

δga,µν(0)δgr,αβ(x) . . .

∣

∣

∣

∣

∣

gµν=ηµν

= (−i)n−1
〈

Tµν
r (0)Tαβ

a (x) . . .
〉

+ c.t.
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Equate: T µν
hydro = T µν

field theory (Matching calculation!)

Use that h slowly varying, find BRSSS 0712.2451

η = −i∂ωG
xy,xy
ra (ω, k)|ω=0=k ,

κ = −∂2
kzG

xy,xy
ra (ω, k)|ω=0=k ,

ητπ =
1

2

(

∂2
ωG

xy,xy
ra (ω, k)− ∂2

kz
Gxy,xy

ra (ω, k)
)∣

∣

∣

ω=0=k
.

And at nonlinear order,

λ1 = ητπ − lim
pt,qt→0

∂2

∂pt∂qt
lim

p,q→0
Gxy,xz,yz

raa (p, q)

λ2 = 2ητπ − 4 lim
pt,q→0

∂2

∂pt∂qz
lim

p,qt→0
Gxy,xz,0y

raa (p, q)

λ3 = −4 lim
p,q→0

∂2

∂pz∂qz
lim

pt,qt→0
Gxy,0x,0y

raa (p, q) .
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Nature of κ and λ3

κ and λ3 have Kubo relations NOT involving ∂t’s.

May (must!) set frequency ω = 0 from outset:

κ = − lim
~q→0

∂2

∂q2z
Gxy,xy

ra (~q, ω = 0)

λ3 = −6 lim
~p,~q→0

∂2

∂py∂qy
Gxx,0x,0x

raa (~p, ωp = 0, ~q, ωq = 0)

But Gra...(ω = 0) = (−)n−1GE(ωE = 0) Euclidean func.

Weak-coupling expansions: κ, λ3 = T 2(O(1) +O(g, g2, . . .))

Leading weak-coupling values calculable and nonzero
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But is hydro even consistent?

We said Πµν = O(∂u) +O(∂2u, (∂u)2) + . . .

based on assumption thermalization is local, microscopic.

Hydro itself predicts long-lived shear,sound modes:

0 = ∂µ
(

T µν = (ǫ+P )uµuν + Pgµν − ησµν
)

fluctuations in uµ, ǫ: dispersion relations

ωshear = i
η

ǫ+ P
k2 , ωsound = ± k√

3
+ i

2η

3(ǫ+ P )
k2

Small k: long lived, dissipation not local,microscopic
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Hydro Waves Contribute to Viscosity!

Consider shear flow:

Shear: transport of x-momentum from middle to edge.

One mechanism: propagation of hydro (sound) waves!

η etc are Wilson coeffs. Do the RG flow!
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How to compute hydro contribution to hydro

Above we found

−i〈T xy
r T xy

a 〉 = Gxy,xy
ra (ω) = P − iηω + ητπω

2 + . . .

Calculate contrib. of hydro modes themselves to Gxyxy.

Feynman rules: T ij = (ǫ+ P )uiuj + Pgij ,

〈uiuj(k, ω)〉 =
T

ǫ+ P

(δij − k̂ik̂j)2γηk
2

(γηk2 − iω)(γηk2 + iω)
shearwave

[

γη = η

ǫ+P
, γ′

η = 4

3
γη

]

+
T

ǫ+ P

(k̂ik̂j)2γ′

ηk
2ω2

(ω2 − k2/3)2 + (γ′

ηk
2ω)2

soundwave

Compute TxyTxy using these expressions.
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Computing Gxy,xy
ra (ω, k = 0)

Contribution of hydro modes up to cutoff kmax

Gxy,xy
ra (ω)[hydro] = −iω

(

17Tkmax

120π2γη

)

+(i+1)ω
3

2

7 +
(

3
2

)
3

2 T

240πγ
3/2
η

kmax: k-scale above which hydro incorrect/inconsistent.

Small η/s: larger kmax and larger contrib.s (hydro waves

live longer)

• −iω term: extra contrib. to η

• iω3/2: effective ω dependence of η.

• ω3/2: like τπ but wrong ω dependence.
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Lesson: η

Small η: freer propagation of sound, shear modes.

More momentum transport by hydro waves, raising η.

Depends on kmax. Where does hydro break down?

Scale where it’s no longer self-consistent.

Safe guess: kmax < τ−1
π /2. In N=4 SYM, this is about 2T .

• N=4SYM: added η/s is ∼ 1/N 2
c .

• Weak coupling: ηfrom hydro ∼ α4 while ηtot ∼ α−2

• Real QCD: η
s
= .16: add 0.01. η

s
= .08: add 0.036!
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Lesson: τπ

Weak coupling and large Nc: comparing

N 0
cα

3T 5/2 ω3/2 vs N 2
cα

−4T 2 ω2

Deep IR, ω3/2 term wins, 2-order hydro breaks.

But scale where ω3/2 term takes over is ω ∼ N−4
c α14T .

Check that ω where they equal is more IR than “your

physics” and then use 2-order hydro!

• Nc = 3 = Nf QCD, T = 200MeV, η
s = .16: ω ∼ T

20 Safe!

• Nc = 3 = Nf QCD, T = 200MeV, η
s = .08: ω ∼ 7T Problem!
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Conclusions

• Hydro seems sensible framework in heavy ion coll.

• Need 2’nd order Hydro, 6 hydro coefficients!

• Weak coupling methods fail below T = 100GeV.

But some dimensionless ratios are robust.

• Kubo relations for nonlinear coefficients found.

κ, λ3 special (really thermodynamic)

• Hydro waves contribute to hydro coefficients!

• Self-consistency issues if η too small, and very low freq.
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