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The question we want to address:

• At zero temperature QCD shows two characteristic features:

– Quarks are confined.

– Chiral symmetry is broken: 〈ψψ〉 6= 0.

• QCD has a phase transition at some critical temperature Tc, where:

– Quarks become deconfined.

– Chiral symmetry is restored: 〈ψψ〉 = 0.

Is there an underlying mechanism that links the two key features of QCD?



A possible approach

• Confinement and chiral symmetry breaking both should leave a trace in
properties of the Dirac operator D, since D−1 describes the propagation
of quarks.

• For chiral symmetry breaking the Banks-Casher formula connects the
order parameter 〈ψψ〉 to IR properties of the Dirac spectrum.

• Concerning confinement it is not even clear where to look in the spectrum,
in the UV or the IR part.

• Maybe through analyzing spectral properties of D one can find a link
between confinement and chiral symmetry breaking.

• The lattice formulation provides a suitable framework (rigorously defined)
which allows for both, analytical and numerical approaches.
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Chiral symmetry breaking and Dirac spectrum

• The Banks Casher formula relates the chiral condensate to the spectral
density of the Dirac operator at the origin.

〈ψ ψ 〉 = − π ρ(0)

• At the QCD phase transition a gap opens up in the spectrum and the
chiral condensate vanishes.
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Center symmetry and Polyakov loops

• The gauge action is invariant under center transformations ( z ∈ Z3 ):

U4(x) → z U4(x) ∀ x4 = t0

• The deconfinement transition of pure gauge theory can be described as
spontaneous breaking of the center symmetry.

• The Polyakov loop transforms non-trivially and is an order parameter.

L(~x) = trc

Nt∏
t=1

U4(~x, t)

L(~x) → z L(~x)
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The Dirac operator on the lattice

• Discretized Dirac operator on the lattice

D =
1

2a

4∑
µ=1

γµ(x)
[
Uµ(x) δx+µ̂ , y − Uµ(x− µ̂)† δx−µ̂ , y

]

• The gauge links

Uµ(x) = ei aAµ(x)

• are the objects we need for the Polyakov loop

L(~x) = trc

Nt∏
t=1

U4(~x, t)

• The gauge links appear in hopping terms that connect nearest neighbors
on the lattice.



Fermion propagators and loops

• The chiral condensate has an expansion in terms of loops:

〈ψψ〉 = − 1

V
Tr[m+D]

−1
= − 1

mV

∞∑
k=0

(−1)k

mk
Tr
[
Dk
]

= − 1

mV

∑
l∈L

s(l)

(2am)|l|
Trc
∏

(x,µ)∈l

Uµ(x)

• A change of the temporal boundary conditions

U4(~x,Nt) −→ z U4(~x,Nt) , z = eiϕ ∈ U(1)

affects only loops that wind non-trivially around compact time.

• Fourier transformation of ϕ allows one to project to the equivalence class
of loops that wind exactly once: Dressed Polyakov Loops



Graphical representation
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Dual chiral condensate = dressed Polykov loop

• Fourier transformation with respect to the boundary condition connects
the order parameters for confinement and for chiral symmetry breaking:

〈̂
ψψ
〉
1

=

∫ 2π

0

dϕ e−iϕ

2π

〈
ψψ
〉
ϕ

=
1

mV

∑
l∈L1

s(l)

(2am)|l|

〈
Trc
∏

(x,µ)∈l

Uµ(x)

〉

= −
∫ 2π

0

dϕ e−iϕ

2π V

∑
k

〈
1

m+λ
(k)
ϕ

〉
ϕ

• The representation as a spectral sum of Dirac eigenvalues allows one to
study the role of IR and UV eigenmodes for the mechanisms of confine-
ment and chiral symmetry breaking.



The Dressed Polyakov Loop is dominated by IR modes
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The Dressed Polyakov Loop is an order parameter
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Results from different lattices fall on a universal curve.
→ Good scaling and renormalization properties.



Spectral properties at the phase transition
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The confined and deconfined phases give rise to a different response of the
IR part of the Dirac spectrum to changing boundary conditions.



Generalization of the Banks-Casher formula

• Having identified the connection between spectral properties and the
dressed Polyakov loops, we can now formulate the physical picture in
terms of a generalized Banks-Casher relation.

• Performing limm→0 limV→∞ we find:

−
〈̂
ψψ
〉
1

=
1

2

∫ 2π

0
dϕ e−iϕ ρ(0)ϕ

• How does the spectral density ρ(0)ϕ at the origin have to behave as a
function of ϕ such that:

−
〈̂
ψψ
〉
1

= 0 belowTc

−
〈̂
ψψ
〉
1

> 0 aboveTc



Spectral density below Tc

Below Tc the spectral density ρ(0)ϕ is independent of the boundary angle ϕ.



Spectral gap above Tc
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Spectral gap depends on the relative phase between b.c. and Polyakov loop.



Emerging picture for the generalized Banks-Casher formula

• The spectral density at the origin, ρ(0)ϕ, behaves as (θ denotes the phase
of the Polyakov loop):

ρ(0)ϕ = const belowTc

ρ(0)ϕ ∝ δ(ϕ+ θ ) aboveTc

• The dual chiral condensate is given by:

−
〈̂
ψψ
〉
1

=
1

2

∫ 2π

0
dϕ e−iϕ ρ(0)ϕ

• And behaves correctly as:

−
〈̂
ψψ
〉
1

= 0 belowTc

−
〈̂
ψψ
〉
1

> 0 aboveTc



Summary

• Fourier transforming the chiral condensate with respect to the fermionic
boundary condition we define the Dual Chiral Condensate.

• The dual chiral condensate is an order parameter for center symmetry,
interpreted as Dressed Polyakov Loops.

• The dual condensate can be represented as a spectral sum of Dirac eigen-
values which is dominated by the IR modes.

• At the phase transition the behavior of the low-lying eigenvalues changes:

1. The chiral transition is signalled by a change from a non-zero to a
vanishing density (Banks-Casher).

2. The deconfinement transition is manifest in a different response of
the eigenvalues to a change in the temporal boundary conditions.



Summary (continued)

• Most elegantly the results are expressed as a generalized Banks-Casher
formula for the dual condensate:

−
〈̂
ψψ
〉
1

=
1

2

∫ 2π

0
dϕ e−iϕ ρ(0)ϕ

1. In the confined phase we have a non-vanishing spectral density ρ(0)ϕ
at the origin which is independent of the boundary conditions.

2. Above Tc the spectral gap has a non-trivial dependence on the phase
between boundary condition and Polyakov loop and ρ(0)ϕ ∝ δ(ϕ+θ).

Chiral symmetry breaking and confinement are, via a duality transformation,
connected to closely related spectral properties of the IR Dirac spectrum.

Link between confinement and chiral symmetry breaking?


