Confinement, chiral symmetry breaking and the QCD phase diagram

Jan Martin Pawlowski

Institute for Theoretical Physics Heidelberg University

Quarks and Hadrons in strong QCD, St Goar, March 17th, 2008

(日) (四) (日) (日) (日)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

some questions

- chiral symmetry breaking
 - mechanism & critical temperature
 - bound state spectrum
- confinement-deconfinement
 - mechanism & critical temperature
 - spectrum, mass gap
- finite density
 - phase diagram & critical point

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

o dynamics

some answers: compute Green functions

- chiral symmetry breaking
 - $\langle q(x)\bar{q}(y)\rangle, \dots$
- confinement-deconfinement
 - $\langle A(x)A(y)\rangle, \langle C(x)\overline{C}(y)\rangle, \dots$
 - $\langle 1/N_c \operatorname{tr} \mathcal{P} \exp i \int_0^\beta dt A_0 \rangle, \dots$
- dynamics with functional methods
- gauge fixing is mostly a benefit, not a liability

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Landau gauge & Polyakov gauge

lattice data taken from Ali Khan et al. (CP-PACS), Phys. Rev. D 64 (2001)

▲□▶ ▲圖▶ ▲厘▶ ▲厘

see talk of B.-J. Schaefer

see talk of B.-J. Schaefer

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- properties
- topology

2 Landau gauge QCD

- Signatures of confinement
- Infrared asymptotics & finite volume effects

QCD at finite temperature

confinement-deconfinement phase transition

(中) (四) (문) (문) (문) (문)

- properties
- topology

2 Landau gauge QCD

- Signatures of confinement
- Infrared asymptotics & finite volume effects

QCD at finite temperature

confinement-deconfinement phase transition

<ロ> (四) (四) (日) (日) (日)

- 2

Callan-Symanzik equation

$$k\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + k^2} \, 2k^2$$

$$k\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k(p^2)} \, k\partial_k R_k(p^2)$$

・ロト ・四ト ・ヨト ・ヨト

æ

$$k\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k(p^2)} k\partial_k R_k(p^2)$$

• in Yang-Mills theory

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

$$k\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k(p^2)} k\partial_k R_k(p^2)$$

- self-similarity, reparameterisation & projections
- fermions straightforward though 'physically' complicated
 - no sign problem numerics as in scalar theories!
 - chiral fermions reminder: Ginsparg-Wilson fermions from RG argument!
 - bound states via (re-)bosonisation effective field theory techniques applicable!

$$k\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k(p^2)} k\partial_k R_k(p^2)$$

- self-similarity, reparameterisation & projections
- fermions straightforward
- flows in Landau gauge QCD

Ellwanger, Hirsch, Weber '96 Bergerhoff, Wetterich '97 Pawlowski, Litim, Nedelko, von Smekal '03 Kato '04 Gies, Fischer '04 Pawlowski '05

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

$$k\partial_k \Gamma_k[\phi] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2)}[\phi] + R_k(\rho^2)} k\partial_k R_k(\rho^2)$$

- self-similarity, reparameterisation & projections
- fermions straightforward
- functional methods in Landau gauge QCD (IR)
 - Dyson-Schwinger equations
 - stochastic quantisation
 - flows in Landau gauge QCD
 - quark confinement from Landau gauge propagators Braun. Gies, Pawlowski '07

von Smekal, Hauck, Alkofer '97

Zwanziger '02

Pawlowski, Litim, Nedelko, von Smekal '03

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

topology?

- tunneling in QM
- instanton-induced terms in QCD
- $\mathcal{N} = 2$ susy Yang-Mills

Zappala, Phys. Lett. A 290 (2001) 35

Pawlowski, Phys. Rev. D 58 (1998) 045011

(中) (문) (문) (문) (문)

Dolan, Pawlowski, unpublished work

$$\tau = \frac{i}{g^2} + \frac{\theta}{8\pi^2} = \frac{i}{4\pi^2} \left(\ln \frac{\phi \bar{\phi}}{\Lambda_{\rm QCD}^2} + 3 \right) + \frac{1}{100} +$$

anomalies, solitons ····

Coupling τ in $\mathcal{N} = 2$ susy Yang-Mills (Seiberg-Witten)

Dolan, Pawlowski, unpublished work

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

Coupling τ in $\mathcal{N} = 2$ susy Yang-Mills (Seiberg-Witten)

Dolan, Pawlowski, unpublished work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- properties
- topology

2 Landau gauge QCD

- Signatures of confinement
- Infrared asymptotics & finite volume effects

QCD at finite temperature

confinement-deconfinement phase transition

<ロ> (四) (四) (日) (日) (日)

- 2

$$S_{\rm cl} = \frac{1}{2} \int {
m tr} \, F^2 = \frac{1}{2} \int A^a_\mu \left(p^2 \delta_{\mu\nu} - p_\mu p_\nu \right) A^a_
u + \cdots$$

gauge fixing ensures the existence of the gauge field propagator

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Gribov problem

confinement scenario

$$\Omega = \{ \boldsymbol{A} \, | \, \partial_{\mu} \boldsymbol{A}_{\mu} = \boldsymbol{0}, \, -\partial_{\mu} \boldsymbol{D}_{\mu} \geq \boldsymbol{0} \}$$

entropy

$$\int dA \det(-\partial D) e^{-S}$$

- entropy $(\int dA)$
 - ∂Ω(∩∂Λ) dominates IR
 - ghost IR-enhanced
 - gluonic mass-gap: confined gluons

non-renormalisation of ghost-gluon vertex

(中) (종) (종) (종) (종) (종)

confinement scenario

$$\Omega = \{ \boldsymbol{A} \, | \, \partial_{\mu} \boldsymbol{A}_{\mu} = \boldsymbol{0}, \, -\partial_{\mu} \boldsymbol{D}_{\mu} \geq \boldsymbol{0} \}$$

entropy

$$\int dA \det(-\partial D) e^{-S}$$

- entropy (∫ dA)
 - ∂Ω(∩∂Λ) dominates IR
 - ghost IR-enhanced
 - gluonic mass-gap: confined gluons

non-renormalisation of ghost-gluon vertex

《曰》 《國》 《臣》 《臣》 三臣 二

- Kugo-Ojima (in BRST-extended configuration space)
 - gluonic mass-gap + no Higgs mechanism

(中) (종) (종) (종) (종) (종)

functional RG

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \left(\begin{array}{c} \otimes \\ \bullet \end{array} \right) - \left(\begin{array}{c} \otimes \\ \bullet \end{array} \right)$$

mode cut-off

$$R_k(p^2) \propto \Gamma_0^{(2)}(p^2) \,\delta(p^2-k^2)$$

(中) (종) (종) (종) (종) (종)

functional RG

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \left(\begin{array}{c} \otimes \\ \bullet \end{array} \right) - \left(\begin{array}{c} \otimes \\ \bullet \end{array} \right)$$

mode cut-off

$${\cal R}_k(p^2) \propto \Gamma_0^{(2)}(p^2)\,\delta(p^2-k^2)$$

physics unchanged

(中) (종) (종) (종) (종) (종)

functional RG

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

mode cut-off

$${\sf R}_k(p^2) \propto {\sf \Gamma}_0^{(2)}(p^2)\,\delta(p^2-k^2)$$

- physics unchanged
- loop integration

$$\frac{1}{\Gamma_k^{(2)}+R_k}\left(k\partial_k R_k\right)\frac{1}{\Gamma_k^{(2)}+R_k}\simeq \frac{1}{\Gamma_0^{(2)}}\,k^2\delta'(p^2-k^2)$$

Fischer, Pawlowski, Phys. Rev. D 75 (2007) 025012

(中) (문) (문) (문) (문)

functional RG

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \left(\begin{array}{c} \otimes \\ \bullet \end{array} \right) - \left(\begin{array}{c} \otimes \\ \bullet \end{array} \right)$$

Fischer, Pawlowski, Phys. Rev. D 75 (2007) 025012

functional RG

$$\partial_t \Gamma_k[\phi] = \frac{1}{2} \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 0 \\ 0 \end{pmatrix} \end{pmatrix}$$

functional DSE

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ● ヨー のへの

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Unique infrared asymptotics in Landau gauge QCD

conformal scaling

$$\Gamma^{(2n,m)}(\lambda p_1,...,\lambda p_{2n+m}) = \lambda^{\kappa_{2n,m}}\Gamma^{(2n,m)}(p_1,...,p_{2n+m})$$

(日) (同) (目) (日)

• decoupling: $\kappa_{n,m} = 0$ & massive gluon no confinement!?

Unique infrared asymptotics in Landau gauge QCD

$$\Gamma^{(2n,m)} \sim p^{2(n-m)\kappa_C}$$
 with $\kappa_c \ge 0$

 $\Gamma^{(2n,m)}$: vertex with *n* ghost and anti-ghost lines, *m* gluons

confirms Alkofer, Fischer, Llanes-Estrada, Phys. Lett. B611 (2005) 279–288 see also Alkofer, Huber, Schwenzer '08

イロト イロト イヨト

Unique infrared asymptotics in Landau gauge QCD

$$\Gamma^{(2n,m,\mathrm{quarks})} \sim p^{2(n-m)\kappa_{\mathrm{C}}+\mathrm{quarks}}$$

QCD: work in progress; QED3: Nedelko, Pawlowski, in preparation

(日) (同) (目) (日)

UV-IR flow

- full momentum dependence of propagators
- vertices momentum-dependent RG-dressing

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- optimisation
- functional relations between diagrams

UV-IR flow

◆□> ◆□> ◆ヨ> ◆ヨ> ●目 - のへで

$$p^{2}\langle A(p)A(-p)\rangle = \frac{p^{2}}{\Gamma_{A}^{(2)}(p)} \xrightarrow{p \to 0} (p^{2})^{-2\kappa_{c}} \qquad \qquad \stackrel{\text{DSE}}{=} \frac{D(p^{2})}{p^{2}}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Pawlowski, Litim, Nedelko, von Smekal, Phys. Rev. Lett. 93 (2004) 152002

• optimisation: $\kappa_{\rm C} = 0.59535..., \alpha_{\rm s} = 2.9717...$

equals DS/StochQuant-result: Lerche, von Smekal, Phys. Rev. D 65 (2002) '02 D. Zwanziger, Phys. Rev. D 65 (2002) RG-confirmation: C. S. Fischer and H. Gies, JHEP 0410 (2004)

・ロト ・個ト ・ヨト ・ヨト

æ

・ロト ・四ト ・ヨト ・ヨト - 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

Functional methods-lattice puzzle

- Iower dimensions
 - quantitative agreement in d = 2 Maas '07
 - qualitative agreement in d = 3 talk of A. Maas
- large volumes on the lattice
 - in d = 4 up to 128^4 at $\beta = 2.2$ Cucchieri et al '07
- gauge fixings
 - improved gauge fixing procedures Bogolubsky et al '07, von Smekal et al '07, talk of A. Maas

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- stochastic quantisation with D. Spielmann, I.O. Stamatescu
- SU(2) versus SU(3) Cucchieri et al '07, Sternbeck et al '07
- $\beta = 0$: evidence for gauge fixing/finite size problems talk of L. von Smekal

- properties
- topology

2 Landau gauge QCD

- Signatures of confinement
- Infrared asymptotics & finite volume effects

QCD at finite temperature

confinement-deconfinement phase transition

Order parameter

• Polyakov loop $\Phi(\vec{x}) = \langle L[A_0] \rangle$

$$L[A_0](\vec{x}) = \frac{1}{N_c} \operatorname{tr} \mathcal{P} e^{i \int_0^\beta dt A_0}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

with $\langle \Phi \rangle \simeq e^{-F_q}$

- confinement: $F_q = \infty$
- deconfinement: F_q finite

Order parameter

• Polyakov loop $\Phi(\vec{x}) = \langle L[A_0] \rangle$

$$L[A_0](\vec{x}) = \frac{1}{N_c} \operatorname{tr} \mathcal{P} e^{i \int_0^\beta dt A_0}$$

with $\langle \Phi \rangle \simeq e^{-F_q}$

- confinement: $F_q = \infty$
- deconfinement: F_q finite
- string tension

$$\langle {\it L}(ec x) {\it L}^{\dagger}(ec y)
angle \simeq {\sf e}^{-{\it F}_{qar q}(ec x-ec y)}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへ⊙

•
$$\lim_{|\vec{x}-\vec{y}|\to\infty} F_{q\bar{q}}(\vec{x}-\vec{y}) \simeq \beta\sigma |\vec{x}-\vec{y}|$$

background field flow

$$k\partial_k \Gamma_k[\phi, A] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2,0)}[\phi, A] + R_k(\Gamma_k^{(2,0)}[0, A])} k\partial_k R_k(\Gamma_k^{(2,0)}[0, A])$$

- fluctuation fields $\phi = (a, C, \overline{C})$
- background field A
- Landau-DeWitt gauge: $D_{\mu}(A)a_{\mu} = 0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• background field flow for effective potential $V_{\text{eff}}[A_0] = \Gamma_k[0, A_0]$

$$k\partial_k V_{\rm eff}[A_0] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2,0)}[0,A_0] + R_k(\Gamma_k^{(2,0)}[0,A_0])} k\partial_k R_k(\Gamma_k^{(2,0)}[0,A_0])$$

• vanishing fluctuation fields $\phi = 0$

$$\Gamma_{k,A}^{(2,0)} = \frac{\delta^2 \Gamma_k}{\delta a^2} \neq \frac{\delta^2 \Gamma_k}{\delta A^2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• background field flow for effective potential $V_{\text{eff}}[A_0] = \Gamma_k[0, A_0]$

$$k\partial_k V_{\rm eff}[A_0] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2,0)}[0,A_0] + R_k(\Gamma_k^{(2,0)}[0,A_0])} k\partial_k R_k(\Gamma_k^{(2,0)}[0,A_0])$$

determination of propagator

$$\Gamma_{k}^{(2,0)}[0,A] = \Gamma_{k,\text{Landau}}^{(2)}(p^{2} \rightarrow -D^{2}) + O(F)$$

• background field flow for effective potential $V_{\text{eff}}[A_0] = \Gamma_k[0, A_0]$

$$k\partial_k V_{\rm eff}[A_0] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2,0)}[0,A_0] + R_k(\Gamma_k^{(2,0)}[0,A_0])} k\partial_k R_k(\Gamma_k^{(2,0)}[0,A_0])$$

determination of propagator

$$\Gamma_{k}^{(2,0)}[0,A] = \Gamma_{k,\text{Landau}}^{(2)}(p^{2} \to -D^{2}) + O(F)$$

• Polyakov loop $\Phi(\vec{x}) = \langle L[A_0] \rangle$

$$L[A_0] = \frac{1}{N_c} \mathrm{tr} \mathcal{P} \mathrm{e}^{i \int_0^\beta dt \, A_0}$$

• background field flow for effective potential $V_{\text{eff}}[A_0] = \Gamma_k[0, A_0]$

$$k\partial_k V_{\rm eff}[A_0] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2,0)}[0,A_0] + R_k(\Gamma_k^{(2,0)}[0,A_0])} k\partial_k R_k(\Gamma_k^{(2,0)}[0,A_0])$$

determination of propagator

$$\Gamma_{k}^{(2,0)}[0,A] = \Gamma_{k,\text{Landau}}^{(2)}(p^{2} \rightarrow -D^{2}) + O(F)$$

• Polyakov loop $\Phi(\vec{x}) = \langle L[A_0] \rangle$

$$L[\langle A_0 \rangle] \qquad \text{from} \quad \frac{\partial V_{\text{eff}}[A_0]}{\partial A_0} \bigg|_{A_0 = \langle A_0 \rangle} = 0$$

• background field flow for effective potential $V_{\text{eff}}[A_0] = \Gamma_k[0, A_0]$

$$k\partial_k V_{\rm eff}[A_0] = \frac{1}{2} \operatorname{Tr} \frac{1}{\Gamma_k^{(2,0)}[0,A_0] + R_k(\Gamma_k^{(2,0)}[0,A_0])} k\partial_k R_k(\Gamma_k^{(2,0)}[0,A_0])$$

determination of propagator

$$\Gamma_{k}^{(2,0)}[0,A] = \Gamma_{k,\text{Landau}}^{(2)}(p^{2} \to -D^{2}) + O(F)$$

• Polyakov loop $\Phi(\vec{x}) = \langle L[A_0] \rangle$

 $L[\langle A_0 \rangle] \geq \langle L[A_0] \rangle$

(□) (@) (E) (E) [E]

• full effective action

$$\Gamma_0[0,A] = \frac{1}{2} \operatorname{Tr} \ln \Gamma_0^{(2,0)}[0,A] + O(\partial_t \Gamma_k^{(2,0)}) + c.t.$$

full effective action

$$\Gamma_0[0,A] = \frac{1}{2} \operatorname{Tr} \ln \Gamma_0^{(2,0)}[0,A] + O(\partial_t \Gamma_k^{(2,0)}) + c.t.$$

• full effective potential in the deep infrared, $\Gamma^{(2,0)}_{0,A/C} \sim (-D^2)^{1+\kappa_{A/C}}$

$$V^{\mathrm{IR}}[\beta A_0] \simeq \left\{ \frac{d-1}{2} (1+\kappa_A) + \frac{1}{2} - (1+\kappa_C) \right\} \frac{1}{\Omega} \mathrm{Tr} \ln \left(-D^2[A_0] \right)$$

<ロ> (四) (四) (三) (三) (三) 三目

full effective action

$$\Gamma_0[0,A] = \frac{1}{2} \operatorname{Tr} \ln \Gamma_0^{(2,0)}[0,A] + O(\partial_t \Gamma_k^{(2,0)}) + c.t.$$

• full effective potential in the deep infrared

$$V^{\mathrm{IR}}[\beta A_0] \simeq \left\{ 1 + rac{(d-1)\kappa_A - 2\kappa_C}{d-2}
ight\} V^{\mathrm{UV}}[\beta A_0]$$

(日) (四) (문) (문) (문)

full effective action

$$\Gamma_0[0,A] = \frac{1}{2} \operatorname{Tr} \ln \Gamma_0^{(2,0)}[0,A] + O(\partial_t \Gamma_k^{(2,0)}) + c.t.$$

full effective potential in the deep infrared

$$V^{\mathrm{IR}}[\beta A_0] \simeq \left\{ 1 + rac{(d-1)\kappa_A - 2\kappa_C}{d-2}
ight\} V^{\mathrm{UV}}[\beta A_0]$$

• confinement criterion with sum rule $\kappa_A = -2\kappa_C - \frac{4-d}{2}$

$$\kappa_C > \frac{d-3}{4}$$

no confinement with background field propagators $\,\delta^2\Gamma_k\,/\,\delta A^2$

• determination of $L(\langle A_0 \rangle)$ $\Gamma_0[0, A] = \frac{1}{2} \operatorname{Tr} \ln \Gamma_0^{(2,0)}[0, A] + O(\partial_t \Gamma_k^{(2,0)}) + c.t.$

Polyakov loop potential, SU(2)

Braun, Gies, Pawlowski, arXiv:0708.2413 [hep-th]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

$T_c \simeq 276 \pm 10 \text{MeV}$ $T_c/\sqrt{\sigma} = 0.627 \pm 0.023$ lattice: $T_c/\sqrt{\sigma} = .709$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Marhauser, Pawlowski, in preparation

<ロ> (四) (四) (日) (日) (日)

- 2

see talk of F. Marhauser

flow in Polyakov gauge: $A_0 = A_0(\vec{x})\sigma_3$

- Polyakov gauge
- Image: Landau gauge propagators

Polyakov loop potential, SU(3)

Braun, Gies, Pawlowski, arXiv:0708.2413 [hep-th]

<ロ> (四) (四) (日) (日) (日)

$$T_c \simeq 284 \pm 10 \mathrm{MeV}$$
 $T_c/\sqrt{\sigma} = 0.646 \pm 0.023$ lattice: $T_c/\sqrt{\sigma} = .646$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

results

- support for Kugo-Ojima/Gribov-Zwanziger scenario
- confinement-decofinement phase transition from KO/GZ
- dynamical chiral symmetry breaking
 see talks of H. Gies, B.-J. Schaefer

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

- 'QCD phase diagram' from models see talk of B.-J. Schaefer
- challenges
 - full QCD
 - QCD at finite temperature & density
 - flow of Wilson loops & Polyakov loops: area law

results

- support for Kugo-Ojima/Gribov-Zwanziger scenario
- confinement-decofinement phase transition from KO/GZ
- dynamical chiral symmetry breaking
- 'QCD phase diagram' from models
- challenges
 - full QCD
 - QCD at finite temperature & density
 - flow of Wilson loops & Polyakov loops: area law

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙