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1. Introduction: Mysteries of QCD

1. QCD is a selfconstitent quantum theory defined by the only scale:
ΛQCD, or string tension σ, or ρ meson mass...

How these different scales are connected? How dimensional
transmutation works?

Actually in QCD different dynamical scales occur: glueball mass
Mgl >∼ 2 GeV, while ρ meson mass 0.75 GeV, mπ ≡ 0.14 GeV etc.

2. Potential models work nicely even for high excited meson states,
while QCD sum rules fail (e.g. for ground state glueballs).

3. What is dynamics of confinement, and

4. Why chiral symmetry breaking accompanies confinement, and they
disappear together at temperature phase transition.

It will be shown, that the basic role in answering these question lies in
the fundamental quantity – Vacuum Field Correlator and its correlation
length λ.



2. Field Correlators and QCD vacuum

As will be shown below, Green’s function of any white system is
proportional to the path integral of the Wilson loop.

For qq̄, Gqq̄ ∼
∫

(Dz)〈trW (C)〉... Therefore Wilson loop defines the
dynamics (pert. and nonpert.) of light and heavy quarks.

Building blocks: Wegner-Wilson loops

W (C) = P exp ig

∮

C

Aaµ(z)t
adzµ (1)

Parallel transporter

Φ(x; y) = P exp ig

y
∫

x

Aaµ(z)t
adzµ (2)



Field strength

Fµν(x) = ∂µAν − ∂νAµ − ig[Aµ, Aν ]

D(n)
µ1ν1...µnνn

(x1, ..., xn) =

=

(

g√
Nc

)n

〈Tr Fµ1ν1(x1)Φ(x1, x2)Fµ2ν2(x2)...Fµnνn
(xn)Φ(xn, x1)〉

(3)
Nonabelian Stokes Theorem and Cluster Expansion

〈TrW (C)〉 =

〈

Tr P exp ig

∫

S

ΦFµν(z)Φdσµν(z)

〉

=

= exp
∞
∑

n=2

(i)n∆(n)[S] = exp(−V (R)T ) (4)



The basic element of Nonperturbative QCD – the correlator D
(2)
µνρσ.

∆(2)[S] =
1

2

∫

S

dσµν(z1)

∫

S

dσρσ(z2)D
(2)
µνρσ(z1, z2) (5)

∆(2)[S] = σS

Gauge-invariant Field Correlators

D(2)
µνρσ(z) =

g2

Nc
〈Tr Fµν(x)ΦFρσ(y)Φ〉 (6)



Two basic scalars: D and D1 (Dosch+ Yu.S., (’88)).

D(2)
µνρσ(z) = (δµρδνσ − δµσδνρ)D(z)+

+
1

2

(

∂

∂zµ
(zρδνσ − zσδνρ) −

∂

∂zν
(zρδµσ − zσδµρ)

)

D1(z) (7)

D(x) is purely nonperturbative (pert. cancel-Shevchenko+Yu.S.’98).

Important: Dominance of Gaussian correlator D(2)(z) → the QCD
vacuum is almost (> 95%) Gaussian (Bali ’99, Shevchenko and
Yu.S.’00).Check: Casimir scaling – ∆(2) ∼ C2, hence all QQ̄ potentials
in different representations (j) are proportional to C2(j). Odd n
correlations vanish on flat surfaces).

∆(2)[S] ≫
∞
∑

n=3

∆(n)[S] (8)



If (connected) average D(n)(x1 − x2, ...) ∼ exp(− |xi−xj |
λ ) for large

|xi − xj |, then

∆(n+2)[S]

∆(n)[S]
≈ λ4〈F 2〉 ≈ σλ2

It will be shown, that λ ∼ 0.1fm, and expansion parameter is
σλ2 ∼ 0.05. Therefore all ∆(n) with n > 2 contribute few percent.
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Figure 1:



From lattice and analytic data

D(x) ∼ exp(−|x|/λ),

Important feature of QCD vacuum! Vacuum correlator length λ
Campostrini, Di Giacomo, Olejnik (’86).
Di Giacomo et al. λ ≈ 0.2 ÷ 0.3 fm
Bali, Brambilla, Vairo λ <∼ 0.2 fm
Dosch et al. λ <∼ 0.2 fm
Yu.S. λ ≈ 0.15 fm.

Recently D(x), D1(x) were computed on lattice (Koma and Koma) in
evaluating spin-dependent potentials. Results are compatible with
λ <∼ 0.1 fm.
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Figure 2: Field strength correlators at β = 6.0 on the 204 lattice for r/a =
5 as a function of t/a. The solid lines are the fit curves corresponding to
Eqs. (??)-(??).



Static potentials from rectangular WW loop (R× T ),

〈trW (C)〈= exp(−TV (R))

V (R) = VD(R) + V1(R)

VD(R) = 2

∫ R

0

(R− ρ)dρ

∫ ∞

0

dνD(
√

ρ2 + ν2), (9)

V1(R) =

∫ R

0

ρdρ

∫ ∞

0

dνD1(
√

ρ2 + ν2). (10)



D ensures confinement

VD(R) = σR + O(R0) ; σ =
1

2

∫

d2zD(z), R→ ∞ (11)

VD(R) = cR2 +O(R4), R <∼ λ (12)

D1 contains all (but not confinement), V1(R) = V
(pert)
1 + V

(nonpert)
1

V
(nonpert)
1 (R→ ∞) = const ∼ 0.5GeV (13)

V1 supports bound states QQ̄ in quark-gluon plasma (Yu.S.’91, ’05)

V
(pert)
1 = −4(αs +O(α2

s))

3R
. (14)



3. Visualizing the QCD strings

The gauge-invariant probe of fields in W (C) with a small plaquette.

The field Fµν (x) is gauge invariant.

Fµν(x) = 〈TrW (C)〉−1〈Tr igΦFµν(x)ΦW (C)〉. (15)
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Figure 3: A connected probe for static quark and antiquark



Fµν(x) δσµν(x) = 〈TrW (C)〉−1(〈TrW (C,CP )〉−
−〈TrW (C)〉) ≡ M̃(C,CP ) (16)

Electric field in the probe F ; Ek ≡ Fk4. Differentiating F one obtains
equations of motion, i.e. Maxwell equations

∂

∂xρ
Fρµ(x) = jµ(x) (17)

Magnetic current

Maxwell equations with magnetic currents

1

2
ǫµραβ

∂

∂xρ
Fαβ(x) = kµ(x) ;

∂

∂xρ
Fρµ(x) = jµ(x), (18)

Now we use Method of Field correlators, and Fµν is expressed through

D(2)



Fµν(x) =

∫

S

dσαβ(y)D
(2)
αβµν(x− y), D(2) = δ · δ D + (...)D1 (19)

We know D(z) , D1(z) both from lattice and from analytic calculations

D(z) =
σ

πλ2
exp

(

−|z|
λ

)

. (20)
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Figure 4: A distribution of the field |E(x1, 0, x3)| at quark-antiquark sepa-
ration 2 fm. Cutted peaks of color-Coulomb field and string between quark
and antiquark are clearly distinguished. The standard values of parameters
σ = 0.18 GeV2, λ = 0.2 fm are used.



E(ρ) = 2σ
(

1 +
ρ

λ

)

exp
(

−ρ
λ

)

, (21)

Radius of the string Rstr is Rstr ∼ λ.

From Maxwell equations

k = rot E , (22)

kϕ(ρ) = −2σρ

λ2
exp

(

−ρ
λ

)

. (23)

Equivalent of (dual) Londons equation

rot k = λ−2
E (24)

Hence dual Meissner effect: circular magnetic current squeeze
(color)electric fluxes - strings are created-confinement.



Figure 5: A vector distribution of magnetic currents at quark-antiquark
separation 2 fm. Positions of quark and antiquark are shown by points.



Origin of Confinement

It is interesting what is the origin of the circular magnetic currents, i.e.
the origin of confinement?

From the definition of k, kµ = εµαβγ∂αFβγ =
∫

(FFF ) +
∫

(DF̃ ). In

nonabelian theory Bianchi identity holds, DF̃ = 0.Hence triple
condensate is at the base of confinement.
k ∼ 〈FFF 〉 = fabceikl〈Eai EbkHc

l 〉. Note, that triple condensate does not
exist in Abelian theory.

In Abelian theory, U(1), in confinement phase DF̃ 6= 0 due to magnetic
monopoles (lattice artefacts).

In a similar way one defines the distribution of colorelectric fields, |E|2 in
a baryon
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Figure 6: A distribution of the field E
(B) in GeV/fm with the only corre-

lator D contribution considered in the quark plane for equilateral triangle
with the side 1 fm. Coordinates are given in fm, positions of quarks are
marked by points.

The Y-type string is clearly seen.
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Figure 7: A distribution of the field |E(G)
∆ (x)| in GeV/fm of the triangular

glueball in the plane of valence gluons with separations 1 fm. Coordinates
are given in fm, positions of valence gluons are marked by points.



4. Minimal strings and physical spectrum: mesons and glueballs

Quark Green’s function (Euclidean)

Sq(x, y) = (m+ D̂)−1 = (m− D̂)

∫ ∞

0

ds(Dz)xye
−KΦF (x, y)

where all dependence on field Aµ is in

ΦF (x, y) = (P exp ig

∫ x

y

Aµdzµ)(P exp g

∫ s

0

dτσµνFµν) ≡ ΦΣ

Φ charge factor, Σ spin factor.

Green’s function for qq̄ (mesons) or gg (glueballs)

GM , GGl =
∫ ∫

integral measure 〈Wσ〉

Thus all dynamics is defined by the Wilson loop (with spin factor
insertions).



Wilson loop with spin factors

〈trWσ(C)〉 = exp(−σArea) (spin factors)

Area =

∫ T

0

dt

∫ 1

0

dβ
√

ẇ2w′2 − (ẇw′)2;

Note: no DOF on the area after vacuum averaging. Minimal area →
minimal strings without DOF except at the ends.

q q̄

Figure 8:



Hamiltonian of minimal strings with quarks (gluons) at the ends

Last step: from path integral to Hamiltonian

Gqq̄(x, y) = 〈x| exp(−HT )|y〉 (25)

For equal current masses mq = mq̄ = m, µ1 = µ2 = µ

H0 =
m2 + p2

µ
+ µ+

L̂2/r2

µ+ 2
∫ 1

0
dβ(β − 1

2 )2ν(β)
+

+
σ2r2

2

∫ 1

0

dβ

ν(β)
+

∫ 1

0

ν(β)

2
dβ. (26)

∂H0

∂µi
|
µi=µ

(0)
i

= 0,
∂H0

∂ν
|ν=ν(0) = 0. (27)



µ
(0)
i play role of constituent mass of particle i, µ

(0)
i = 〈

√

m2
i + p2〉

H0(L = 0) =
2
∑

i=1

√

m2
i + p2 + σr. (28)

For large L,L→ ∞ one obtains a free bosonic string.

H2
0 ≈ 2πσ

√

L(L+ 1), ν(0)(β) =

√

8σL

π

1
√

1 − 4(β − 1
2 )2

. (29)

Constituent masses µ
(0)
i are calculated through σ and mi.

For quarks, m = 0 µq = cn
√
σ = 0.34 GeV(ground state).

For gluons µg =
√
C2µq = 3

2µq = 0.5 GeV. ( Note: This mass is not
connected with IR freezing of αs.)

Total Hamiltonian

H = H0 +Hself +Hspin +HCoul +Hrad +Hmix. (30)



For H0 only, m = 0

M2
0 ≈ 8σL+ 4πσ

(

n+
3

4

)

, n = 0, 1, 2, ...

The input is minimal:

1. Quark current masses m1,m2 (pole masses if Hpert is used).

2. String tension σ.

3. Background strong coupling αB(r).

In momentum space in one loop appr.

α
(1)
B (Q) =

4π

β0

1

ln
(M2

0+Q2)

Λ2
QCD

To be derived later.

Resulting spectra of light mesons are shown.

Orbital excitations (Regge trajectories) vs experiment (Badalian,
Bakker).
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Table 1
Comparison of calculated glueball masses (in GeV) with lattice data
(σf = 0.18 GeV2, αs = 0.3 (αs = 0.2 in parentheses))

JPC Mtheory Mlat

this work [22] [23] [24]

0++ (1.61) 1.41 1.53±0.10 1.53±0.04 1.52±0.13
2++ (2.21) 2.30 2.13±0.12 2.20±0.07 2.12±0.15
0++∗ (2.72) 2.41 2.38±0.25 2.79±0.09
2++∗ (3.13) 3.32 2.93±0.14 2.85±0.28
0−+ 2.28 2.30±0.15 2.11±0.24 2.27±0.15
0−+∗ 3.35 3.24±0.2
2−+ 2.70 2.76±0.16 3.0±0.28 2.70±0.19
2−+∗ 3.73 3.46±0.21

Glueballs: Kaidalov+Yu.S.(’00,’05).



5. String excitation: hybrids.

A Standard approach: in QCD string excitation is described by
Nambu-Goto spectrum. For fixed-end string the spectrum is

ENGn (R) =
πN

R
,N = 1, 2, ...

B In BPTh hybrids (minimal string excitations) are described by valence
gluons ”sitting” on the string.

Spectrum (at large R)

EBn⊥
(R)(transverse) =

√
12

R
(n⊥ + Λ + 1) =

√
12

R
N

EBnz
(R)(longitud.) =

3

21/3

( σ

R

)1/3

(nz +
1

2
)2/3



Small R,R→ 0(σR2 ≪ 1)

EB0 (R) = Mgluelump +
σR2

2

√

σ

3
=

= 2
√

3σ +
σR2

2

√

σ

3
+O(R4)

In what follows we outline the formalism for hybrids and compare A

and B with lattice data, arguing that B is favored over A.

Hybrid Green’s function

Ghybrid(x, y) = Γ〈tr(ΓSq(x, y)Gg(x, y)Sq̄(x, y)Γ̄)〉A



Gg is the gluon Green’s function in BPTh. In the background Feynman
gauge

Aµ = Bµ + aµ; 〈aµ(x)aν(y)〉a ≡ Gg(x, y)

Gg(x, y) = −(D̂2δµν + 2igF̂µν)
−1
x,y

Using path-integral form of FFSR, one has

Ghybrid(x, y) =

∫

(Dγ)qq̄ge
−K−K̄−KgWqq̄g

Wqq̄g – Wilson loop on paths of q, q̄, g with spin insertions, Fig. 9
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Figure 10: Hybrid Wilson loop.

Using minimal area law, one obtains the ”excited string”, approximated
by straight-line pieces with a gluon between.
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Figure 11:

From Ghybrid one derives the Hamiltonian.

Hybrid Hamiltonian (q + q̄ + g)

H
(hyb)
0 =

m2
1

2µ1
+
m2

2

2µ2
+
µ1 + µ2 + µg

2
+

p2
ξ + p2

η

2µ
+

+σ
2
∑

i=1

|rg − ri| +Hstr +HSE +Hspin +Hc. (31)

Spectrum of light qq̄ + g classified with hyperspherical K = 0, 1, ...

K = 0, (π + g)1+−, (ρ + g)(2++, 1++, 0++) (32)



K = 1, (π + (∇xg))1−−, (ρ + (∇xg))(2−+, 1−+, 0−+) (33)

M0(K = 0) ∼= 1.42GeV (34)

M0(K = 1) ∼= 1.9GeV (35)

M0(K = 2) ∼= 2.45GeV. (36)

Hybrids with two static quarks and one gluon (Yu.Kalashnikova et
al(2001, 2002, 2003) , Yu.S. (’98, 05).

No fitting parameters: only σ and αs → static hybrid spectrum.

Asymptotic values of levels at large R

M
(long)
hybrid =

3

21/3

( σ

R

)1/3
(

nz +
1

2

)2/3

, M
(trans)
hybrid =

√
12

R
(n⊥ + Λ + 1),

(37)
small R

Mhybrid(R) = 2
√

3σ +
σR2

2

√

σ

3
+O(R4). (38)



Notations: Λ = Jg
R
R , R = rq − rq̄

Λ = 0, 1, 2, 3, ...; ηCP = +1, g

Σ Π ∆ Φ, ...; − 1, u

ηCP – insertion about midpoint of R times charge conjugation.

Σ(±) for even (odd) under reflection in the plane containing R.

Yu.Kalashnikova and D.Kuzmenko calculated states in the Table.

Table 1: Quantum numbers of levels
(a) j = 1, l = 1, Λ = 0, 1 Σ−

u , Πu

(b) j = 1, l = 2, Λ = 0, 1 Σ+
g , Πg

(c) j = 2, l = 2, Λ = 0, 1, 2 Σ−
g , Πg, ∆g

(d) j = 2, l = 3, Λ = 0, 1, 2 Σ+
u , Πu, ∆u

The resulting Ei are in Fig in comparison with lattice data of Juge, Kuti,
Morningstar(99)
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Figure 12: Hybrid potentials in full QCD string model (thin solid curves)
compared to lattice results (thick light curves). QQ̄ distance R is in units
2r0 ≈ 1 fm and potentials V are in units 1/r0.
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Asymptotics is in agreement with our spectrum, since transverse modes
satisfy

EBn⊥
(R) =

√
12

R
(n⊥ + Λ + 1) ≈ π

R
N

The NG string (solid line) corresponds to the Arvis result

En = σR

√

1 − π(D − 2)

12σR2
+

2πN

σR2

Important conclusion

Lattice spectrum clearly shows the splitting of levels, which is explained
by the gluon degrees of freedom: spin splittings due to LS forces of gluon
spin, string rotation corrections etc.

Also behaviour of spectrum for R <∼ 1.5 fm is far from NG string.

This is closer to the picture of the gluon sitting on the string and
difficult to explain by the NG string.



Another check of the nature of QCD strings:

Nambu-Goto vs QCD (minimal) strings

Nambu-Goto: Massless string with dynamical degree of freedom at
each point of the string. Consequence: Lüscher term or Arvis potential

Varvis(r) =

√

σ2r2 − (d− 2)π

12
σ ∼=

∼= σr − π

12r
(d = 4).

No Casimir scaling, Lüscher term is present.

QCD (minimal) Strings – minimal length strings between gluons sitting
on the string. Dynamical DOF – only on gluons. Consequence: Lüscher
term is unprobable,

V (r) = σr − C2
αs(r)

r
Satisfies Casimir scaling.

Bali: 0.2≤ r ≤ 1.2 fm.
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Hari Dass + Pushan Majumdar

c(r) =
r3

2

d2V (r)

dr
= − π

12
(Luescher)

for Lüscher term Experimentum crucis:

Measure c(r) for adjoint sources with good accuracy. If
cadj(r) = cfund(r), r large – Lüscher term survives – NG strings.

If cadj = 9
4cfund – QCD (minimal) strings.
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6. Calculating confinement analytically

In this section we calculate D,D1 analytically via gluelump Green’s
functions. Physical idea: Nonabelian mean field approach yields
confining background field Bµ, with aaµ -quanta of gluonic field –

propagating in vacuum with a fixed color index a, while Bµ ∼ Abµ, b 6= a.

Aµ = Bµ + aµ

When averaging over Bµ one obtains confining string for aaµ.

As a result (Yu.S. ’05, Antonov ’05) to the lowest order in αs

D1(x) = −2g2

N2
c

dG(1)(x)

dx2

D(x) =
g4(N − c2 − 1)

2
G(2)(x)

and G(1)(x) is the one-gluon gluelump Green’s function, G(2) - the same
for two gluons.



G(1)(x− y) =
1

4
〈traaµ(x)Φ̂(x, y)aµ(y)〉

G(2)(x− y) = tratri,k...〈ai(x)ak(x)Φ̂(x, y)ai(y)ak(y)〉.
Both G(1) and G(2) can be computed analytically [Yu.S’00, D.Antonov
’05] and the corresponding masses are expressed via σ – string tension of
background field.

M (1) = 1.5 GeV for σ = 0.18 GeV2

M (2) = 2.56 Gev.

From this we have correlation lengths λ(1) = 0.13fm, λ(2) ≡ λ = 0.08fm.

Asymptotically for large x≫ λ,

D1(x) = Dpert.
1 (x) +Dnonp.

1 (x)

Dnonp.
1 (x) =

C2(f)αs2M
(1)σadj

|x|

Dpert
1 (x) =

4C2(f)αs
πx4

+O(α2
s)



D(x) = Dpert.(x) +Dnonp.(x)

Dpert(x) =
α2
s(N

2
c − 1)

2π2x4
,

Dnonp.(x) =
g4(N2

c − 1)

2
0.108σ2e−M

(2)|x|

Note: Dpert.(x) chanels with pert. parts of higher correlators
(V.Shevchenko+ Yu.S’ 99)

Check of consistency

σ =
1

2

∫

d2xD(x) ≈ 1

2

∫

d2xDnonp.(x)

Taking Dnonp.(x) one obtains relation

σ =

(

αs(µ
(2))

0.3

)2

0.53σ + Const.α3
sσ + ...



α(µ(2)) = 0.41 ∼= 4π

β0ln
(

µ(2)

ΛQCD

)2

Here µ(2) is typical scale of gluelump,

µ(2) ≈
√

〈p2〉 ≈ M (2)

3
= 0.84GeV

hence

ΛQCD ≈ µ(2)e−
2π

0.41β0 ≈ 0.21GeV (ΛMS(nf = 0) = 0.24GeV )

Here is an example of dimensional transmutation.

Expansion of D(x), D1(x) at small x

It was found (Yu.S ’2005) that at small x the expansion is

D1(x) =
4C2αs
π

(

1

x4
+
π2G2

24Nc
+ ...

)



G2 ≡ αs
π
〈F aµνF aµν〉

– standard gluonic condensate.

D(x) =
g4(N2

c − 1)

2

(

1

(4π2x2)2
+ const.G2 + ...

)

Hence 1) perturbative and nonperturbative separate at small distances 2)

there is no term of the form O
(

m2

x2

)

.

Conclusion on section 6.

Thus one can fix the scale in the form:

σ = anythingGeV 2(orΛQCD = anything)

and calculate all spectra and Field Correlators D(x), D1(x) which yields
all strong dynamics, except

1) chiral scale fπ,mπ

2) strong decay dynamics.



Note: confinement (σ 6= 0) is selfconsistent and selfsupporting: putting
σ = 0 in gluelumps we get only perturbative terms in D1, D and higher
correlators, and obtain σ = 0 from them.

7. Why potential models succeed where QCD sum rules fail?

In what was discussed before we have

✦ taken interaction as minimal (straight-line) string plus OGE

✦ This means that string excitations are neglected, coupling to hybrids
is neglected.

✦ Vacuum correlation time (length) was considered to be small as
compared to the quark (or gluon) effective period of motion – Tq, so
Tq ≫ λ

answers: size of hadron R ∼ Tq is much larger than λ.

Examples: R(Υ(1S)) = 0.2 fm> λ = 0.08 fm.

Other mesons are larger.

✦ String excitation yields a gap ∼ 1 GeV and can be neglected in first
approximation.

Coupling PHM of mesons to hybrids in small



PHM = Ncg
2
(

0.08GeV
∆M

)2
if ∆M ≫ 0.1 GeV (Paris group’ 85,

Yu.S.’01)

✦ For QCD sum rules in general one needs condition R≪ λ. It is not
clear, why this method is effective for some ground state mesons.

8. Chiral symmetry Breaking and Confinement.
Effective Chiral Quark-pion Lagrangian

Bosonization of 4q Lagrangian obtained after averaging over NP gluonic
fields,

Seff (L) = −1

2

∫

d4xd4yψ̄bγµψa(x)ψ̄a′(y)γνψb′(y)(δaa′δbb′−
1

Nc
δabδa′b′)Jµν

(39)
leads to the effective quark-pion Lagrangian

SQM = −
∫

d4xd4y[ψ̄f (x)iMs(x, y)Û
fg(x, y)ψg(y)−

−2Nf (Jµν(x, y))
−1M2

s (x, y)], Û = exp(iγ5t
aφa(x, y)).

(40)



in the partition function Z

Z =

∫

DψDψ̄e−(S1+SQM )DMsDφadρ(CQ)W̄ (CQ, L) (41)

Integrating out quark fields one obtains the Effective Chiral Lagrangian
SECL,

Z =

∫

DMsDφadρ(CQ)W̄ (CQ, L)e−SECL , (42)

with

SECL = 2Nf

∫

d4xd4yJ−1
µµM

2
s (x, y) −W (φ), (43)

and
W (φ) = Nctr ln[i(∂̂ + m̂+Ms(x, y)Û)] (44)

Integration over DMsDφa is done using stationary point method, which
yields stationary point solutions

φ(0)
a = 0, M (0)

s (x, y) =
Nc
4Nf

Jµµ(x, y)Tr(S(x, y)) (45)



where S(x, y) = Sφ(x, y)|φ=0, and

Sφ(x, y) = 〈x|(i∂̂ + im̂+ iM (0)
s Û)−1|y〉. (46)

As a result in the quark propagator is possible emission of any number of
NG mesons

M
(0
s(x,y) ≈ σ|x − x0(L)| ≡M(x). (47)

To emit two pions (or two kaons) we need to expand W (φ)

W (φ) ∼= Nctr ln[S−1 −Mγ5φ̂− i
2Mφ̂2] =

= W0(φ) +W1(φ) +W2(φ) + ..., φ̂ ≡ taφa = ϕaλa

fπ
,

(48)

W2(φ) = −Nc
2
tr(iSMφ̂2 + SMφ̂γ5Sγ5Mφ̂). (49)

Inside heavy quarkonium W2(φ) → 〈W2(φ)〉Q

〈W2(φ)〉Q ≡
∫

dρ(Cq)W2(φ)W (CQ, L) (50)



it can be written as

W2(φ) =
1

2

∫

d4k1

(2π)4
d4k2

(2π)4
φa(k1)N(k1, k2)φa(k2) (51)

where N(k1k2) is

N(k1, k2) =
Nc
2

{
∫

dxei(k1+k2)xtr(ΛMs)xx+

+

∫

d4xd4yeik1x+ik2ytr(Λ(x, y)Ms(y)Λ̄(y, x)Ms(x))

}

(52)

and

Λ = (∂̂ +m+Ms)
−1, Λ̄ = (∂̂ −m−Ms)

−1. (53)

The diagrams for the first and second term in (21) are respectively
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Now one can show that the expansion of N(k1, k2) in powers of k1, k2

starts as

N(k1, k2) =
m2
πf

2
π

4Nc
+O(k1µk2µ) + ...

where m2
πf

2
π = − mq

2Nc
〈trψ̄ψ〉.

Hence in the chiral limit (mq → 0) and for kiµ → 0, N → 0 (Adler zero).
Note, that heavy quark loop acts as a spectator, and no definite channels
are fixed in Fig. 2(a) and Fig 2(b).



〈e
R

ψ̄Âψd4x〉 → eL4+L6+... (54)

L4 = ψ̄γµψ(x)ψ̄γνψ(y)Jµν(x, y) → ψ̄(̄x)M(x, y)ψ(y) (55)

ψψ̄ → S(x, y) (large Nc, no NG) (56)

M(x, y) = γµiS(x, y)γνJµν(x, y) (57)

ME(x, y) = γ4iSγ4J
E
44 (58)

MH(x, y) = γiiSγkJ
H
ik (59)

JE44(x, 4) =

∫ x

0

du

∫ y

0

dvDE(u− v) (60)

σE =
1

2

∫

DE(z)d2z (61)



C.S.B.: iS acquires scalar part.

Pert. Theory

iS(0)(x) =
x̂− y

(x− y)4
+O(γ2k+1) (62)

Nonlinear eqs:
{

ME = γ4iSγ4J
E
44

iS = (∂̂ +m+ME)−1 (63)

Solution: local approx.

ME(x, y) ⇛ ME(x) = ME(0) + σE |x|; (64)

with NG mesons ME(x, y) ⇒ (Me(0) + σE |x|)eiϕπγ5

Leff =

∫

ψ̄(x)(∂̂ +m+ME(x))ψ(x)d4x (65)

ME(0) = const σEλ; const ≈ 1 (66)



DE(x) = DE(0)e−|x|/λ;DE(0) =
σE
πλ2

(67)

σE , λ define Chiral Dynamics σE ≈ 0.18 GeV 2, λ ∼= 1 GeV −1

scalar ME(x) means CSB (since it is scalar).

Indeed

f2
n =

2Nc〈Yf 〉|ϕ̄n(0)|2
ω1ω2Mn

(68)

〈YA4〉 = (m1 +ME
1 (0))(m2 +ME

2 (0)) + ω1ω2 − 〈p2〉
for

m1 = m2 = 0, ωi = 〈
√

p2 +m2
i 〉 →

√

p2; (69)

〈YA4〉 → (M(0))2

neglecting HF:

M0 = 0.65 GeV, ϕ2
0(0) =

0.15 GeV 3

4π
(70)



the same as for ρ− meson.

ω1 = ω2 = ω = 0.352 GeV. (71)

ME(0) ∼= 0.15 GeV fπ = 142 MeV (vs 131 MeV ) (72)

Interesting:

ω ∼ √
σE ; ϕ2

n(0) ∼ σ
3/2
E , Mn ∼

√
σE (73)

fπ ∼ME(0) ∼ σEλ ∼ 0.15 GeV (74)

fπ is order parameter for CSB

fπ disappears with σE!

−〈q̄q〉 = NcM
E(0)

∞
∑

n=0

|ϕn(0)|2
Mn

(75)

|〈q̄q〉| ∼ME(0)σE ∼ λσ2
E ∼ (0.18)2 GeV 3 ∼ (0.32 GeV )3; (76)



Conclusion: 〈q̄q〉 and fπ disappear together with σE ∼ DE(x) ∼ 〈E2〉
Fun with Gell-Mann-Oakes-Renner relation

f2m2
π = 2(mu +md)|q̄q|

f2m2
k = 2(mu +ms)|q̄q|

at µ ∼= 1 GeV

mu = 4.2 MeV ; md = 7.5 MeV, ms ≈ 170 MeV

|q̄q| ∼= λσ2
E ; f ∼= λσE ; λ = 1 GeV −1

m2
π =

2(mu +md)

λ
, mπ ∼ 0.15 GeV ;

m2
k =

2(ms +mu)

λ
, mk ∼ 0.59 GeV.



m2
k

m2
π

=
m̄+ms

mu +md

∼= 12;

σE cancels in GOR relation.

Chiral Lagrangians can be derived without confinement – e.g. in NJL or
instanton model.

But: λ−1 gives the cutoff 1 GeV due to nonlocality in chiral perturbation
theory.



Phase transition: Equation for Tc(µ) M.A.Trusov and Yu.S.

SV Z εvac = 1/4θµµ =
β(αs)

16αs
〈(F aµν)2〉 ∼= − (11 − 2

3nf )

32
G

(nf )
2 (77)

(NSV Z) G
(nf =2)
2 ≈

(

1

3
÷ 1

4

)

G
(nf =0)
2 (78)

G2(0.02 ± 0.005) GeV 4 S.Narison

G2(0.01 ± 0.002) GeV 4 Andreev,Zakharov (79)

P1(T ) = |εvac| +
π2

30
T 4 + T

∑

k

(2mkT )3/2

8π3/2
e−mk/T ≡ |εvac| + T 4χ1(T ).

(80)

In the deconfined phase one can assume (later confirmed by lattice)
(Yu.S. JETP Lett.’92), that

DE(x) = 0 = σE ; DH(x), DH
1 , D

E
1 6= 0. (81)



P2(T ) = |εdecvac| + T 4(pgl + pq) (82)

Critical line Tc(µ)

PI = |εvac| + χ1(T ) → 11

32
G2

PII =
11

32
Gdec2 + (pgl + pq)T

2;

PI(Tc) = PII(Tc)

Tc(µ) =

( 11
32∆G2

pgl + pq

)1/4

,

within 10% ∆G2 ≈ 1
2G2



Pgl(Tc) =
16

π2

∞
∑

n=1

1

n4
Lnadj →

16

π2
Ladj

pq(Tc) =
nf
π2

[

Φν

(

µ− V!(TC)
2

Tc

)

+ Φν

(

−µ+ V!(TC)
2

Tc

)]

Φν(a) =

∫ ∞

0

z4dz
√
z2 + ν2

(

e
√
z2+ν2−a + 1

)

ν =
mq

T . Take mq = 0.



Only 2 parameters (input)

∆G2 and V1(Tc).

1.∆G2 = G2(E,H) −G2(0, H) ≈ 1

2
G2(E,H)(10%acc)

G2 =
π2

36
(DE(0) +DE

1 (0) +DH(0) +DH
1 (0));

DE
1 (0) ≈ 0.2DE(0) (T = 0)

2. V1(Tc) ∼= 0.5 GeV (lattice, analytic) within 10%.

Possible dependence on µ: weak for µ≪ dilaton mass ≈ 1.5 GeV
lattice data: V1 ⇒ F 1

QQ̄



Two limiting cases for Tc(µ)

1). Tc(µ→ 0) : Expanding in V1(Tc)
8Tc

Tc = T (0)

(

1 +
V1(Tc)

8Tc
+O

(

V1(Tc)

8Tc

)2
)

with 3% accuracy

Tc(0) ≈
1

2
T (0)

(

1 +

√

1 +
κ

T (0)

)

, T (0) =

(

(11 − 2
3nf )π

2∆G2

384nf

)1/4

.

(83)

κ ≡ 1

2
V1(∞, Tc) ∼=

1

2
F 1
QQ̄(∞, Tc) = 0.25 GeV.



2). End-point: µc(T → 0)

Using asymptotics

Φ0(a→ ∞) =
a4

4
+
π2

2
a2 +

7π4

60
+ ...

one has

µc(T → 0) =
V1(Tc)

2
+ (48)1/4T (0)

(

1 − π2

2

T 2

(µc − V1(Tc)
2 )

+

)

For V1(Tc) = 0.5 GeV and nf = 2 one has.



∆G2

0.01 GeV4 0.191 0.341 0.57 1

Tc( GeV) nf = 0 0.246 0.273 0.298 0.328

Tc( GeV) nf = 2 0.168 0.19 0.21 0.236

Tc( GeV) nf = 3 0.154 0.172 0.191 0.214

µc( GeV) nf = 2 0.576 0.626 0.68 0.742

µc( GeV) nf = 3 0.539 0.581 0.629 0.686



9. Conclusions

1. Field correlator Method provides the explicit dynamical theory for
Large-Distance QCD. The confinement is due to nonperturbative
correlators of colorelectric fields, and for a flat (minimal) surface the
lowest Gaussian correlator DE(x) plays the dominant role. Cluster
expansion in n-th order correlators behaves as ∼ (σλ2)n = (0.05)n.

2. Correlation length λ and correlators are calculated selfconsistently
via gluelumps, λED ≈ 0.1 fm. Thus one has a theory defined by the
only parameter say σ (in addition to current quark masses)

3. CSB emerges together with scalar confinement and all CSB
parameters are expressed via σE and λ, e.g.,
fπ ≈ σEλ = O(100MeV ).

4. Phase transition temperature Tc is expressed via gluonic condensate.
CSB disappears at Tc together with confinement.


