QCD vacuum and hadrons
 Yu.A.Simonov, ITEP, Moscow

Talk at the 415 th Wilhelm \& Else Heraeus seminar:" Quarks and Hadrons in strong QCD", St. Goar, Germany, 17-20 March 2008

Contents

1. Introduction. Mysteries of QCD.
2. Field Correlators and QCD vacuum.
3. Visualizing the QCD strings in mesons, baryons and glueballs.
4. String Hamiltonian and meson and glueball spectra.
5. Hybrids: QCD string excitations vs Nambu-Goto.
6. Calculating confinement analytically.
7. Why Potential models succeed where QCD sum rules fail?
8. Chiral symmetry breaking and confinement.
9. Conclusions.

1. Introduction: Mysteries of QCD

1. QCD is a selfconstitent quantum theory defined by the only scale: $\Lambda_{Q C D}$, or string tension σ, or ρ meson mass...
How these different scales are connected? How dimensional transmutation works? Actually in QCD different dynamical scales occur: glueball mass $M_{g l} \gtrsim 2 \mathrm{GeV}$, while ρ meson mass $0.75 \mathrm{GeV}, m_{\pi} \equiv 0.14 \mathrm{GeV}$ etc.
2. Potential models work nicely even for high excited meson states, while QCD sum rules fail (e.g. for ground state glueballs).
3. What is dynamics of confinement, and
4. Why chiral symmetry breaking accompanies confinement, and they disappear together at temperature phase transition.
It will be shown, that the basic role in answering these question lies in the fundamental quantity - Vacuum Field Correlator and its correlation length λ.

2. Field Correlators and QCD vacuum

As will be shown below, Green's function of any white system is proportional to the path integral of the Wilson loop.
For $q \bar{q}, G_{q \bar{q}} \sim \int(D z)\langle\operatorname{tr} W(C)\rangle \ldots$ Therefore Wilson loop defines the dynamics (pert. and nonpert.) of light and heavy quarks.
Building blocks: Wegner-Wilson loops

$$
\begin{equation*}
W(C)=\mathrm{P} \exp i g \oint_{C} A_{\mu}^{a}(z) t^{a} d z_{\mu} \tag{1}
\end{equation*}
$$

Parallel transporter

$$
\begin{equation*}
\Phi(x ; y)=\mathrm{P} \exp i g \int_{x}^{y} A_{\mu}^{a}(z) t^{a} d z_{\mu} \tag{2}
\end{equation*}
$$

Field strength

$$
\begin{gather*}
F_{\mu \nu}(x)=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i g\left[A_{\mu}, A_{\nu}\right] \\
D_{\mu_{1} \nu_{1} \ldots \mu_{n} \nu_{n}}^{(n)}\left(x_{1}, \ldots, x_{n}\right)= \\
=\left(\frac{g}{\sqrt{N_{c}}}\right)^{n}\left\langle\operatorname{Tr} F_{\mu_{1} \nu_{1}}\left(x_{1}\right) \Phi\left(x_{1}, x_{2}\right) F_{\mu_{2} \nu_{2}}\left(x_{2}\right) \ldots F_{\mu_{n} \nu_{n}}\left(x_{n}\right) \Phi\left(x_{n}, x_{1}\right)\right\rangle \tag{3}
\end{gather*}
$$

Nonabelian Stokes Theorem and Cluster Expansion

$$
\begin{gather*}
\langle\operatorname{Tr} W(C)\rangle=\left\langle\operatorname{Tr} \mathcal{P} \exp i g \int_{S} \Phi F_{\mu \nu}(z) \Phi d \sigma_{\mu \nu}(z)\right\rangle= \\
=\exp \sum_{n=2}^{\infty}(i)^{n} \Delta^{(n)}[S]=\exp (-V(R) T) \tag{4}
\end{gather*}
$$

The basic element of Nonperturbative QCD - the correlator $D_{\mu \nu \rho \sigma}^{(2)}$.

$$
\begin{gather*}
\Delta^{(2)}[S]=\frac{1}{2} \int_{S} d \sigma_{\mu \nu}\left(z_{1}\right) \int_{S} d \sigma_{\rho \sigma}\left(z_{2}\right) D_{\mu \nu \rho \sigma}^{(2)}\left(z_{1}, z_{2}\right) \tag{5}\\
\Delta^{(2)}[S]=\sigma S
\end{gather*}
$$

Gauge-invariant Field Correlators

$$
\begin{equation*}
D_{\mu \nu \rho \sigma}^{(2)}(z)=\frac{g^{2}}{N_{c}}\left\langle\operatorname{Tr} F_{\mu \nu}(x) \Phi F_{\rho \sigma}(y) \Phi\right\rangle \tag{6}
\end{equation*}
$$

Two basic scalars: D and D_{1} (Dosch+ Yu.S., ('88)).

$$
\begin{gather*}
D_{\mu \nu \rho \sigma}^{(2)}(z)=\left(\delta_{\mu \rho} \delta_{\nu \sigma}-\delta_{\mu \sigma} \delta_{\nu \rho}\right) D(z)+ \\
+\frac{1}{2}\left(\frac{\partial}{\partial z_{\mu}}\left(z_{\rho} \delta_{\nu \sigma}-z_{\sigma} \delta_{\nu \rho}\right)-\frac{\partial}{\partial z_{\nu}}\left(z_{\rho} \delta_{\mu \sigma}-z_{\sigma} \delta_{\mu \rho}\right)\right) D_{1}(z) \tag{7}
\end{gather*}
$$

$D(x)$ is purely nonperturbative (pert. cancel-Shevchenko+Yu.S.' 98). Important: Dominance of Gaussian correlator $D^{(2)}(z) \rightarrow$ the QCD vacuum is almost ($>95 \%$) Gaussian (Bali '99, Shevchenko and Yu.S. '00). Check: Casimir scaling $-\Delta^{(2)} \sim C_{2}$, hence all $Q \bar{Q}$ potentials in different representations (j) are proportional to $C_{2}(j)$. Odd n correlations vanish on flat surfaces).

$$
\begin{equation*}
\Delta^{(2)}[S] \gg \sum_{n=3}^{\infty} \Delta^{(n)}[S] \tag{8}
\end{equation*}
$$

If (connected) average $D^{(n)}\left(x_{1}-x_{2}, \ldots\right) \sim \exp \left(-\frac{\left|x_{i}-x_{j}\right|}{\lambda}\right)$ for large $\left|x_{i}-x_{j}\right|$, then

$$
\frac{\Delta^{(n+2)}[S]}{\Delta^{(n)}[S]} \approx \lambda^{4}\left\langle F^{2}\right\rangle \approx \sigma \lambda^{2}
$$

It will be shown, that $\lambda \sim 0.1 \mathrm{fm}$, and expansion parameter is $\sigma \lambda^{2} \sim 0.05$. Therefore all $\Delta^{(n)}$ with $n>2$ contribute few percent.

Figurn 1.

From lattice and analytic data

$$
D(x) \sim \exp (-|x| / \lambda)
$$

Important feature of QCD vacuum! Vacuum correlator length λ
Campostrini, Di Giacomo, Olejnik ('86).
Di Giacomo et al. $\lambda \approx 0.2 \div 0.3 \mathrm{fm}$
Bali, Brambilla, Vairo $\lambda \lesssim 0.2 \mathrm{fm}$
Dosch et al. $\lambda \lesssim 0.2 \mathrm{fm}$
Yu.S. $\lambda \approx 0.15 \mathrm{fm}$.
Recently $D(x), D_{1}(x)$ were computed on lattice (Koma and Koma) in evaluating spin-dependent potentials. Results are compatible with $\lambda \lesssim 0.1 \mathrm{fm}$.

Figure 2: Field strength correlators at $\beta=6.0$ on the 20^{4} lattice for $r / a=$ 5 as a function of t / a. The solid lines are the fit curves corresponding to Eqs. (??)-(??).

Static potentials from rectangular $W W$ loop $(R \times T)$,

$$
\begin{gather*}
\langle\operatorname{tr} W(C)\langle=\exp (-T V(R)) \\
V(R)=V_{D}(R)+V_{1}(R) \\
V_{D}(R)=2 \int_{0}^{R}(R-\rho) d \rho \int_{0}^{\infty} d \nu D\left(\sqrt{\rho^{2}+\nu^{2}}\right), \tag{9}\\
V_{1}(R)=\int_{0}^{R} \rho d \rho \int_{0}^{\infty} d \nu D_{1}\left(\sqrt{\rho^{2}+\nu^{2}}\right) . \tag{10}
\end{gather*}
$$

D ensures confinement

$$
\begin{gather*}
V_{D}(R)=\sigma R+\mathcal{O}\left(R^{0}\right) \quad ; \quad \sigma=\frac{1}{2} \int d^{2} z D(z), R \rightarrow \infty \tag{11}\\
V_{D}(R)=c R^{2}+O\left(R^{4}\right), \quad R \lesssim \lambda \tag{12}
\end{gather*}
$$

D_{1} contains all (but not confinement), $V_{1}(R)=V_{1}^{(\text {pert })}+V_{1}^{(\text {nonpert })}$

$$
\begin{equation*}
V_{1}^{(\text {nonpert })}(R \rightarrow \infty)=\text { const } \sim 0.5 G e V \tag{13}
\end{equation*}
$$

V_{1} supports bound states $Q \bar{Q}$ in quark-gluon plasma (Yu.S.' 91, '05)

$$
\begin{equation*}
V_{1}^{(p e r t)}=-\frac{4\left(\alpha_{s}+O\left(\alpha_{s}^{2}\right)\right)}{3 R} \tag{14}
\end{equation*}
$$

3. Visualizing the QCD strings

The gauge-invariant probe of fields in $W(C)$ with a small plaquette. The field $\mathcal{F}_{\mu \nu}(x)$ is gauge invariant.

$$
\begin{equation*}
\mathcal{F}_{\mu \nu}(x)=\langle\operatorname{Tr} W(C)\rangle^{-1}\left\langle\operatorname{Tr} i g \Phi F_{\mu \nu}(x) \Phi W(C)\right\rangle . \tag{15}
\end{equation*}
$$

Figure 3: A connected probe for static quark and antiquark

$$
\begin{gather*}
\mathcal{F}_{\mu \nu}(x) \delta \sigma_{\mu \nu}(x)=\langle\operatorname{Tr} W(C)\rangle^{-1}\left(\left\langle\operatorname{Tr} W\left(C, C_{P}\right)\right\rangle-\right. \\
-\langle\operatorname{Tr} W(C)\rangle) \equiv \tilde{M}\left(C, C_{P}\right) \tag{16}
\end{gather*}
$$

Electric field in the probe $\mathcal{F} ; \mathcal{E}_{k} \equiv \mathcal{F}_{k 4}$. Differentiating \mathcal{F} one obtains equations of motion, i.e. Maxwell equations

$$
\begin{equation*}
\frac{\partial}{\partial x_{\rho}} \mathcal{F}_{\rho \mu}(x)=j_{\mu}(x) \tag{17}
\end{equation*}
$$

Magnetic current

Maxwell equations with magnetic currents

$$
\begin{equation*}
\frac{1}{2} \epsilon_{\mu \rho \alpha \beta} \frac{\partial}{\partial x_{\rho}} \mathcal{F}_{\alpha \beta}(x)=k_{\mu}(x) ; \quad \frac{\partial}{\partial x_{\rho}} \mathcal{F}_{\rho \mu}(x)=j_{\mu}(x) \tag{18}
\end{equation*}
$$

Now we use Method of Field correlators, and $\mathcal{F}_{\mu \nu}$ is expressed through $D^{(2)}$

$$
\begin{equation*}
\mathcal{F}_{\mu \nu}(x)=\int_{S} d \sigma_{\alpha \beta}(y) D_{\alpha \beta \mu \nu}^{(2)}(x-y), D^{(2)}=\delta \cdot \delta \quad D+(\ldots) D_{1} \tag{19}
\end{equation*}
$$

We know $D(z), D_{1}(z)$ both from lattice and from analytic calculations

$$
\begin{equation*}
D(z)=\frac{\sigma}{\pi \lambda^{2}} \exp \left(-\frac{|z|}{\lambda}\right) \tag{20}
\end{equation*}
$$

Figure 4: A distribution of the field $\left|\mathcal{E}\left(x_{1}, 0, x_{3}\right)\right|$ at quark-antiquark separation 2 fm . Cutted peaks of color-Coulomb field and string between quark and antiquark are clearly distinguished. The standard values of parameters $\sigma=0.18 \mathrm{GeV}^{2}, \lambda=0.2 \mathrm{fm}$ are used.

$$
\begin{equation*}
\mathcal{E}(\rho)=2 \sigma\left(1+\frac{\rho}{\lambda}\right) \exp \left(-\frac{\rho}{\lambda}\right) \tag{21}
\end{equation*}
$$

Radius of the string $R_{s t r}$ is $R_{s t r} \sim \lambda$.
From Maxwell equations

$$
\begin{gather*}
\mathbf{k}=\operatorname{rot} \mathcal{E} \tag{22}\\
k_{\varphi}(\rho)=-\frac{2 \sigma \rho}{\lambda^{2}} \exp \left(-\frac{\rho}{\lambda}\right) . \tag{23}
\end{gather*}
$$

Equivalent of (dual) Londons equation

$$
\begin{equation*}
\operatorname{rot} \mathbf{k}=\lambda^{-2} \mathcal{E} \tag{24}
\end{equation*}
$$

Hence dual Meissner effect: circular magnetic current squeeze (color)electric fluxes - strings are created-confinement.

Figure 5: A vector distribution of magnetic currents at quark-antiquark separation 2 fm . Positions of quark and antiquark are shown by points.

Origin of Confinement

It is interesting what is the origin of the circular magnetic currents, i.e. the origin of confinement?
From the definition of $\mathbf{k}, k_{\mu}=\varepsilon_{\mu \alpha \beta \gamma} \partial_{\alpha} \mathcal{F}_{\beta \gamma}=\int(F F F)+\int(D \tilde{F})$. In nonabelian theory Bianchi identity holds, $D \tilde{F}=0$. Hence triple condensate is at the base of confinement.
$k \sim\langle F F F\rangle=f^{a b c} e_{i k l}\left\langle E_{i}^{a} E_{k}^{b} H_{l}^{c}\right\rangle$. Note, that triple condensate does not exist in Abelian theory.
In Abelian theory, $U(1)$, in confinement phase $D \tilde{F} \neq 0$ due to magnetic monopoles (lattice artefacts).
In a similar way one defines the distribution of colorelectric fields, $|\mathcal{E}|^{2}$ in a baryon

Figure 6: A distribution of the field $\mathcal{E}^{(B)}$ in $\mathrm{GeV} / \mathrm{fm}$ with the only correlator D contribution considered in the quark plane for equilateral triangle with the side 1 fm . Coordinates are given in fm , positions of quarks are marked by points.

The Y-type string is clearly seen.

Figure 7: A distribution of the field $\left|\mathcal{E}_{\Delta}^{(G)}(\mathbf{x})\right|$ in $\mathrm{GeV} / \mathrm{fm}$ of the triangular glueball in the plane of valence gluons with separations 1 fm . Coordinates are given in fm , positions of valence gluons are marked by points.
4. Minimal strings and physical spectrum: mesons and glueballs Quark Green's function (Euclidean)

$$
S_{q}(x, y)=(m+\hat{D})^{-1}=(m-\hat{D}) \int_{0}^{\infty} d s(D z)_{x y} e^{-K} \Phi_{F}(x, y)
$$

where all dependence on field A_{μ} is in

$$
\Phi_{F}(x, y)=\left(P \exp i g \int_{y}^{x} A_{\mu} d z_{\mu}\right)\left(P \exp g \int_{0}^{s} d \tau \sigma_{\mu \nu} F_{\mu \nu}\right) \equiv \Phi \Sigma
$$

Φ charge factor, Σ spin factor.
Green's function for $q \bar{q}$ (mesons) or $g g$ (glueballs)
$G_{M}, G_{G l}=\iint$ integral measure $\left\langle W_{\sigma}\right\rangle$
Thus all dynamics is defined by the Wilson loop (with spin factor insertions).

Wilson loop with spin factors

$$
\left\langle\operatorname{tr} W_{\sigma}(C)\right\rangle=\exp (-\sigma \text { Area) (spin factors) }
$$

$$
\text { Area }=\int_{0}^{T} d t \int_{0}^{1} d \beta \sqrt{\dot{w}^{2} w^{\prime 2}-\left(\dot{w} w^{\prime}\right)^{2}} ;
$$

Note: no DOF on the area after vacuum averaging. Minimal area \rightarrow minimal strings without DOF except at the ends.

Figure 8:

Hamiltonian of minimal strings with quarks (gluons) at the ends
Last step: from path integral to Hamiltonian

$$
\begin{equation*}
G_{q \bar{q}}(x, y)=\langle x| \exp (-H T)|y\rangle \tag{25}
\end{equation*}
$$

For equal current masses $m_{q}=m_{\bar{q}}=m, \quad \mu_{1}=\mu_{2}=\mu$

$$
\begin{gather*}
H_{0}=\frac{m^{2}+\mathbf{p}^{2}}{\mu}+\mu+\frac{\hat{L}^{2} / r^{2}}{\mu+2 \int_{0}^{1} d \beta\left(\beta-\frac{1}{2}\right)^{2} \nu(\beta)}+ \\
+\frac{\sigma^{2} r^{2}}{2} \int_{0}^{1} \frac{d \beta}{\nu(\beta)}+\int_{0}^{1} \frac{\nu(\beta)}{2} d \beta . \tag{26}\\
\left.\frac{\partial H_{0}}{\partial \mu_{i}}\right|_{\mu_{i}=\mu_{i}^{(0)}}=0,\left.\quad \frac{\partial H_{0}}{\partial \nu}\right|_{\nu=\nu(0)}=0 . \tag{27}
\end{gather*}
$$

$\mu_{i}^{(0)}$ play role of constituent mass of particle $i, \mu_{i}^{(0)}=\left\langle\sqrt{m_{i}^{2}+\mathbf{p}^{2}}\right\rangle$

$$
\begin{equation*}
H_{0}(L=0)=\sum_{i=1}^{2} \sqrt{m_{i}^{2}+\mathbf{p}^{2}}+\sigma r \tag{28}
\end{equation*}
$$

For large $L, L \rightarrow \infty$ one obtains a free bosonic string.

$$
\begin{equation*}
H_{0}^{2} \approx 2 \pi \sigma \sqrt{L(L+1)}, \quad \nu^{(0)}(\beta)=\sqrt{\frac{8 \sigma L}{\pi}} \frac{1}{\sqrt{1-4\left(\beta-\frac{1}{2}\right)^{2}}} \tag{29}
\end{equation*}
$$

Constituent masses $\mu_{i}^{(0)}$ are calculated through σ and m_{i}.
For quarks, $m=0 \quad \mu_{q}=c_{n} \sqrt{\sigma}=0.34 \mathrm{GeV}$ (ground state).
For gluons $\mu_{g}=\sqrt{C_{2}} \mu_{q}=\frac{3}{2} \mu_{q}=0.5 \mathrm{GeV}$. (Note: This mass is not connected with IR freezing of α_{s}.)
Total Hamiltonian

$$
\begin{equation*}
H=H_{0}+H_{\text {self }}+H_{\text {spin }}+H_{\text {Coul }}+H_{\text {rad }}+H_{m i x} \tag{30}
\end{equation*}
$$

For H_{0} only, $m=0$

$$
M_{0}^{2} \approx 8 \sigma L+4 \pi \sigma\left(n+\frac{3}{4}\right), \quad n=0,1,2, \ldots
$$

The input is minimal:

1. Quark current masses m_{1}, m_{2} (pole masses if $H_{\text {pert }}$ is used).
2. String tension σ.
3. Background strong coupling $\alpha_{B}(r)$.

In momentum space in one loop appr.

$$
\alpha_{B}^{(1)}(Q)=\frac{4 \pi}{\beta_{0}} \frac{1}{\ln \frac{\left(M_{0}^{2}+Q^{2}\right)}{\Lambda_{Q C D}^{2}}}
$$

To be derived later.
Resulting spectra of light mesons are shown.
Orbital excitations (Regge trajectories) vs experiment (Badalian, Bakker).

Figure 9: The Regge L-trajectory for the light mesons.

Table 1

Comparison of calculated glueball masses (in GeV) with lattice data $\left(\sigma_{f}=0.18 \mathrm{GeV}^{2}, \alpha_{s}=0.3\left(\alpha_{s}=0.2\right.\right.$ in parentheses $\left.)\right)$

$J^{P C}$	$M_{\text {theory }}$ this work	$M_{\text {lat }}$			
	$[22]$	$[23]$	$[24]$		
0^{++}	$(1.61) 1.41$	1.53 ± 0.10	1.53 ± 0.04	1.52 ± 0.13	
2^{++}	$(2.21) 2.30$	2.13 ± 0.12	2.20 ± 0.07	2.12 ± 0.15	
0^{++*}	$(2.72) 2.41$	2.38 ± 0.25	2.79 ± 0.09		
2^{++*}	$(3.13) 3.32$	2.93 ± 0.14	2.85 ± 0.28		
0^{-+}	2.28	2.30 ± 0.15	2.11 ± 0.24	2.27 ± 0.15	
0^{-+*}	3.35	3.24 ± 0.2			
2^{-+}	2.70	2.76 ± 0.16	3.0 ± 0.28	2.70 ± 0.19	
2^{-+*}	3.73	3.46 ± 0.21			

Glueballs: Kaidalov+Yu.S.('00,'05).

5. String excitation: hybrids.

A Standard approach: in QCD string excitation is described by Nambu-Goto spectrum. For fixed-end string the spectrum is

$$
E_{n}^{N G}(R)=\frac{\pi N}{R}, N=1,2, \ldots
$$

B In BPTh hybrids (minimal string excitations) are described by valence gluons "sitting" on the string. Spectrum (at large R)

$$
\begin{aligned}
E_{n_{\perp}}^{B}(R)(\text { transverse }) & =\frac{\sqrt{12}}{R}\left(n_{\perp}+\Lambda+1\right)=\frac{\sqrt{12}}{R} N \\
E_{n_{z}}^{B}(R)(\text { longitud. }) & =\frac{3}{2^{1 / 3}}\left(\frac{\sigma}{R}\right)^{1 / 3}\left(n_{z}+\frac{1}{2}\right)^{2 / 3}
\end{aligned}
$$

Small $R, R \rightarrow 0\left(\sigma R^{2} \ll 1\right)$

$$
\begin{aligned}
& E_{0}^{B}(R)=M_{\text {gluelump }}+\frac{\sigma R^{2}}{2} \sqrt{\frac{\sigma}{3}}= \\
& \quad=2 \sqrt{3 \sigma}+\frac{\sigma R^{2}}{2} \sqrt{\frac{\sigma}{3}}+O\left(R^{4}\right)
\end{aligned}
$$

In what follows we outline the formalism for hybrids and compare \mathbf{A} and \mathbf{B} with lattice data, arguing that \mathbf{B} is favored over \mathbf{A}.

Hybrid Green's function

$$
G_{h y b r i d}(x, y)=\Gamma\left\langle\operatorname{tr}\left(\Gamma S_{q}(x, y) G_{g}(x, y) S_{\bar{q}}(x, y) \bar{\Gamma}\right)\right\rangle_{A}
$$

G_{g} is the gluon Green's function in BPTh. In the background Feynman gauge

$$
\begin{gathered}
A_{\mu}=B_{\mu}+a_{\mu} ; \quad\left\langle a_{\mu}(x) a_{\nu}(y)\right\rangle_{a} \equiv G_{g}(x, y) \\
G_{g}(x, y)=-\left(\hat{D}^{2} \delta_{\mu \nu}+2 i g \hat{F}_{\mu \nu}\right)_{x, y}^{-1}
\end{gathered}
$$

Using path-integral form of FFSR, one has

$$
G_{h y b r i d}(x, y)=\int(D \gamma)_{q \bar{q} g} e^{-K-\bar{K}-K_{g}} W_{q \bar{q} g}
$$

$W_{q \bar{q} g}$ - Wilson loop on paths of q, \bar{q}, g with spin insertions, Fig. 9

Figure 10: Hybrid Wilson loop.
Using minimal area law, one obtains the "excited string", approximated by straight-line pieces with a gluon between.

Figure 11:
From $G_{h y b r i d}$ one derives the Hamiltonian.
Hybrid Hamiltonian $(q+\bar{q}+g)$

$$
\begin{align*}
& H_{0}^{(h y b)}=\frac{m_{1}^{2}}{2 \mu_{1}}+\frac{m_{2}^{2}}{2 \mu_{2}}+\frac{\mu_{1}+\mu_{2}+\mu_{g}}{2}+\frac{\mathbf{p}_{\xi}^{2}+\mathbf{p}_{\eta}^{2}}{2 \mu}+ \\
& \quad+\sigma \sum_{i=1}^{2}\left|\mathbf{r}_{g}-\mathbf{r}_{i}\right|+H_{s t r}+H_{S E}+H_{s p i n}+H_{c} \tag{31}
\end{align*}
$$

Spectrum of light $q \bar{q}+g$ classified with hyperspherical $K=0,1, \ldots$

$$
\begin{equation*}
K=0,(\pi+\mathbf{g}) 1^{+-},(\boldsymbol{\rho}+\mathbf{g})\left(2^{++}, 1^{++}, 0^{++}\right) \tag{32}
\end{equation*}
$$

$$
\begin{gather*}
K=1,\left(\pi+\left(\nabla_{x} \mathbf{g}\right)\right) 1^{--},\left(\boldsymbol{\rho}+\left(\nabla_{x} \mathbf{g}\right)\right)\left(2^{-+}, 1^{-+}, 0^{-+}\right) \tag{33}\\
M_{0}(K=0) \cong 1.42 \mathrm{GeV} \tag{34}\\
M_{0}(K=1) \cong 1.9 \mathrm{GeV} \tag{35}\\
M_{0}(K=2) \cong 2.45 \mathrm{GeV} \tag{36}
\end{gather*}
$$

Hybrids with two static quarks and one gluon (Yu.Kalashnikova et al(2001, 2002, 2003), Yu.S. ('98, 05).
No fitting parameters: only σ and $\alpha_{s} \rightarrow$ static hybrid spectrum.
Asymptotic values of levels at large R

$$
\begin{equation*}
M_{\text {hybrid }}^{(\text {long })}=\frac{3}{2^{1 / 3}}\left(\frac{\sigma}{R}\right)^{1 / 3}\left(n_{z}+\frac{1}{2}\right)^{2 / 3}, \quad M_{\text {hybrid }}^{(\text {trans })}=\frac{\sqrt{12}}{R}\left(n_{\perp}+\Lambda+1\right), \tag{37}
\end{equation*}
$$

small R

$$
\begin{equation*}
M_{\text {hybrid }}(R)=2 \sqrt{3 \sigma}+\frac{\sigma R^{2}}{2} \sqrt{\frac{\sigma}{3}}+O\left(R^{4}\right) . \tag{38}
\end{equation*}
$$

Notations: $\Lambda=\mathbf{J}_{g} \frac{\mathbf{R}}{R}, \quad \mathbf{R}=\mathbf{r}_{q}-\mathbf{r}_{\bar{q}}$

$$
\begin{array}{r}
\Lambda=0,1,2,3, \ldots ; \quad \eta_{C P}=+1, \quad g \\
\Sigma \Pi \Delta \Phi, \ldots ; \quad-1, \quad u
\end{array}
$$

$\eta_{C P}$ - insertion about midpoint of \mathbf{R} times charge conjugation.
$\Sigma^{(\pm)}$for even (odd) under reflection in the plane containing \mathbf{R}.
Yu.Kalashnikova and D.Kuzmenko calculated states in the Table.
Table 1: Quantum numbers of levels

(a)	$j=1, l=1, \Lambda=0,1$	Σ_{u}^{-}, Π_{u}
(b)	$j=1, l=2, \Lambda=0,1$	Σ_{g}^{+}, Π_{g}
(c)	$j=2, l=2, \Lambda=0,1,2$	$\Sigma_{g}^{-}, \Pi_{g}, \Delta_{g}$
(d)	$j=2, l=3, \Lambda=0,1,2$	$\Sigma_{u}^{+}, \Pi_{u}, \Delta_{u}$

The resulting E_{i} are in Fig in comparison with lattice data of Juge, Kuti, Morningstar(99)

Figure 12: Hybrid potentials in full QCD string model (thin solid curves) compared to lattice results (thick light curves). $Q \bar{Q}$ distance R is in units $2 r_{0} \approx 1 \mathrm{fm}$ and potentials V are in units $1 / r_{0}$.

Figure 13: Energy gaps ΔE above Σ_{g}^{+}are shown in string units for quantum numbore in pontinum and lattirn notation Tho Nombu Cotnctring

Figure 14: Short-distance degeneracies and crossover in the spectrum. The solid curves are only shown for visualization. The dashed line marks a lower bound for the onset of mixing effects with glueball states which requires careful interpretation.

Asymptotics is in agreement with our spectrum, since transverse modes satisfy

$$
E_{n_{\perp}}^{B}(R)=\frac{\sqrt{12}}{R}\left(n_{\perp}+\Lambda+1\right) \approx \frac{\pi}{R} N
$$

The NG string (solid line) corresponds to the Arvis result

$$
E_{n}=\sigma R \sqrt{1-\frac{\pi(D-2)}{12 \sigma R^{2}}+\frac{2 \pi N}{\sigma R^{2}}}
$$

Important conclusion

Lattice spectrum clearly shows the splitting of levels, which is explained by the gluon degrees of freedom: spin splittings due to LS forces of gluon spin, string rotation corrections etc.
Also behaviour of spectrum for $R \lesssim 1.5 \mathrm{fm}$ is far from NG string.
This is closer to the picture of the gluon sitting on the string and difficult to explain by the NG string.

Another check of the nature of QCD strings:
Nambu-Goto vs QCD (minimal) strings
Nambu-Goto: Massless string with dynamical degree of freedom at each point of the string. Consequence: Lüscher term or Arvis potential

$$
\begin{gathered}
V_{a r v i s}(r)=\sqrt{\sigma^{2} r^{2}-\frac{(d-2) \pi}{12} \sigma} \cong \\
\cong \sigma r-\frac{\pi}{12 r} \quad(d=4)
\end{gathered}
$$

No Casimir scaling, Lüscher term is present.
QCD (minimal) Strings - minimal length strings between gluons sitting on the string. Dynamical DOF - only on gluons. Consequence: Lüscher term is unprobable,

$$
V(r)=\sigma r-C_{2} \frac{\alpha_{s}(r)}{r}
$$

Satisfies Casimir scaling.
Bali: $0.2 \leq r \leq 1.2 \mathrm{fm}$.

Figurn 15.

Hari Dass + Pushan Majumdar

$$
c(r)=\frac{r^{3}}{2} \frac{d^{2} V(r)}{d r}=-\frac{\pi}{12} \quad(\text { Luescher })
$$

for Lüscher term Experimentum crucis:
Measure $c(r)$ for adjoint sources with good accuracy. If $c_{\text {adj }}(r)=c_{\text {fund }}(r), r$ large - Lüscher term survives - NG strings.
If $c_{a d j}=\frac{9}{4} c_{f u n d}-\mathrm{QCD}$ (minimal) strings.

Figure 16: Scaled second derivative for $\mathrm{d}=4 \mathrm{SU}(3)$ case.

6. Calculating confinement analytically

In this section we calculate D, D_{1} analytically via gluelump Green's functions. Physical idea: Nonabelian mean field approach yields confining background field B_{μ}, with a_{μ}^{a}-quanta of gluonic field propagating in vacuum with a fixed color index a, while $B_{\mu} \sim A_{\mu}^{b}, b \neq a$.

$$
A_{\mu}=B_{\mu}+a_{\mu}
$$

When averaging over B_{μ} one obtains confining string for a_{μ}^{a}. As a result (Yu.S. '05, Antonov '05) to the lowest order in α_{s}

$$
\begin{gathered}
D_{1}(x)=-\frac{2 g^{2}}{N_{c}^{2}} \frac{d G^{(1)}(x)}{d x^{2}} \\
D(x)=\frac{g^{4}\left(N-c^{2}-1\right)}{2} G^{(2)}(x)
\end{gathered}
$$

and $G^{(1)}(x)$ is the one-gluon gluelump Green's function, $G^{(2)}$ - the same for two gluons.

$$
\begin{gathered}
G^{(1)}(x-y)=\frac{1}{4}\left\langle\operatorname{tr}_{a} a_{\mu}(x) \hat{\Phi}(x, y) a_{\mu}(y)\right\rangle \\
G^{(2)}(x-y)=\operatorname{tr}_{a} \operatorname{tr}_{i, k \ldots}\left\langle a_{i}(x) a_{k}(x) \hat{\Phi}(x, y) a_{i}(y) a_{k}(y)\right\rangle .
\end{gathered}
$$

Both $G^{(1)}$ and $G^{(2)}$ can be computed analytically [Yu.S'00, D.Antonov '05] and the corresponding masses are expressed via σ - string tension of background field.
$M^{(1)}=1.5 \mathrm{GeV}$ for $\sigma=0.18 \mathrm{GeV}^{2}$
$M^{(2)}=2.56 \mathrm{Gev}$.
From this we have correlation lengths $\lambda^{(1)}=0.13 \mathrm{fm}, \lambda^{(2)} \equiv \lambda=0.08 \mathrm{fm}$. Asymptotically for large $x \gg \lambda$,

$$
\begin{aligned}
& D_{1}(x)=D_{1}^{\text {pert. }}(x)+D_{1}^{n o n p .}(x) \\
& D_{1}^{n o n p .}(x)=\frac{C_{2}(f) \alpha_{s} 2 M^{(1)} \sigma_{a d j}}{|x|} \\
& D_{1}^{p e r t}(x)=\frac{4 C_{2}(f) \alpha_{s}}{\pi x^{4}}+O\left(\alpha_{s}^{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
D(x)=D^{\text {pert. }}(x)+D^{\text {nonp. }}(x) \\
D^{\text {pert }}(x)=\frac{\alpha_{s}^{2}\left(N_{c}^{2}-1\right)}{2 \pi^{2} x^{4}}, \\
D^{\text {nonp. }}(x)=\frac{g^{4}\left(N_{c}^{2}-1\right)}{2} 0.108 \sigma^{2} e^{-M^{(2)}|x|}
\end{gathered}
$$

Note: $D^{\text {pert. }}(x)$ chanels with pert. parts of higher correlators (V.Shevchenko+ Yu.S' 99)

Check of consistency

$$
\sigma=\frac{1}{2} \int d^{2} x D(x) \approx \frac{1}{2} \int d^{2} x D^{n o n p .}(x)
$$

Taking $D^{\text {nonp. }}(x)$ one obtains relation

$$
\sigma=\left(\frac{\alpha_{s}\left(\mu^{(2)}\right)}{0.3}\right)^{2} 0.53 \sigma+\text { Const. } \alpha_{s}^{3} \sigma+\ldots
$$

$$
\alpha\left(\mu^{(2)}\right)=0.41 \cong \frac{4 \pi}{\beta_{0} \ln \left(\frac{\mu^{(2)}}{\Lambda_{Q C D}}\right)^{2}}
$$

Here $\mu^{(2)}$ is typical scale of gluelump,

$$
\mu^{(2)} \approx \sqrt{\left\langle\mathbf{p}^{2}\right\rangle} \approx \frac{M^{(2)}}{3}=0.84 G e V
$$

hence

$$
\Lambda_{Q C D} \approx \mu^{(2)} e^{-\frac{2 \pi}{0.41 \beta_{0}}} \approx 0.21 G e V \quad\left(\Lambda_{\overline{M S}}\left(n_{f}=0\right)=0.24 G e V\right)
$$

Here is an example of dimensional transmutation.
Expansion of $D(x), D_{1}(x)$ at small x
It was found (Yu.S '2005) that at small x the expansion is

$$
D_{1}(x)=\frac{4 C_{2} \alpha_{s}}{\pi}\left(\frac{1}{x^{4}}+\frac{\pi^{2} G_{2}}{24 N_{c}}+\ldots\right)
$$

$$
G_{2} \equiv \frac{\alpha_{s}}{\pi}\left\langle F_{\mu \nu}^{a} F_{\mu \nu}^{a}\right\rangle
$$

- standard gluonic condensate.

$$
D(x)=\frac{g^{4}\left(N_{c}^{2}-1\right)}{2}\left(\frac{1}{\left(4 \pi^{2} x^{2}\right)^{2}}+\text { const. } G_{2}+\ldots\right)
$$

Hence 1) perturbative and nonperturbative separate at small distances 2) there is no term of the form $O\left(\frac{m^{2}}{x^{2}}\right)$.

Conclusion on section 6.

Thus one can fix the scale in the form:

$$
\sigma=\text { anythingGeV } V^{2}\left(\text { or } \Lambda_{Q C D}=\text { anything }\right)
$$

and calculate all spectra and Field Correlators $D(x), D_{1}(x)$ which yields all strong dynamics, except

1) chiral scale f_{π}, m_{π}
2) strong decay dynamics.

Note: confinement $(\sigma \neq 0)$ is selfconsistent and selfsupporting: putting $\sigma=0$ in gluelumps we get only perturbative terms in D_{1}, D and higher correlators, and obtain $\sigma=0$ from them.
7. Why potential models succeed where QCD sum rules fail?

In what was discussed before we have
\checkmark taken interaction as minimal (straight-line) string plus OGE

- This means that string excitations are neglected, coupling to hybrids is neglected.
- Vacuum correlation time (length) was considered to be small as compared to the quark (or gluon) effective period of motion $-T_{q}$, so $T_{q} \gg \lambda$
answers: size of hadron $R \sim T_{q}$ is much larger than λ.
Examples: $R(\Upsilon(1 S))=0.2 \mathrm{fm}>\lambda=0.08 \mathrm{fm}$.
Other mesons are larger.
- String excitation yields a gap $\sim 1 \mathrm{GeV}$ and can be neglected in first approximation.
Coupling $P_{H M}$ of mesons to hybrids in small

$$
\begin{aligned}
& P_{H M}=N_{c} g^{2}\left(\frac{0.08 \mathrm{GeV}}{\Delta M}\right)^{2} \text { if } \Delta M \gg 0.1 \mathrm{GeV} \text { (Paris group' 85, } \\
& \text { Yu.S.'01) }
\end{aligned}
$$

\checkmark For QCD sum rules in general one needs condition $R \ll \lambda$. It is not clear, why this method is effective for some ground state mesons.
8. Chiral symmetry Breaking and Confinement.

Effective Chiral Quark-pion Lagrangian
Bosonization of 4q Lagrangian obtained after averaging over NP gluonic fields,

$$
\begin{equation*}
S_{e f f}(L)=-\frac{1}{2} \int d^{4} x d^{4} y \bar{\psi}_{b} \gamma_{\mu} \psi_{a}(x) \bar{\psi}_{a^{\prime}}(y) \gamma_{\nu} \psi_{b^{\prime}}(y)\left(\delta_{a a^{\prime}} \delta_{b b^{\prime}}-\frac{1}{N_{c}} \delta_{a b} \delta_{a^{\prime} b^{\prime}}\right) \psi_{\iota \nu} \tag{39}
\end{equation*}
$$

leads to the effective quark-pion Lagrangian

$$
\begin{gather*}
S_{Q M}=-\int d^{4} x d^{4} y\left[\bar{\psi}^{f}(x) i M_{s}(x, y) \hat{U}^{f g}(x, y) \psi^{g}(y)-\right. \tag{40}\\
\left.-2 N_{f}\left(J_{\mu \nu}(x, y)\right)^{-1} M_{s}^{2}(x, y)\right], \quad \hat{U}=\exp \left(i \gamma_{5} t^{a} \phi_{a}(x, y)\right)
\end{gather*}
$$

in the partition function Z

$$
\begin{equation*}
Z=\int D \psi D \bar{\psi} e^{-\left(S_{1}+S_{Q M}\right)} D M_{s} D \phi_{a} d \rho\left(C_{Q}\right) \bar{W}\left(C_{Q}, L\right) \tag{41}
\end{equation*}
$$

Integrating out quark fields one obtains the Effective Chiral Lagrangian $S_{E C L}$,

$$
\begin{equation*}
Z=\int D M_{s} D \phi_{a} d \rho\left(C_{Q}\right) \bar{W}\left(C_{Q}, L\right) e^{-S_{E C L}} \tag{42}
\end{equation*}
$$

with

$$
\begin{equation*}
S_{E C L}=2 N_{f} \int d^{4} x d^{4} y J_{\mu \mu}^{-1} M_{s}^{2}(x, y)-W(\phi) \tag{43}
\end{equation*}
$$

and

$$
\begin{equation*}
W(\phi)=N_{c} \operatorname{tr} \ln \left[i\left(\hat{\partial}+\hat{m}+M_{s}(x, y) \hat{U}\right)\right] \tag{44}
\end{equation*}
$$

Integration over $D M_{s} D \phi_{a}$ is done using stationary point method, which yields stationary point solutions

$$
\begin{equation*}
\phi_{a}^{(0)}=0, \quad M_{s}^{(0)}(x, y)=\frac{N_{c}}{4 N_{f}} J_{\mu \mu}(x, y) \operatorname{Tr}(S(x, y)) \tag{45}
\end{equation*}
$$

where $S(x, y)=\left.S_{\phi}(x, y)\right|_{\phi=0}$, and

$$
\begin{equation*}
S_{\phi}(x, y)=\langle x|\left(i \hat{\partial}+i \hat{m}+i M_{s}^{(0)} \hat{U}\right)^{-1}|y\rangle \tag{46}
\end{equation*}
$$

As a result in the quark propagator is possible emission of any number of NG mesons

$$
\begin{equation*}
M_{s(x, y)}^{(0} \approx \sigma\left|\mathbf{x}-\mathbf{x}_{0}(L)\right| \equiv M(\mathbf{x}) \tag{47}
\end{equation*}
$$

To emit two pions (or two kaons) we need to expand $W(\phi)$

$$
\begin{gather*}
W(\phi) \cong N_{c} \operatorname{tr} \ln \left[S^{-1}-M \gamma_{5} \hat{\phi}-\frac{i}{2} M \hat{\phi}^{2}\right]= \\
=W_{0}(\phi)+W_{1}(\phi)+W_{2}(\phi)+\ldots, \hat{\phi} \equiv t^{a} \phi^{a}=\frac{\varphi_{a} \lambda_{a}}{f_{\pi}} \tag{48}\\
W_{2}(\phi)=-\frac{N_{c}}{2} \operatorname{tr}\left(i S M \hat{\phi}^{2}+S M \hat{\phi} \gamma_{5} S \gamma_{5} M \hat{\phi}\right) . \tag{49}
\end{gather*}
$$

Inside heavy quarkonium $W_{2}(\phi) \rightarrow\left\langle W_{2}(\phi)\right\rangle_{Q}$

$$
\begin{equation*}
\left\langle W_{2}(\phi)\right\rangle_{Q} \equiv \int d \rho\left(C_{q}\right) W_{2}(\phi) W\left(C_{Q}, L\right) \tag{50}
\end{equation*}
$$

it can be written as

$$
\begin{equation*}
W_{2}(\phi)=\frac{1}{2} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \phi_{a}\left(k_{1}\right) N\left(k_{1}, k_{2}\right) \phi_{a}\left(k_{2}\right) \tag{51}
\end{equation*}
$$

where $N\left(k_{1} k_{2}\right)$ is

$$
\begin{gather*}
N\left(k_{1}, k_{2}\right)=\frac{N_{c}}{2}\left\{\int d x e^{i\left(k_{1}+k_{2}\right) x} \operatorname{tr}\left(\Lambda M_{s}\right)_{x x}+\right. \\
\left.+\int d^{4} x d^{4} y e^{i k_{1} x+i k_{2} y} \operatorname{tr}\left(\Lambda(x, y) M_{s}(y) \bar{\Lambda}(y, x) M_{s}(x)\right)\right\} \tag{52}
\end{gather*}
$$

and

$$
\begin{equation*}
\Lambda=\left(\hat{\partial}+m+M_{s}\right)^{-1}, \quad \bar{\Lambda}=\left(\hat{\partial}-m-M_{s}\right)^{-1} \tag{53}
\end{equation*}
$$

The diagrams for the first and second term in (21) are respectively

Fig 2 (a)

Fig 2 (b)

Now one can show that the expansion of $N\left(k_{1}, k_{2}\right)$ in powers of k_{1}, k_{2} starts as

$$
N\left(k_{1}, k_{2}\right)=\frac{m_{\pi}^{2} f_{\pi}^{2}}{4 N_{c}}+O\left(k_{1 \mu} k_{2 \mu}\right)+\ldots
$$

where $m_{\pi}^{2} f_{\pi}^{2}=-\frac{m_{q}}{2 N_{c}}\langle\operatorname{tr} \bar{\psi} \psi\rangle$.
Hence in the chiral limit $\left(m_{q} \rightarrow 0\right)$ and for $k_{i \mu} \rightarrow 0, N \rightarrow 0$ (Adler zero). Note, that heavy quark loop acts as a spectator, and no definite channels are fixed in Fig. 2(a) and Fig 2(b).

$$
\begin{gather*}
\left\langle e^{\int \bar{\psi} \hat{A} \psi d^{4} x}\right\rangle \rightarrow e^{\mathcal{L}_{4}+\mathcal{L}_{6}+\ldots} \tag{54}\\
\mathcal{L}_{4}=\bar{\psi} \gamma_{\mu} \psi(x) \bar{\psi} \gamma_{\nu} \psi(y) J_{\mu \nu}(x, y) \rightarrow \bar{\psi}(x) M(x, y) \psi(y) \tag{55}\\
\psi \bar{\psi} \rightarrow S(x, y) \quad\left(\text { large } N_{c}, \text { no NG }\right) \tag{56}\\
M(x, y)=\gamma_{\mu} i S(x, y) \gamma_{\nu} J_{\mu \nu}(x, y) \tag{57}\\
M^{E}(x, y)=\gamma_{4} i S \gamma_{4} J_{44}^{E} \tag{58}\\
M^{H}(x, y)=\gamma_{i} i S \gamma_{k} J_{i k}^{H} \tag{59}\\
J_{44}^{E}(x, 4)=\int_{0}^{x} d u \int_{0}^{y} d v D^{E}(u-v) \tag{60}\\
\sigma^{E}=\frac{1}{2} \int D^{E}(z) d^{2} z \tag{61}
\end{gather*}
$$

C.S.B.: iS acquires scalar part.

Pert. Theory

$$
\begin{equation*}
i S^{(0)}(x)=\frac{\hat{x}-y}{(x-y)^{4}}+O\left(\gamma^{2 k+1}\right) \tag{62}
\end{equation*}
$$

Nonlinear eqs:

$$
\left\{\begin{array}{l}
M^{E}=\gamma_{4} i S \gamma_{4} J_{44}^{E} \tag{63}\\
i S=\left(\hat{\partial}+m+M^{E}\right)^{-1}
\end{array}\right.
$$

Solution: local approx.

$$
\begin{equation*}
M^{E}(x, y) \Rightarrow M^{E}(x)=M^{E}(0)+\sigma_{E}|\mathbf{x}| ; \tag{64}
\end{equation*}
$$

with NG mesons $M^{E}(x, y) \Rightarrow\left(M^{e}(0)+\sigma_{E}|\mathbf{x}|\right) e^{i \varphi_{\pi} \gamma_{5}}$

$$
\begin{gather*}
\mathcal{L}_{e f f}=\int \bar{\psi}(x)\left(\hat{\partial}+m+M^{E}(x)\right) \psi(x) d^{4} x \tag{65}\\
M^{E}(0)=\text { const } \sigma_{E} \lambda ; \quad \text { const } \approx 1 \tag{66}
\end{gather*}
$$

$$
\begin{equation*}
D^{E}(x)=D^{E}(0) e^{-|x| / \lambda} ; D^{E}(0)=\frac{\sigma_{E}}{\pi \lambda^{2}} \tag{67}
\end{equation*}
$$

σ_{E}, λ define Chiral Dynamics $\sigma_{E} \approx 0.18 G e V^{2}, \quad \lambda \cong 1 \mathrm{GeV}^{-1}$ scalar $M^{E}(x)$ means CSB (since it is scalar).
Indeed

$$
\begin{gather*}
f_{n}^{2}=\frac{2 N_{c}\left\langle Y_{f}\right\rangle\left|\bar{\varphi}_{n}(0)\right|^{2}}{\omega_{1} \omega_{2} M_{n}} \tag{68}\\
\left\langle Y_{A_{4}}\right\rangle=\left(m_{1}+M_{1}^{E}(0)\right)\left(m_{2}+M_{2}^{E}(0)\right)+\omega_{1} \omega_{2}-\left\langle\mathbf{p}^{2}\right\rangle
\end{gather*}
$$

for

$$
\begin{gather*}
m_{1}=m_{2}=0, \quad \omega_{i}=\left\langle\sqrt{\mathbf{p}^{2}+m_{i}^{2}}\right\rangle \rightarrow \sqrt{\mathbf{p}^{2}} \tag{69}\\
\left\langle Y_{A_{4}}\right\rangle \rightarrow(M(0))^{2}
\end{gather*}
$$

neglecting HF:

$$
\begin{equation*}
M_{0}=0.65 G e V, \quad \varphi_{0}^{2}(0)=\frac{0.15 G e V^{3}}{4 \pi} \tag{70}
\end{equation*}
$$

the same as for $\rho-$ meson.

$$
\begin{gather*}
\omega_{1}=\omega_{2}=\omega=0.352 \mathrm{GeV} \tag{71}\\
M^{E}(0) \cong 0.15 \mathrm{GeV} \quad f_{\pi}=142 \mathrm{MeV}(\text { vs } 131 \mathrm{MeV}) \tag{72}
\end{gather*}
$$

Interesting:

$$
\begin{gather*}
\omega \sim \sqrt{\sigma_{E}} ; \quad \varphi_{n}^{2}(0) \sim \sigma_{E}^{3 / 2}, \quad M_{n} \sim \sqrt{\sigma^{E}} \tag{73}\\
f_{\pi} \sim M^{E}(0) \sim \sigma_{E} \lambda \sim 0.15 G e V \tag{74}
\end{gather*}
$$

f_{π} is order parameter for CSB
f_{π} disappears with σ_{E} !

$$
\begin{gather*}
-\langle\bar{q} q\rangle=N_{c} M^{E}(0) \sum_{n=0}^{\infty} \frac{\left|\varphi_{n}(0)\right|^{2}}{M_{n}} \tag{75}\\
|\langle\bar{q} q\rangle| \sim M^{E}(0) \sigma_{E} \sim \lambda \sigma_{E}^{2} \sim(0.18)^{2} \mathrm{GeV}^{3} \sim(0.32 \mathrm{GeV})^{3} \tag{76}
\end{gather*}
$$

Conclusion: $\langle\overline{\mathrm{q}} \mathbf{q}\rangle$ and \mathbf{f}_{π} disappear together with $\sigma_{\mathbf{E}} \sim \mathbf{D}^{\mathrm{E}}(\mathbf{x}) \sim\left\langle\mathbf{E}^{2}\right\rangle$ Fun with Gell-Mann-Oakes-Renner relation

$$
\begin{aligned}
& f^{2} m_{\pi}^{2}=2\left(m_{u}+m_{d}\right)|\bar{q} q| \\
& f^{2} m_{k}^{2}=2\left(m_{u}+m_{s}\right)|\bar{q} q|
\end{aligned}
$$

at $\mu \cong 1 \mathrm{GeV}$

$$
\begin{gathered}
m_{u}=4.2 \mathrm{MeV} ; \quad m_{d}=7.5 \mathrm{MeV}, \quad m_{s} \approx 170 \mathrm{MeV} \\
|\bar{q} q| \cong \lambda \sigma_{E}^{2} ; \quad f \cong \lambda \sigma_{E} ; \quad \lambda=1 \mathrm{GeV}^{-1} \\
m_{\pi}^{2}=\frac{2\left(m_{u}+m_{d}\right)}{\lambda}, \quad m_{\pi} \sim 0.15 \mathrm{GeV} \\
m_{k}^{2}=\frac{2\left(m_{s}+m_{u}\right)}{\lambda}, \quad m_{k} \sim 0.59 \mathrm{GeV}
\end{gathered}
$$

$$
\frac{m_{k}^{2}}{m_{\pi}^{2}}=\frac{\bar{m}+m_{s}}{m_{u}+m_{d}} \cong 12
$$

σ_{E} cancels in GOR relation.
Chiral Lagrangians can be derived without confinement - e.g. in NJL or instanton model.
But: λ^{-1} gives the cutoff 1 GeV due to nonlocality in chiral perturbation theory.

Phase transition: Equation for $T_{c}(\mu) \quad$ M.A.Trusov and Yu.S.

$$
\begin{gather*}
S V Z \varepsilon_{v a c}=1 / 4 \theta_{\mu \mu}=\frac{\beta\left(\alpha_{s}\right)}{16 \alpha_{s}}\left\langle\left(F_{\mu \nu}^{a}\right)^{2}\right\rangle \cong-\frac{\left(11-\frac{2}{3} n_{f}\right)}{32} G_{2}^{\left(n_{f}\right)} \tag{77}\\
(N S V Z) G_{2}^{\left(n_{f}=2\right)} \approx\left(\frac{1}{3} \div \frac{1}{4}\right) G_{2}^{\left(n_{f}=0\right)} \tag{78}\\
G_{2}(0.02 \pm 0.005) G e V^{4} \text { S.Narison } \\
G_{2}(0.01 \pm 0.002) \mathrm{GeV}^{4} \text { Andreev, Zakharov } \tag{79}\\
P_{1}(T)=\left|\varepsilon_{v a c}\right|+\frac{\pi^{2}}{30} T^{4}+T \sum_{k} \frac{\left(2 m_{k} T\right)^{3 / 2}}{8 \pi^{3 / 2}} e^{-m_{k} / T} \equiv\left|\varepsilon_{v a c}\right|+T^{4} \chi_{1}(T) . \tag{80}
\end{gather*}
$$

In the deconfined phase one can assume (later confirmed by lattice) (Yu.S. JETP Lett.'92), that

$$
\begin{equation*}
D^{E}(x)=0=\sigma_{E} ; \quad D^{H}(x), D_{1}^{H}, D_{1}^{E} \neq 0 . \tag{81}
\end{equation*}
$$

$$
\begin{equation*}
P_{2}(T)=\left|\varepsilon_{v a c}^{d e c}\right|+T^{4}\left(p_{g l}+p_{q}\right) \tag{82}
\end{equation*}
$$

Critical line $T_{c}(\mu)$

$$
\begin{gathered}
P_{I}=\left|\varepsilon_{v a c}\right|+\chi_{1}(T) \rightarrow \frac{11}{32} G_{2} \\
P_{I I}=\frac{11}{32} G_{2}^{d e c}+\left(p_{g l}+p_{q}\right) T^{2} \\
P_{I}\left(T_{c}\right)=P_{I I}\left(T_{c}\right) \\
T_{c}(\mu)=\left(\frac{\frac{11}{32} \Delta G_{2}}{p_{g l}+p_{q}}\right)^{1 / 4}
\end{gathered}
$$

within $10 \% \Delta G_{2} \approx \frac{1}{2} G_{2}$

$$
\begin{gathered}
P_{g l}\left(T_{c}\right)=\frac{16}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{4}} L_{a d j}^{n} \rightarrow \frac{16}{\pi^{2}} L_{a d j} \\
p_{q}\left(T_{c}\right)=\frac{n_{f}}{\pi^{2}}\left[\Phi_{\nu}\left(\frac{\mu-\frac{V_{!}\left(T_{C}\right)}{2}}{T_{c}}\right)+\Phi_{\nu}\left(-\frac{\mu+\frac{V_{!}\left(T_{C}\right)}{2}}{T_{c}}\right)\right] \\
\Phi_{\nu}(a)=\int_{0}^{\infty} \frac{z^{4} d z}{\sqrt{z^{2}+\nu^{2}}\left(e^{\sqrt{z^{2}+\nu^{2}}-a}+1\right)}
\end{gathered}
$$

$\nu=\frac{m_{q}}{T}$. Take $m_{q}=0$.

Only 2 parameters (input)
ΔG_{2} and $V_{1}\left(T_{c}\right)$.

$$
\begin{gathered}
1 . \Delta G_{2}=G_{2}(E, H)-G_{2}(0, H) \approx \frac{1}{2} G_{2}(E, H)(10 \% a c c) \\
G_{2}=\frac{\pi^{2}}{36}\left(D^{E}(0)+D_{1}^{E}(0)+D^{H}(0)+D_{1}^{H}(0)\right) \\
D_{1}^{E}(0) \approx 0.2 D^{E}(0) \quad(T=0)
\end{gathered}
$$

2. $V_{1}\left(T_{c}\right) \cong 0.5 \mathrm{GeV}$ (lattice, analytic) within 10%.

Possible dependence on μ : weak for $\mu \ll$ dilaton mass $\approx 1.5 \mathrm{GeV}$ lattice data: $V_{1} \Rightarrow F_{Q \bar{Q}}^{1}$

Two limiting cases for $T_{c}(\mu)$
1). $T_{c}(\mu \rightarrow 0):$ Expanding in $\frac{V_{1}\left(T_{c}\right)}{8 T_{c}}$

$$
T_{c}=T^{(0)}\left(1+\frac{V_{1}\left(T_{c}\right)}{8 T_{c}}+O\left(\frac{V_{1}\left(T_{c}\right)}{8 T_{c}}\right)^{2}\right)
$$

with 3% accuracy

$$
\begin{gather*}
T_{c}(0) \approx \frac{1}{2} T^{(0)}\left(1+\sqrt{1+\frac{\kappa}{T^{(0)}}}\right), \quad T^{(0)}=\left(\frac{\left(11-\frac{2}{3} n_{f}\right) \pi^{2} \Delta G_{2}}{384 n_{f}}\right)^{1 / 4} \tag{83}\\
\kappa \equiv \frac{1}{2} V_{1}\left(\infty, T_{c}\right) \cong \frac{1}{2} F_{Q \bar{Q}}^{1}\left(\infty, T_{c}\right)=0.25 \quad G e V .
\end{gather*}
$$

2). End-point: $\mu_{c}(T \rightarrow 0)$

Using asymptotics

$$
\Phi_{0}(a \rightarrow \infty)=\frac{a^{4}}{4}+\frac{\pi^{2}}{2} a^{2}+\frac{7 \pi^{4}}{60}+\ldots
$$

one has

$$
\mu_{c}(T \rightarrow 0)=\frac{V_{1}\left(T_{c}\right)}{2}+(48)^{1 / 4} T^{(0)}\left(1-\frac{\pi^{2}}{2} \frac{T^{2}}{\left(\mu_{c}-\frac{V_{1}\left(T_{c}\right)}{2}\right)}+\right)
$$

For $V_{1}\left(T_{c}\right)=0.5 \mathrm{GeV}$ and $n_{f}=2$ one has.

$\frac{\Delta G_{2}}{0.01 \mathrm{GeV}^{4}}$		0.191	0.341	0.57	1
$T_{c}(\mathrm{GeV})$	$n_{f}=0$	0.246	0.273	0.298	0.328
$T_{c}(\mathrm{GeV})$	$n_{f}=2$	0.168	0.19	0.21	0.236
$T_{c}(\mathrm{GeV})$	$n_{f}=3$	0.154	0.172	0.191	0.214
$\mu_{c}(\mathrm{GeV})$	$n_{f}=2$	0.576	0.626	0.68	0.742
$\mu_{c}(\mathrm{GeV})$	$n_{f}=3$	0.539	0.581	0.629	0.686

9. Conclusions

1. Field correlator Method provides the explicit dynamical theory for Large-Distance QCD. The confinement is due to nonperturbative correlators of colorelectric fields, and for a flat (minimal) surface the lowest Gaussian correlator $D^{E}(x)$ plays the dominant role. Cluster expansion in n-th order correlators behaves as $\sim\left(\sigma \lambda^{2}\right)^{n}=(0.05)^{n}$.
2. Correlation length λ and correlators are calculated selfconsistently via gluelumps, $\lambda_{D}^{E} \approx 0.1 \mathrm{fm}$. Thus one has a theory defined by the only parameter say σ (in addition to current quark masses)
3. CSB emerges together with scalar confinement and all CSB parameters are expressed via σ^{E} and λ, e.g., $f_{\pi} \approx \sigma^{E} \lambda=O(100 \mathrm{MeV})$.
4. Phase transition temperature T_{c} is expressed via gluonic condensate. CSB disappears at T_{c} together with confinement.
