Infrared Exponents and the Strong Coupling Limit in Lattice Landau Gauge

St Goar, March 2008

Wilhelm & Else Heraeus Seminar: Quarks and Gluons in Strong QCD

Faculty of Sciences School of Chemistry & Physics

AUSTRAL

Lorenz von Smekal

SPECIAL RESEARCH

SUBAT MIC

• Determine $lpha_S$ from lattice Landau-gauge ghost/gluon propagators:

$$\alpha_S^{\min MOM}(q^2) = \frac{g^2(a)}{4\pi} Z_L(q^2, a^2) G_L^2(q^2, a^2) + O(a^2)$$

A. Sternbeck, K. Maltman, L. von Smekal, A. G. Williams, E. M. Ilgenfritz and M. Müller-Preussker, PoS (LATTICE 2007) 256, arXiv:0710.2965 [hep-lat].

Faculty of Sciences School of Chemistry & Physics

Running Coupling

• Minimom scheme $\alpha_S^{\min MOM}$ known to 4 loops (Maltman, Sternbeck, LvS, in prep):

• Compare observables in PT:

Baikov, Chetyrkin & Kühn, arXiv:0801.182[hep-ph].

$$4\pi^2 D_0(Q^2) = 1 + \frac{\alpha_s^{\overline{\text{MS}}}}{\pi} + 1.64 \left(\frac{\alpha_s^{\overline{\text{MS}}}}{\pi}\right)^2 + 6.37 \left(\frac{\alpha_s^{\overline{\text{MS}}}}{\pi}\right)^3 + 49.1 \left(\frac{\alpha_s^{\overline{\text{MS}}}}{\pi}\right)^4 + \dots$$
$$= 1 + \frac{\alpha_s^{\overline{\text{mM}}}}{\pi} - 1.05 \left(\frac{\alpha_s^{\overline{\text{mM}}}}{\pi}\right)^2 - 4.82 \left(\frac{\alpha_s^{\overline{\text{mM}}}}{\pi}\right)^3 + 3.13 \left(\frac{\alpha_s^{\overline{\text{mM}}}}{\pi}\right)^4 + \dots$$

Faculty of Sciences School of Chemistry & Physics

UM BENIN

M SHOW D

- Landau Gauge QCD Propagators (DSEs, lattice LG,...).
- Strong Coupling Limit in Lattice Landau Gauge.
- Modified Lattice Landau Gauge.
- Summary and Conclusions.

Gluon Propagator

Running Coupling

$$\alpha(k^2) = \frac{g^2}{4\pi} Z(k^2) G^2(k^2)$$

$$\rightarrow \alpha_c, \quad k^2 \rightarrow 0$$

L.v.S. et al., 1997

$$\alpha_c = \frac{4\pi}{N_c I(\kappa)} = 4.46..., \quad N_c = 2$$

Lerche & L.v.S., 2002

$$\alpha_c = 2.97..., \quad N_c = 3$$

0.8

0.9

J. C. R. Bloch, A. Cucchieri, K. Langfeld and T. Mendes, Nucl. Phys. B **687** (2004) 76.

Faculty of Sciences School of Chemistry & Physics

0.6

0.5

Ghost Propagator

Faculty of Sciences School of Chemistry & Physics

Fischer, Maas, Pawlowski & L.v.S., Ann. Phys. 322 (2007) 2916.

Faculty of Sciences School of Chemistry & Physics

Faculty of Sciences School of Chemistry & Physics

Infrared Exponents and the Strong Coupling Limit, LvS

Ghost Propagator

Sternbeck et al., Adelaide–Berlin–Moscow, unpublished (preliminary).

Faculty of Sciences School of Chemistry & Physics

A. Sternbeck, L. von Smekal, D. B. Leinweber and A. G. Williams, PoS (LATTICE 2007) 340, arXiv:0710.1982 [hep-lat].

Faculty of Sciences School of Chemistry & Physics

A. Sternbeck, L. von Smekal, D. B. Leinweber and A. G. Williams, PoS (LATTICE 2007) 340, arXiv:0710.1982 [hep-lat].

Faculty of Sciences School of Chemistry & Physics

SU(2) Propagators volume dependence

A. Sternbeck, L. von Smekal, D. B. Leinweber and A. G. Williams, PoS (LATTICE 2007) 340, arXiv:0710.1982 [hep-lat].

Faculty of Sciences School of Chemistry & Physics

$\beta = 0$ — Gluon Propagator

Faculty of Sciences School of Chemistry & Physics

Infrared Exponents and the Strong Coupling Limit , LvS

$\beta = 0$ — Gluon Propagator

Faculty of Sciences School of Chemistry & Physics

$\beta = 0$ — Gluon Propagator

$$Z_{\mathrm{fit}}(x) = c \, x + d \, x^{2\kappa}, \quad x = a^2 p^2$$

Faculty of Sciences School of Chemistry & Physics

$\beta = 0$ — Ghost Propagator

Not a finite volume effect!

Faculty of Sciences School of Chemistry & Physics

$\beta = 0$ — Ghost Propagator

Faculty of Sciences School of Chemistry & Physics

$\beta = 0$ — Ghost Propagator

Faculty of Sciences School of Chemistry & Physics

$\beta = 0$ — Infrared Exponents

Faculty of Sciences School of Chemistry & Physics

$\beta = 0$ — Infrared Exponents

• alternative fit models:

$$Z_{\rm fit}(x) = c x + d x^{2\kappa},$$
$$G_{\rm fit}^{-1}(x) = c + d x^{\kappa},$$
$$x = a^2 p^2$$

 $Z_{\rm fit}(x) = c x (1 + d x)^{2\kappa - 1},$ $G_{\rm fit}^{-1}(x) = c (1 + d x)^{\kappa},$ $x = a^2 p^2$

 κ_∞ :

gluon: 0.684 ± 0.002 ghost: 0.678 ± 0.003 κ_∞ : gluon: 0.571 ± 0.001 ghost: 0.569 ± 0.006

• in either case :

 $\kappa_{\rm gluon} = \kappa_{\rm ghost}$

Faculty of Sciences School of Chemistry & Physics

Stereographic Projection

- Consider S^N with φ : $(x_1, \dots, x_{N+1}) \mapsto \frac{1}{1+x_{N+1}} (x_1, \dots, x_N)$
- Example *SU*(2): replace

$$\frac{1}{2}\operatorname{tr} U^g \to \ln\left(1 + \frac{1}{2}\operatorname{tr} U^g\right)$$

in sum over links of gauge-fixing potential, suppresses South pole!

→ modified Landau gauge

Faculty of Sciences School of Chemistry & Physics

Modified Lattice Landau Gauge

• Compact U(1):

links $U = e^{i\phi}$, with g.t. $\phi^{\theta} = \phi + d\theta$

standard Morse potential: $V[U^{\theta}] = \sum_{\text{links}} \cos \phi^{\theta}$

Landau gauge:
$$0 = F_i(\phi^{\theta}) = \frac{\partial}{\partial \theta_i} V = \sum_{\mu} \left(\sin \phi_{i,\mu}^{\theta} - \sin \phi_{i-\hat{\mu},\mu}^{\theta} \right)$$

However,

$$Z_{gf} = \int \prod_{\text{sites}} d[\theta, \bar{c}, c, b] \exp\left\{-\sum_{i} s\left(\bar{c}_{i}(F_{i}(\phi^{\theta}) - i\frac{\xi}{2}b_{i})\right)\right\} = 0$$
$$\approx \left(S^{1 \times \#\text{sites}}\right) = \alpha(S^{1}) \#\text{sites} = 0 \#\text{sites}$$

 $\chi(D)$

Faculty of Sciences School of Chemistry & Physics

Infrared Exponents and the Strong Coupling Limit, LvS

 $X \subseteq$

• Use stereographic projection:

Morse potential:
$$V[U^{ heta}] = \sum_{links} ln \left(1 + \cos \phi^{ heta}\right)$$

and
$$F_i(\phi^{\theta}) = \sum_{\mu} \left(\tan(\phi^{\theta}_{i,\mu}/2) - \tan(\phi^{\theta}_{i-\hat{\mu},\mu}/2) \right)$$

Explicitly worked out in 1-dim (eliminates all Gribov copies) and ≥ 2 -dim (all but minima, 1st Gribov region) compact U(1).

L. von Smekal, D. Mehta, A. Sternbeck and A. G. Williams, PoS (LATTICE 2007) 382, arXiv:0710.2410 [hep-lat].

Faculty of Sciences School of Chemistry & Physics $x(\theta) = \tan(\theta/2)$

Faculty of Sciences School of Chemistry & Physics

Infrared Exponents and the Strong Coupling Limit, LvS

terms $\propto (a^2p^2)^{2\kappa},$ $\kappa = 0.6$

$$Z_{\rm fit}(x) = c \, x + d \, x^{2\kappa}, \ x = a^2 p^2$$

Faculty of Sciences School of Chemistry & Physics

Faculty of Sciences School of Chemistry & Physics

Infrared Exponents and the Strong Coupling Limit , LvS

SU(2) Coupling $-\beta = 0$

Faculty of Sciences School of Chemistry & Physics

Infrared Exponents and the Strong Coupling Limit, LvS 2

SU(2) Running Coupling – finite β

Faculty of Sciences **School of Chemistry & Physics**

Conclusions

Strong Coupling Limit of Lattice Landau Gauge

facilitate $\pi/L \ll p \ll \Lambda_{\rm QCD} \to \infty$

observe infrared behaviour of functional methods at large momenta:

 $D_{\text{gluon}} \sim (a^2 p^2)^{2\kappa - 1}, \quad D_{\text{ghost}} \sim (a^2 p^2)^{-\kappa - 1}, \quad \kappa \approx 0.6,$

in particular, $\kappa_{gluon} = \kappa_{ghost}$, and $\alpha_S \to \alpha_c \approx 4$ (SU(2)). However, this all happens for $1 \ll a^2 p^2$ deviations at small momenta are *not* a finite-size effect!

Modified Lattice Landau Gauge

solves Neuberger 0/0 problem of lattice BRST. alternative gauge field definition. will allow to perform (Landau) gauge-fixed MC.