panda

The PANDA Experiment at FAIR

Lars Schmitt, GSI Darmstadt

WE-Heräus-Seminar "Quarks and Hadrons in Strong QCD", Rheinfels, 19.3.2008

Overview of FAIR and PANDA

Hadron Spectroscopy

Hadron Structure

Nuclear Physics

Facilitiy for Antiproton and Ion Research

p-Linac

GSI, Darmstadt

- German National Lab for Heavy Ion Research
- Highlights:
 - Heavy ion physics
 - Nuclear physics
 - Atomic and plasma physics
 - Cancer research

FAIR: New facility

- 🖲 RIB
- Heavy ions
- higher intensities & energies
- Antiprotons

Antiprotons at FAIR

SIS 18

- FLAIR, EAR, PAX
- PANDA:
 - Hadron Spectroscopy
- Hadron Structure
- Nuclear physics

CBM

EAR

NESR

FAIR

FLAIR

SIS 100/300

Super-

FRS

CR/ RESR

PANDA

PAX

HESR

Antiprotons at FAIR

FAIR

• Collect in CR, cool in RESR

Overview of FAIR and PANDA

Antiprotons at FAIR

FAIR

Overview of FAIR and PANDA

Antiprotons at FAIR

FAIR

Overview of FAIR and PANDA

PANDA at FAIR

┎╕┋╤╕╜

PANDA Detector Setup

- Internal target experiment with cooled 1.5-15 GeV/c antiproton beams
- Double spectrometer: 4π acceptance
- Tracking, particle ID, calorimetry
- Very high interaction rates
- Sampling readout

PANDA Physics Topics

- Hadron spectroscopy
 - Charmonium
 - Charmed hybrids
 - D-mesons
 - Light mesons & hybrids
- Hadron structure
 - Timelike EM formfactor
 - Drell-Yan
 - WA Compton scattering
- Charm in medium
- Hypernuclei
 - Double hypernuclei
 - Precision γ-spectroscopy
- Electroweak physics
 - CPV with charm mesons and hyperons
 - Rare decays

Overview of PANDA

Aims of Spectroscopy

• Experiment: Systematic determination of particle properties

- Mass
- Lifetime or width of resonance
- Quantum number J^{PC}

• Theory: Calculation of spectra

- Knowing interaction allows prediction
- Tuning accounting for experimental data

Final aim: Understand composition and dynamics of matter
 In QCD we are still far away from precision of QED

Charmonium Spectroscopy

panda

Charmonium

- Positronium of QCD:
 Potential of cc calculable
- Tool to understand confinement

Status below DD **threshold**

- J=1-- well measured
- Low resolution on J=0+ states
- \bullet η_c ' was rediscovered 40 MeV higher
- Low statistics on h_c

Hadron Spectroscopy

XYZ - New Charmonium States

• Belle, BaBar, CLEO, CDF and D0 find new states above $D\overline{D}$

 Many of these states are problematic: mass not predicted, width too small, decay pattern unusual

Challenge for better understanding and high precision data

State	Experiments	Nature/Remarks
X(3872)	Belle, BaBar, CDF, D0	D ⁰ D ⁰ * molecule, 4-quark state
X(3943)	Belle	maybe η" _c
Y(3940)	Belle	maybe 2 ³ P ₁
Z(3930)	Belle	maybe χ [·] c2
Y(4260)	BaBar, Belle, CLEO-c	Hybrid, $\omega \chi_{c1}$ -molecule, 4q state
Y(4350)	BaBar, Belle	?
Z [±] (4430)	Belle	No charged $c\bar{c}$, molecule or 4q state
Y(4660)	Belle	?

Hadron Spectroscopy

D-Meson Spectroscopy

Heavy mesons like H-atom:

- Heavy quark surrounded by light quark
- ordered by property of light quark
- approximate j degeneracy
- → Spectroscopic predictions
- → Works fairly well in $\overline{c}(u/d)$ system

D_s mesons surprise

- Recent narrow D_{s0}(2317) and D_{s1}(2460)
 do not fit theoretical calculations.
- Quantum numbers for the newest states D_{sJ}(2700) and D_{sJ} (2880) open

Hadron Spectroscopy

Exotic Hadrons

Exotic Hadrons

- Normal hadrons: $(q\bar{q})$ or (qqq)
- Gluonic degrees of freedom:
 - Hybrid mesons (qqg)
 - Glueballs
- Multi-quark states
- Molecules
- Exotic mesons can have exotic quantum numbers

Mesons, Baryons

Multi-quarks 🛃 🦂 🖂

Hybrids

Glueballs

Charm Spectroscopy

- Charm quark: m_c >> m_{u.d.s}
- → Perturbative to strong coupling

Charm Hybrids

- C-states narrow, understood
- Little interference of ccg & cc-states
- Mass 4–4.5 GeV, c \overline{c} g narrow,

• ~
$$\sigma(p \bar{p} \rightarrow c \bar{c})$$

L. Schmitt, GSI

Hadron Spectroscopy

Spectroscopy with Antiprotons

Spectroscopy with antiprotons

- $p\bar{p}$ machine allows $\Delta E \sim 50$ keV (beam) vs. $\Delta E \sim 5$ MeV in e^+e^- (detector)
- e⁺e⁻ directly produces only J^{PC} = 1⁻⁻ (γ) others via ISR and other higher orders
- pp accesses all states

Resolution with antiprotons

Resonance scan:

- Energy resolution
 ~50 keV
- Tune E_{CM} to probe resonance
- Get precise mass and width

Hadron Spectroscopy

Principles of Partial Wave Analysis

Argand Plot

lm(T)

Goals of PWA:

- N-particle phase space
- Description of resonance properties:
 - mass
 - 🛭 width
 - quantum numbers
- Treatment of interferences

Schrödinger Equation

0.8 0.8 0.6 0.6 0.4 0.4 0.2 0.2 0 -0.2 -0.4 0 0.2 0.6 0.8 1.2 -0.6 0.4 1 1.4 Re(T)

Intensity $I = \Psi \Psi^*$

1.6

m [GeV/c²]

1.8

Hadron Spectroscopy

Principles of Partial Wave Analysis

щ

10

 $m_{\pi\pi}$

40

35

30

25

20

700

14

 $\rho - \omega$

800

750

Goals of PWA:

- N-particle phase space
- Description of resonance properties:
 - mass
 - width
 - quantum numbers
- Treatment of interferences

Crystal barrel $p\overline{p} \to 3\pi^{0}$ with 100 events

GSI

panda

Hadron Spectroscopy

Crystal barrel $p\overline{p} \to 3\pi^{0}$ with 1000 events

Hadron Spectroscopy

panda

Crystal barrel $p\bar{p} \rightarrow 3\pi^{0}$ with 10000 events

GSI

panda

Hadron Spectroscopy

Crystal barrel $p\overline{p} \to 3\pi^{0}$ with 100000 events

panda

Hadron Spectroscopy

Requirement: Good Resolution

Importance of high resolution:

- to find and investigate narrow resonances
- for multi hadron final states
- to reduce the background

Achieving high resolution:

- Production process
- Detector resolution
- Kinematical constraints

Partial Wave Analysis in PANDA

Purpose of PWA for PANDA in the field of spectroscopy:

- Disentangle interfering resonances
- Determine quantum numbers
- Uncover the nature of new resonances
- Discover spin-exotic states

Applications by PANDA in the field of spectroscopy:

- Charmonium and Charmonium hybrids
- D-mesons and D-hybrids
- Light quark resonances
- Glueballs

Prerequisites for the spectrometer:

- 4π acceptance, hermeticity
- Particle identification
- High resolution
- High statistics
- Over-constrain systems

Studying Hadron Structure

Bjorken scaling: At high Q^2 dependence only on x → Scattering on point-like partons Parton distributions:

- Valence quarks
- Sea quarks
- Gluons
- Factorization: hard scattering and non-perturbative structure **Structure Functions:**
- Unpolarized F_1 and F_2
- Longitudinally polarized g_1 (and g_2)
- Transverse polarized h_1

Measurements:

- Deep inelastic scattering
- Drell Yan process

Proton spin:

<s₂>=1/2 =1/2 (Δ u+ Δ d+ Δ s)+L_a+ Δ G+L_b

- Quark contribution: Expt. $\Delta\Sigma = (\Delta u + \Delta d + \Delta s) \approx 0.3$
- Other contributions: gluons, orbital angular momentum

Generalized Parton Distributions

Generalized Parton Distributions

Danda

- A fractional momentum ξ is taken out
- GPDs: 4 functions H(x,ξ,t), E(x,ξ,t),

 $\tilde{H}(x,\xi,t), \tilde{E}(x,\xi,t)$ (polarized)

Properties of GPDs:

- GPDs carry information on *longitudinal* and *transverse* distribution of partons
- 3D picture of nucleon
- GPDs contain also information on quark (orbital) angular momentum
- H(x,0,0) = q(x) structure functions of DIS
- $\int H(x,0,t) dx = F(t)$ nucleon formfactor

Hadron Structure

Nucleon Structure in PANDA

Generalized Parton Distributions

Wide angle Compton scattering

Hard exclusive meson production

Transverse nucleon spin

 Drell Yan Process (full PWA or polarized beam/target)

Electromagnetic formfactors

 Discrepancy between timelike and spacelike region

• Measure $p\bar{p} \rightarrow e^+e^-$

Hadrons in Nuclear Medium

Charmonium in Nuclei

- Enhanced charmonium states due to lower DD threshold
- J/Ψ absorption in nuclei
 → comparison with heavy ion collisions

Modification of Meson Masses

- Mass change in nuclear medium
- D masses lowered, mass split
- Need to stop D in nucleus

Nuclear Physics

The Hypernuclear Landscape

Hypernuclei: Strangeness as 3rd dimension in the nuclear chart

Objectives:

- Study of nuclear structure
- Understanding of nuclear potential and NN force

Hypernuclear puzzle:

- Spin-orbit force small in hypernuclei while large in normal nuclei
- Spectroscopy of double hypernuclei
- → Study of YY interaction

p a nd a

Hypernuclear Physics in PANDA

Production of double hypernuclei:

Two-stage process

- Hyperon production at threshold
- Fast kaons or hyperons as trigger
- Slow-down and capture in secondary active target
- → several 10⁵ stopped Ξ/day

γ-Spectroscopy :

- Germanium detector in backward hemisphere
- Consecutive weak A decay and nuclear level cascade
- → Measure ∧∧ interaction

The PANDA Detector

The PANDA Detector

The PANDA Detector

Interaction of Particles with Matter

Momentum determination of charged tracks in magnetic field

The PANDA Detector

The PANDA Detector

The PANDA Detector

G 🗲

The PANDA Detector

GsŤ

The PANDA Detector

GSÌ

GEM Trackers

The PANDA Detector

G S

Cherenkov Detectors

Electromagnetic Crystal Calorimeters

The PANDA Detector

The PANDA Detector

The PANDA Detector

GSI

Forward Spectrometer

Conclusions

Hadron physics sees a significant renaissance

- New observations probe our present understanding
- News on nucleon structure: HERMES, COMPASS, RHIC
- Future hadron facilities: GLUE-X, J-PARC, PANDA at FAIR

New methods broaden our horizon

- Theory: fundamental methods based on low energy QCD
- Computing: lattice gauge theory, coupled channels, PWA
- Experiments: precision detectors with flexible readout

PANDA will be a major player in hadron physics

- 4π acceptance, hermeticity, high resolution and statistics
- Versatile physics machine with full detection capabilities
- PANDA will be able to resolve many of today's puzzles

The PANDA Collaboration

About 400 physicists from 55 institutions in 17 countries

U Basel **IHEP** Beijing **U** Bochum U Bonn U & INFN Brescia U & INFN Catania Cracow JU, TU, IFJ PAN **GSI** Darmstadt TU Dresden JINR Dubna (LIT,LPP,VBLHE) **U** Edinburgh **U** Erlangen **NWU Evanston** U & INFN Ferrara U Frankfurt LNF-INFN Frascati

U & INFN Genova **U** Glasgow U Gießen **KVI** Groningen U Helsinki IKP Jülich I + II **U** Katowice IMP Lanzhou U Mainz U & Politecnico & INFN Milano U Minsk Moscow, ITEP & MPEI TU München U Münster **BINP Novosibirsk** LAL Orsay

U Pavia **IHEP** Protvino **PNPI** Gatchina U of Silesia **U** Stockholm **KTH Stockholm** U & INFN Torino Politechnico di Torino U Oriente, Torino U & INFN Trieste U Tübingen U & TSL Uppsala **U** Valencia SMI Vienna **SINS Warsaw U** Warsaw

p a n)d a