ALICE experiment on the threshold of wonderland

Dariusz Miśkowiec GSI Darmstadt

Quarks and Hadrons in Strong QCD 415th Wilhelm & Else Heraeus Seminar St. Goar, March 2008

- LHC and ALICE
- ø first physics in pp
- first physics in PbPb
- schedule and news

LHC experiments

physics questions at LHC

ATLAS, CMS, LHCb:

electroweak symmetry breaking origin of mass of quarks and gauge bosons supersymmetric particles CP violation

ALICE:

chiral symmetry breaking origin of mass of hadrons deconfinement hadronization

ALL:

understanding high energy nuclear interactions (input needed for cosmic ray studies)

ALICE programme

mission:

create quark-gluon matter study its properties quantitatively be prepared for unexpected = be versatile

methods:

spectra and correlations of various particles

e.g. heavy quarks (open beauty, upsilon-states) jets in heavy ion environment weakly interacting probes (Z^0 , W^{\pm})

special at LHC:

higher energy density larger system more heavy quarks and jets weak probes W/Z available access to lower x

	SPS	RHIC	LHC
√s _№ (GeV)	17	200	5500
dN _{ch} /dy	~450	~850	1500-4000
ε(GeV/fm³)	3	5	15-60
τ _{QGP} (fm/c)	<i>≤</i> 2	2-4	≥ 10

Alice Detector

Time Projection Chamber (TPC)

ALICE Event Display

TPC assembly

Lowering and insertion of ALICE TPC (15/01/07)

Transition Radiation Detector (TRD)

Purpose:

Electron-ID

Quarkonia $\rightarrow e^+e^-$ Heavy flavour

Some numbers:

540 chambers

Total area: 736 m² (3 tennis courts)

Gas volume: 27.2 m³

Resolution (rφ) 400 μm

Number of read out channels: 1.2×10^6

Transition Radiation Detector (TRD)

TOF supermodule

TRD Supermodule

Trigger

central barrel (-0.9<η<0.9) efficiency

 $dN_{ch}/dy = 6000$

central barrel (-0.9<η<0.9) pt resolution

 $dN_{ch}/dy = 6000$

PID Capabilities

first physics in p+p

- Charged particle multiplicity
- ø baryon transport
- Charm cross section
- reference data for heavy ions

charged particle multiplicity in pp

- extend existing energy dependence
- unique SPD trigger (L0) for min. bias precision measurement
- completely new look at fluctuations in pp (neg. binomials, KNO...)

 trigger efficiency

 ND-INEL: 98.2%

 SD
 : 55.4%

 DD
 : 58.4%

high-multiplicity trigger

Silicon pixel detector

- fast-OR trigger at Level-0 OR signal from each pixel chip
- two layers of pixel detectors 400 chips layer 1; 800 layer 2
- trigger on chip-multiplicity per layer

Sector: 4 (outer) + 2 (inner) staves

Fired chips vs. true multiplicity (in η of layer)

SPD: 10 sectors (1200 chips)

Few trigger thresholds

- tuned with different downscaling factors
- maximum threshold determined by
 - event rate background double interactions

high-multiplicity trigger – example

Example of threshold tuning:

MB and 3 high-mult. triggers

250 kHz collision rate recording rate 100 Hz

MB 60%

3 HM triggers: 40%

trigger rate Hz	scaling	raw rate	threshold layer 1
60.0	4167	250000	min. bias
13.3	259	3453.3	114
13.3	16	213.3	145
13.3	1	13.3	165

baryon number transport

... goes via quark exchange or string junction

G.C. Rossi and G. Veneziano, Nucl. Phys B123 (1977) 507 B.Z. Kopeliovich and B. Zakharov, Z. Phys. C43 (1989) 241

proton-antiproton asymmetry allows to distinguish

systematic error < 1% for p > 0.5 GeV/c:
statistical error < 1% for 10⁶ pp events (< 1 day)

charm

Andrea Dainese

first physics from Pb+Pb

first 10⁵ events: global event properties multiplicity, elliptic flow

- first 10⁶ events: source characteristics pt-spectra, resonances, differential flow analysis interferometry
- first 10⁷ events: hard probes jet quenching, heavy flavour energy loss, charmonium

charged particle multiplicity in Pb+Pb

integrated multiplicity distributions from Au+Au/Pb+Pb collisions and scaled p+p collisions

multiplicity predictions for LHC

N. Armesto, QM2008

multiplicity predictions for LHC

N. Armesto, QM2008

elliptic flow v₂

- standard RHIC statement: v₂ at RHIC is at hydro limit so QGP is perfect liquid
- Ollitrault, Voloshin: no! careful analysis shows that v₂ is still 30-50% below hydro limit so there is room for viscosity (and for ALICE)
- Shuryak: QGP is perfect liquid but is followed by viscous hadronic phase

open charm and beauty

c/b

goal:

measure parton energy loss in QGP

expectation:

energy loss color dependent (different for quarks and gluons)

energy loss flavour dependent (smaller for heavy quarks)

System *Pb+Pb (5% cent)* p+p 14 √s_{NN} (TeV) 5.5 NN cross 11.2 / 0.5 **6.6 / 0.2** section (mb) Shadowing 0.65 / 0.85 Total 0.16 / 0.007 115/4.6 multiplicity

advantage at LHC:

high abundance of c and b (direct reconstruction possible)

RHIC: Non-photonic electrons used to estimate charm

Quarkonia in dielectron channel

Di-electron in central barrel

State	$S(\times 10^3)$	$B(\times 10^{3})$	S/B	$S/\sqrt{S+B}$
J/ψ	110.7	92.1	1.2	245
r	0.9	0.8	1.1	21
Υ'	0.25	0.7	0.35	8

Invariant Mass [GeV]

J/Psi as QGP probe

Andronic, Braun-Munzinger:

ccbar production is hard ccbar →J/Psi is statistical

jets in p+pbar at 1.8 TeV

CDF, PRD 64 (2001) 032001

jets in Pb+Pb at 5.5 TeV (ALICE sim)

Jets with ITS, TPC, TRD – TRD trigger

1 month of running				
Ε ₇ >	N _{jets}			
50 GeV	2.0 × 10 ⁷			
100 GeV	1.1 × 10 ⁶			
150 GeV	1.6 × 10 ⁵			
200 GeV	4.0 × 10 ⁴			

trigger condition :

3 charged particles with $p_T > p_T$ min in one TRD module

Jets with EMCAL

- EM Sampling Calorimeter latest addition to ALICE by US, France, Italy
- Pb-scintillator linear response
 -0.7 < η < 0.7
 60° < φ < 180°
- Section Se

Jets with both

"two extreme scenarios", B. Müller QM2008

- 1. QGP physics at the LHC will be just like RHIC, only at higher (initial) energy density/temperature and with probes that have a (much) larger kinematic range.
- 2. QGP physics at the LHC will be quite different from that seen at RHIC, involving an (initially) weakly coupled deconfined phase and an initial state dominated by gluon saturation.

weak or strong coupling?

weakly coupled QGP has a principal problem:

when hadronizing back single quarks can be left because synchronizing hadronization in regions separated by space-like intervals is impossible

QGP paradox demonstrated

- I will start from an allowed state (1 mm³ of QGP)
- I will never violate any physics law
- I will end up in a not allowed state (with single quarks)

QGP paradox: experiment 1

QGP paradox: experiment 2

QGP paradox: 3 ways out

1) fast (volume) hadronization

- single quarks can exist, or
- baryon number not conserved, or
- superluminal information transfer is possible

2) slow (surface) hadronization

- In the second second
- too slow: Early Universe at least couple of minutes
- heavy ion collision: the ends hadronize first

QGP paradox: 3 ways out

3) true QGP with liberated quarks does not exist

- quarks are in clusters
- the ring can be cut only between two such clusters
- no problem with hadronization

S. K. Ghosh, Astrophysics of Strange Matter, QM2008

★ Matter density → decreases as R⁻³

DE is dominant at late times Banerjee et al. PLB611 (2005)

"orphan quarks" - possible solution of my QGP paradox

LHC schedule as of 8 Oct 2007

18-Mar-2008

ALICE running schedule

- Dec-2007 cosmic run
- Mar-2008 cosmic run
- Apr-2008 cosmic run...
- Jul-2008 p+p
- I fall 2009 Pb+Pb

- complete & commissioned ITS, TPC, TOF, HMPID, MUONS, PMD, V0, T0, FMD, ZDC, ACORDE, DAQ
- ø partially completed
 - TRD (25%) to be completed by 2009
 - PHOS (60%) to be completed by 2010
 - HLT (30%) to be completed by 2009
 - EMCAL (0%) to be completed by 2010/11
- at start-up full hadron and muon capabilities
- partial electron and photon capabilities

summary: ALICE status and nearest plans

commissioning phase

- fully commission trigger, DAQ, ECS
- align and calibrate the entire system
- further use of beam gas interactions

ø first pp run

- charged particle multiplicity
- baryon number transport
- charm cross section
- reference data for heavy ions
- ø first few heavy ion collisions
 - global event properties
- ø first long heavy ion run
 - source characteristics
 - hard probes

The End

ALICE general running plans

initial phase

- ø pilot Pb+Pb
- I-2 years Pb+Pb
- I year p+Pb (or like)
- I-2 years Ar+Ar

subsequent options

- øp at sqrt(s) = 5.5 TeV
- N+N or O+O or Kr+Kr...
- another pA
- Iower energy Pb+Pb
- high stat full energy Pb+Pb

LHC machine parameters

	рр	Pb–Pb
Energy per nucleon (TeV)	7	2.76
β at the IP: β^* (m)	10	0.5
R.m.s. beam radius at IP: σ_t (μ m)	71 ^a	15.9
R.m.s. bunch length: σ_1 (cm)	7.7	7.7
Vertical crossing half-angle (μ rad) for		
pos. (neg.) μ -spectr. dipole polarization	150 (150)	150 (100)
No. of bunches	2808	592
Bunch spacing (ns)	24.95	99.8
Initial number of particles per bunch	$1.1 imes 10^{11}$	$7.0 imes 10^7$
Initial luminosity (cm ^{-2} s ^{-1})	$< 5 \times 10^{30}$	10 ^{27 в}

^a For low-intensity runs β^* could be 0.5 m and $\sigma_t = 15.9 \,\mu\text{m}$ as in Pb–Pb. ^b Early operation will be with 62 bunches and $\beta^* = 1$ m, which yields an initial luminosity of 5.4×10^{25} cm⁻² s⁻¹.

ALICE running conditions

System	$\sqrt{s_{\rm NN}}_{\rm max}$ (TeV)	Δy	$\sigma_{\rm geom}$ (b)	$\mathcal{L}_{low} \ (cm^{-2} \ s^{-1})$	$\mathcal{L}_{high} \ (cm^{-2} \ s^{-1})$
Pb–Pb	5.5	0	7.7	1.0×10^{27}	
Ar–Ar	6.3	0	2.7	$2.8 imes 10^{27}$	1.0×10^{29}
0–0	7.0	0	1.4	5.5×10^{27}	$2.0 imes 10^{29}$
N–N	7.0	0	1.3	$5.9 imes 10^{27}$	2.2×10^{29}
αα	7.0	0	0.34	$6.2 imes 10^{29}$	
dd	7.0	0	0.19	1.1×10^{30}	
рр	14.0	0	0.07	1.0×10^{29}	5.0×10^{30}
pPb	8.8	0.47	1.9	1.1×10^{29}	
pAr	9.4	0.40	0.72	3.0×10^{29}	
pO	9.9	0.35	0.39	$5.4 imes 10^{29}$	
dPb	6.2	0.12	2.6	8.1×10^{28}	
dAr	6.6	0.05	1.1	1.9×10^{29}	
dO	7.0	0.00	0.66	3.2×10^{29}	
αPb	6.2	0.12	2.75	$7.7 imes 10^{28}$	
αAr	6.6	0.05	1.22	1.7×10^{29}	
αO	7.0	0.00	0.76	2.8×10^{29}	

 Subject: From: Date: ⊕ To: 	Fermilab Statement on LHC Magnet Test Failure Robert Aymar <robert.aymar@cern.ch> 03/29/07 17:53 cern-staff (List of all staff members at CERN) <cern-staff@cern.ch>, users (CERN Users) <users@cern.ch>, cern-fellows (list of fellows presently at CERN) <cern-fellows@cern.ch></cern-fellows@cern.ch></users@cern.ch></cern-staff@cern.ch></robert.aymar@cern.ch>
Dear Colleague On Tuesday eve pressure test provided by Fe of the incider are available agreement, at http://user.we et.html. Regards, Robert Aymar	ening 27 March 2007, there was an incident during a involving one of the LHC's inner triplet magnet assemblies ermilab and KEK. No people were involved. The consequences of on the LHC start-up schedule are not yet known. Details in a statement from Fermilab, with which CERN is in eb.cern.ch/user/QuickLinks/Announcements/2007/LHCInnerTripl

July 20, 2007 — Inner Triplet Successfully Completes Pressure Test

An inner triplet assembly of quadrupole magnets at Point 8-Right of the LHC at CERN successfully completed a pressure test in the accelerator tunnel on Friday, July 13. The triplet, which included three quadrupole magnets and the associated cryogenic and power distribution box, or DFBX, met all test specifications at the requisite pressure of 25 atmospheres for one hour. The triplets will focus particle beams prior to particle collisions at each of four interaction regions in the Large Hadron Collider, now under construction at CERN.

The pressure test is designed to test the accelerator components in conditions that will occur during LHC operations. To withstand the asymmetrical forces generated by the pressure, the Q1 and Q3 magnets, at either end of the

A Q1 magnet assembly with cartridges held in place by the four earlike brackets bolted to the outer flange.

triplet assembly had each been fitted with a set of four metal cartridges. The cartridges reinforce internal support structures that broke in two such magnets during an earlier pressure test on March 27. The cartridges limit movement of the magnets inside their metal jackets, or cryostats.

Metal brackets attach the cartridges to one end of each of the affected magnets. The cartridges have a compound design consisting of an aluminum alloy tube and an Invar rod to allow them to function over a broad range of temperatures. Invar is a form of steel whose dimensions change very little in response to temperature differences.

ALICE on the threshold of wonderland, D. Miskowiec, St. Goar

Sources of information

I995 ALICE Technical Proposal

CERN-LHCC 95-71

Physics Performance Report, Volume I

J.Phys.G 30(2004)1517-1763

physics topics, LHC conditions, detector summary, computing

Physics Performance Report, Volume II

J.Phys.G 32(2006)1295-2040

combined detector performance, event reconstruction

Acceptance for Charged Hadrons

Sentral barrel -0.9 < η < 0.9</p>

ITS, TPC, TRD, TOF 2 π tracking, PID HMPID single arm RICH PHOS single arm EM cal EMCAL jet calorimeter (proposed)

Solution States in the state of the stat

absorber, 3 Tm dipole magnet 10 tracking + 4 trigger chambers

• multiplicity -5.4 < η < 3

PMD including photon counting

- trigger & timing
 - FMD: silicon strip multiplicity det
 - T0: ring of quartz window PMT's
 - V0: ring of scintillator paddles
 - 6 Zero Degree Calorimeters

Interactions at energies typical to cosmic rays

jets with an EM calorimeter (CDF)

jets with charged particles (ALICE ITS+TPC+TRD)

fraction of jet energy in form of charged particles

LHS schedule as of Aug-2007

LHC schedule as of 8 Oct 2007

18-Mar-2008

DAQ

Detector	pp (kB)	Pb-Pb (MB)	
ITS Pixel		0.140	High Trigger
ITS Drift	1.8	1.500	e Rate (T MHz)
ITS Strips		0.160	CMS Many Channels
TPC	2450.0	75.900	High Bandwidth
TRD	11.1	8.000	
TOF		0.180	
PHOS		0.020	
HMPID		0.120	
MUON		0.150	Large Data
PMD		0.120	LEP UA1 (PetaByte)
Trigger		0.120	10 ² NA49
Total	2500	86.500	10⁴ ¹ 10⁵ 10 [®] 10 Event Size (byte)

	Scenario 1 Rates (Hz)		Scenario 2 Rates (Hz)		Scenario 3 Rates (Hz)		Scenario 4 Rates (Hz)	
	Maximum	DAQ	Level 2	DAQ	Level 2	DAQ	Level 2	DAQ
Central	10 ³	20	10	10	20	20	20	20
Minimum-bias	10^{4}	20	10	10	20	20	20	20
Dielectron			100	100	200	20	200	20
Dimuon	1000	650	1600	1600	1600	1600	1600	1600
Total throughput (MB s ⁻¹)		1250	1400	1400	700			

18-Mar-2008

Grid

Day 1 @ LHC: event multiplicity at y=0

- generic trends in $dN^{ch}/d\eta$
 - extended longitudinal scaling
 - self-similar trapezoidal shape

$$\square dN^{ch}/d\eta \Big|_{\eta=0} \propto \ln \sqrt{s_{NN}}$$

Saturation models predict

Armesto, Salgado, Wiedemann, PRL94 (2005) 022002

$$\frac{1}{N_{\text{part}}} \frac{dN^{AA}}{d\eta} \bigg|_{\eta \sim 0} = N_0 \sqrt{s^{\lambda}} N_{\text{part}}^{\frac{1-\delta}{3\delta}}$$

$$\implies dN_{LHC}^{ch}/d\eta\Big|_{\eta=0} \approx 1650$$

Of Kharzeev, Levin, Nardi, NPA747 (2005) 609.

Both consistent with main trends at RHIC, but ...

Extrapolations to LHC deviate from so-far generic trends in data

Impact for understanding the dynamical origin of soft physics at RHIC and LHC.

Photons

	p _t ^{max} (1year)	High-p,	
	γ	π^0	trigger
PHOS	~100 (shower shape)	~150 (inv. mass)	*
EMCAL	~150 (shower shape)	~200 (inv. mass)	~
Central Barrel	~20 (γ → e ⁺ e ⁻)	-	*

Quarkonia in dimuon channel

LHC tests the hydro-paradigm

Hydro prediction for low LHC multiplicity

 $v_2 \approx 0.055$

Extrapolation of generic RHIC trend

 $v_2 \approx 0.075$