
Background
Formalism

Results
Summary

Quark and gluon propagators
in dense 2-colour matter

In collaboration with Simon Hands, Seyong Kim, Peter Sitch

Jon-Ivar Skullerud

NUI Maynooth

QHQCD, St Goar, 18 March 2008

1 / 33



Background
Formalism

Results
Summary

Outline

Background
Global symmetries of QC2D
QC2D vs QCD

Formalism
Tensor structures
Lattice formulation

Results
Bulk thermodynamics
Gluon propagator results
Quark propagator results

Summary

2 / 33



Background
Formalism

Results
Summary

Global symmetries of QC2D
QC2D vs QCD

Background

I A plethora of phases at high µ, low T

I Based on models and perturbation theory

I Details depend on diquark gaps and strange quark mass
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Diquark condensation

I One-gluon exchange is attractive

I Energetically favourable to pair two quarks on opposite sides
of Fermi surface =⇒ BCS instability

I In QCD this breaks the gauge symmetry
=⇒ colour superconductivity

I Ground state at ultra-high densities has
SU(3)L⊗SU(3)R⊗SU(3)c → SU(3)L+R+c

I Mismatch between strange and light quark Fermi momenta at
intermediate densities =⇒ less symmetric pairing
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Lattice simulations?
A non-perturbative, first-principles approach is needed!

But QCD at µ 6= 0 has a sign problem:

γ5M(µ)γ5 =M†(−µ) =⇒ detM may be complex

So standard Monte Carlo importance sampling can not be used!
We can still gain some insight:

I Approach from high(er) temperature

I Effective theories where problem is absent or reduced:
HDET, NJL,. . .

I QCD-like theories without a sign problem

I QC2D studies by Hands&Morrison; Muroya, Nakamura,
Nonaka; Kogut&Sinclair; Allés, d’Elia, Lombardo;
Chandrasekharan&Jiang,. . .
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Global symmetries of QC2D

Quarks and antiquarks are in the same representation

Anti-unitary symmetry: KMK−1 =M∗ with K ≡ Cγ5τ2

L = ψ(γνDν − µγ0 + m)ψ

= iΨ†σν(Dν − µBν)Ψ +
1

2
mΨTσ2τ2M̂Ψ

Ψ =

(
ψL

σ2τ2ψ
∗
R

)
, Bν =

(
1 0
0 −1

)
δν0, M̂ =

(
0 1
−1 0

)

m = µ = 0: global SU(2Nf ) symmetry
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Chiral symmetry breaking
Chiral condensate

ψψ = −1

2
ΨTσ2τ2M̂Ψ + h.c .

〈ψψ〉 6= 0 breaks SU(2Nf ) −→ Sp(2Nf )

⇒ Nf (2Nf − 1)− 1Goldstone modes

Nf = 2: 5 modes

ψ~σγ5ψ pion ψT ετ2Cγ5ψ, ψετ2Cγ5ψ
T

scalar diquark

Note: Staggered fermions have different symmetry breaking
pattern!
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Diquark condensation
Diquarks are colour singlets in QC2D
→ superfluidity rather than colour superconductivity
→ exact Goldstone mode from breaking of U(1)B symmetry

Bose–Einstein Condensation:
Condensation of tightly bound diquarks (Goldstone baryons)
↔ Chiral perturbation theory

〈ψψ〉 ∝
√

1− (µ/µo)4

Bardeen–Cooper–Schrieffer:

Pairing of quarks near the Fermi surface

〈ψψ〉 ∝ ∆µ2
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QC2D vs QCD

What we cannot learn

I Chiral dynamics

I Nuclear matter EOS

I Colour superconductivity

I Quantitative predictions for deconfinement transition

What we might learn

I Gluodynamics

I Checks on model studies

I Qualitative features of deconfinement

I Generic features of gauge theories at high densities

I Medium effects on quarks, gluons and non-Goldstone hadrons

9 / 33



Background
Formalism

Results
Summary

Global symmetries of QC2D
QC2D vs QCD

QC2D vs QCD

What we cannot learn

I Chiral dynamics

I Nuclear matter EOS

I Colour superconductivity

I Quantitative predictions for deconfinement transition

What we might learn

I Gluodynamics

I Checks on model studies

I Qualitative features of deconfinement

I Generic features of gauge theories at high densities

I Medium effects on quarks, gluons and non-Goldstone hadrons

9 / 33



Background
Formalism

Results
Summary

Global symmetries of QC2D
QC2D vs QCD

Issues of interest

Gluodynamics — SU(2) and SU(3) very similar?

I Deconfinement at high density — effects on gluon propagator?

I Gap equation with effective or one-gluon interaction used to
determine superconducting gap → more realistic input?

I Static magnetic gluon: unscreened at all orders in
perturbation theory!

Quark propagator

I Details of phase diagram depend critically on the effective
quark mass in the medium.

I Dynamical quark masses → effective strange quark mass?

I Direct determination of diquark gap?
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Tensor structure in medium

The medium breaks Lorentz (Euclidean) symmetry to O(3)
=⇒ 1→ 2 scalar functions in gluon, 2→ 4 in quark:

Dµν(~q, qt) = PT
µνDM(~q2, q2

t ) + PE
µνDE (~q2, q2

t ) + ξ
qµqν

q4

S−1(~p, ω̃) = i 6~pA(~p2, ω̃2) + iγ4ω̃C (~p2, ω̃2) + B(~p2, ω̃2)

+ iγ46~pD(~p2, ω̃2)

S(~p, ω̃) = i 6~pSa + iγ4ω̃Sc + Sb + iγ46~pSd

where ω̃ ≡ pt − iµ.

In general the form factors are complex!
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Gor’kov formalism

Quarks and antiquarks are in the same representation.

Construct Gor’kov spinor Ψ =

(
ψ

ψ
T

)

=⇒ 〈Ψ(x)Ψ̄(y)〉 ≡ G(x , y) =

(
SN −SA

S̄A S̄N

)

SA contains information about anomalous propagation

The corresponding self-energies are diquark gaps ∆
(superfluid/superconducting)
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Lattice formulation

We use Wilson fermions:

I Correct symmetry breaking pattern, Goldstone spectrum

I Nf < 4 needed to guarantee continuum limit

I No problems with locality, fourth root trick

I Chiral symmetry buried at bottom of Fermi sea

S = ψ̄1M(µ)ψ1 + ψ̄2M(µ)ψ2 − Jψ̄1(Cγ5)τ2ψ̄
T
2 + J̄ψT

2 (Cγ5)τ2ψ1

γ5M(µ)γ5 = M†(−µ), Cγ5τ2M(µ)Cγ5τ2 = −M∗(µ)

Diquark source J introduced to

I lift low-lying eigenmodes in the superfluid phase

I study diquark condensation without uncontrolled
approximations
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Simulation Parameters

We work on two lattices, ‘coarse’ and ‘fine’:
Name β κ Volume a amπ mπ/mρ

coarse 1.7 0.178 83 × 16 0.26fm 0.79 0.80
fine 1.9 0.168 123 × 24 0.20fm 0.65 0.80

I Simulations performed with j = J/κ = 0.04 for µ = 0.3− 1.0

I 300–500 trajectories for each µ.

I Simulations with j = 0.02, 0.06 for µ = 0.3, 0.5, 0.7, 0.9
→ enable extrapolation to j = 0.
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Thermodynamics results

I Close to SB scaling for µ > µd

I εq ∼ 2εSB → kF > EF =⇒ binding energy?

I 30–40% of total energy from gluons!?
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Phase transitions

I Deconfining transition on coarse lattice
— goes away on fine lattice?

I BEC → BCS crossover becoming softer?
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Gluon propagator results

Some finite volume and lattice
spacing effects at µ = 0

In-medium modifications, incl.
violations of Lorentz symmetry,
visible in magnetic gluon at µ = 0.7
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Magnetic gluon (coarse lattice)
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Bulk thermodynamics
Gluon propagator results
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Electric gluon (coarse lattice)
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Bulk thermodynamics
Gluon propagator results
Quark propagator results

Volume dependence
[µ = 0.9, j = 0.04]
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Bulk thermodynamics
Gluon propagator results
Quark propagator results

Quark propagator results

Quark propagator in vacuum

Raw data!

Large lattice artefacts on coarse
lattice
Unusual momentum behaviour?
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Tensor structure

Extracting form factors with the most general Ansatz for the
tensor structure is complicated!
We would like to reduce the number of components to consider

I Computed all parts of the quark propagator at
µ = 0.5, j = 0.04 on coarse lattice

I 4 Dirac tensors
I Normal and anomalous propagator
I Real and imaginary part

I All normal tensors are real

I Sd is much smaller than Sa,Sb,Sc

I Anomalous parts are complex

I All are consistent with zero??
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Quark propagator µ = 0.5 (Preliminary!)
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Quark propagator: spatial vector part
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Quark propagator: temporal vector part
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Quark propagator: scalar part
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Bulk thermodynamics
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Quark propagator: tensor part
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Anomalous propagation
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I Vacuum → BEC → BCS phase

I Magnetic gluon strongly enhanced in BEC phase

I Screening both magnetic and electric gluon propagator
in BCS phase

I Electric: Debye screening
I Magnetic: Landau damping
I What happens to static magnetic gluon?

I Strong modifications of quark propagator in BEC phase
I Zero crossing in timelike vector component

— evidence of superfluid gap!
I Scalar component ‘goes away’ !

I Anomalous propagation needs further study

I Need to understand diquark source dependence

I Need to understand lattice artefacts
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