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Part I: The O(3) sigma model

a scalar field in 2D . . .

S =

∫
d2x

1
2
(∂µφ

a)2 a = 1,2,3 : global O(3) symmetry

. . . with a constraint

φaφa = 1 (circumvent Derrick’s theorem)

nontrivial properties:

asymptotic freedom
dynamical mass gap
instantons

condensed matter physics and toy model for gauge theories
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Topology

finite action:

r →∞ : φa → const.

as a mapping:
φ : R2 ∪ {∞} ' S2

x −→ S2
c

winding number/degree: all such φ’s are characterized by an integer Q
= how often S2

c is wrapped by S2
x through φ

(alternatively: how often any point φ0 on S2
c is visited by φ)

here:
Q =

1
8π

∫
d2x εµνεabcφ

a∂µφ
b∂νφ

c ∈ Z

topological quantum number = invariant under small deformations of φ
(not a Noether symmetry, since for every config. indep. of Lagrangian)
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Classical solutions

Bogomolnyi trick. . .

(∂µφ
a ± εµνεabcφ

b∂νφ
c)2 = (∂µφ

a)2 ± 2εµνεabcφ
a∂µφ

b∂νφ
c + (∂µφ

a)2

. . . and bound:
S ≥ 4π|Q|

where the equality holds iff

∂µφ
a = ∓ εµνεabcφ

b∂νφ
c ‘selfduality equations’

first order (instead of second order in eqns. of motion)

classical solutions: solitons = instantons
= localised in both directions (see below)
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Complex structure
introduce complex coordinates both in space and color space:

x1,2 → z(∗) = x1 ± ix2

φa → u =
φ1 + iφ2

1− φ3
N : φa = (0,0,1) u = ∞
S : φa = (0,0,−1) u = 0

⇒ self-duality equations become Cauchy-Riemann conditions on u

any meromorphic function u(z) is a solution

topological density

q(x) =
1
π

1
(1 + |u|2)2

∣∣∣∣∂u
∂z

∣∣∣∣2

generalization:
CP(N) models: more complex functions, again stable solutions
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Charge 1 instantons
• simplest functions:

u(z) = λ
z−z0

u(z) = z−z0
λ

 q(x) = 1
π

λ2

(|z−z0|2+λ2)2

Belavin-Polyakov monopole
are Q = 1 instantons: location z0, size λ

1 pole and 1 zero to cover S2
c , one of them at infinity

• both, pole and zero, at finite z:

u(z) =
z − zI

z − zII

; constituents at z = {zI , zII}? ‘instanton quarks’?

NO! same profile q(x) as above ⇒ one lump

with location z0 = (zI + zII)/2 and size λ = |zI − zII |/2
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Finite temperature

= one compact direction, say: Im z = x2 ∼ x2 + β, β = 1/kBT

• instantons:
use that higher charge solutions = products

u(z) =
Q∏

k=1

λ

z − z0,k
Q poles

and infinitely many copies: z0,k ≡ z0 + k · iβ, k ∈ Z
⇒ infinite u(z)

• a regularized u(z) is: Mittag-Leffler theorem

u(z) =
λ

exp((z − z0)
2π
β )− 1

has residues λ at z = z0 + k · iβ
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Boundary conditions
S, Q and q(x) are invariant under global SO(3) rotations

an SO(2) subgroup: φ→

 rotation
with ω

1

φ, u → e2πiωu

let the fields φ and u be periodic up to that SO(2) subgroup:

u(z + iβ) = e2πiωu(z) ω ∈ [0,1]

novel solution: FB ’07

u(z) =
eω(z−z0)

2π
β · λ

exp((z − z0)
2π
β )− 1

has residues e2πiωkλ at z = z0 + k · iβ

‘different orientation’ of the instanton copies

⇒ nontrivial overlaps ⇒ instanton constituents
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Topological profiles
Topological density ln q(x) of finite temperature instantons:

λ = β λ = 10β λ = 100β

periodic
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(z0 = 0, cut off below e−5)
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‘Dissociation’

for large size λ: 2 lumps with action ω and ω̄ = 1− ω

why? rewrite:

u(z) =
1

exp(−ω(z − z1)
2π
β )− exp(ω̄(z − z2)

2π
β )

locations: z1 = z0 − β ln λ
2πω , z2 = z0 + β ln λ

2πω̄

transmutation of λ: instanton size → constituent distance
(z2 − z1 ∼ lnλ)

really locations of topological lumps?

YES: corrections of the second term at z = z1 are exp. small
therefore consider only one exponential
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Individual constituents

u(z) = exp(ωz
2π
β

) [z1 = 0]

fulfils the phase boundary condition
has an exponentially localised profile

q(x) =
πω2

β2 cosh2(ω Re z 2π
β )

width ∼ β

|u| and hence q(x) are static (Im z-indep.)
has fractional charge Q = ω 
 covers fraction ω of C
the other constituent: same with ω replaced by ω̄
both can occur in isolation; put together in the instanton
can be seen on the lattice by cooling Wipf, Wozar
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• topological description
possible values for Q: 0,1, . . . ω,1 + ω, . . . 1− ω,2− ω, . . .

instantons constituents anticonstituents

never a ‘two-constituent’ with Q = 2ω (always −ω inbetween)

• why instanton quarks not visible for zero temperature, i.e. on R2?

β →∞: constituents large and overlap!
no other scale competing with their distance

Outlook:
• fermionic zero modes Brendel,FB

• semiclassics
• CP(N), N →∞
• relevance of the constituents for the dynamics of the O(3) model?!
• realisation in condensed matter: strip of . . . ?!
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Part II: Gauge theories

pure Yang-Mills theory in (Euclidean) 4D:

S =

∫
1
2

tr F 2
µν ≥ |Q| = |

∫
1
2

tr Fµν F̃µν |

dual field strength F̃ a
µν =

1
2
εµνρσF a

ρσ (~Ea 
 ~Ba)

integer Q: topological charge/instanton number

topology:

Aµ
r→∞→ iΩ−1∂µΩ . . . pure gauge

Q = deg(Ω : S3
r→∞ → SU(N)) . . . winding number
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Instantons

(anti)selfdual: F a
ρσ = ±F̃ a

µν first order, nonlinear

charge 1: axially symmetric ansatz and solution BPST

Aa
µ = ηa

µν

2xν

x2 + ρ2 trF 2 =
ρ4

(x2 + ρ2)4 ηa
µν ∈ {−1,0,1}

size ρ
localized in space and time
algebraic decay, similar to O(3) instantons on R2

physics: instanton liquid model from semiclassical path integral

chiral symmetry breaking
axial anomaly
topological susceptibility
confinement?
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Finite temperature: Calorons
• use higher charge solutions of same color orientation CFTW

⇒ first calorons Harrington-Shepard (1978)

•more general: ADHM formalism and Nahm transform
⇒ calorons of nontrivial holonomy Kraan,van Baal; Lee, Lu (1998)

space-space plot of
action density for SU(2),
intermediate holonomy

⇒ 2 lumps, almost static
Nc for gauge group SU(Nc), like quarks in baryons

magnetic monopoles of opposite magnetic charge
in fact dyons with same electric as magn. charge (selfdual)
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Role of the holonomy
relative gauge orientation of instanton copies in the ADHM constr.

⇒ Aµ periodic up to a gauge transformation e2πiωσ3 (cf. O(3))

gauge theory: compensated by time-dependent transf. e2πiωσ3x0

⇒ introduces an asymptotic gauge field A0

⇒ asymptotic Polyakov loop = holonomy

P(~x) ≡ P exp
(

i
∫ β

0
dx0 A0

)
→ e2πiωσ3 ≡ P∞

(indep. of direction if magnetically neutral)

acts like a Higgs field, in the group: vev ω, direction σ3

•monopoles have masses 2ω/β and 2ω̄/β, 2ω̄ = 1− 2ω

• Aa=3
µ : power law decay (massless ‘photon’),

• Aa=1,2
µ : exponential decay (massive ‘W -bosons’)
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Interesting features of the caloron
• Aa=3

µ in the far-field limit: dipole from monopole/antimonopole

• Aa=1,2
µ finetuned to avoid Dirac strings

• Polyakov loop in the bulk: P(~x) = ±12 at the monopoles
Higgs field vanishes = ‘false vacuum’
necessary for top. reasons Ford et al.; Reinhardt; Jahn et al.

• index theorem valid Nye, Singer

but 1 zero mode for 2 monopoles? ⇒ localised depending on bc.s:

ψ(x0 + iβ) = e2πizψ(x0) (Aµ still periodic)

z ∈ {−ω, ω} incl. periodic: localised at monopole Garcia Perez et al.

z ∈ {ω,1− ω} incl. antiperiodic: localised at antimonopole

a zero in their profiles at the ‘other’ monopole, topological FB

• can be studied on the lattice by cooling Ilgenfritz et al., FB et al.
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Calorons and the dynamics of YM theories

• eff. potential at 1-loop: triv. holonomy favored!
x Gross, Pisarski, Jaffe; Weiss

overruled by caloron gas contribution: Diakonov et al.

⇒minima at P = ±12 become unstable for low enough temperature
⇒ onset of confinement

• gas of calorons and anticalorons put on the lattice: Gerhold et al.

superposition problem solved for fixed holonomy
⇒ linearly rising interquark potential just for nontrivial holonomy!

• confinement from a gas of purely selfdual dyons Diakonov,Petrov

⇒ unphysical...

; confinement in reach of instantons!? stay tuned!
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