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What is Confinement?

Juliet:

    "What's in a name? That 
which we call a rose
    By any other name would 
smell as sweet."

    Romeo and Juliet (II, ii, 1-2) 



  

     1    linear static quark potential, rising to infinity  
         
     2.    colorless asymptotic particle states

These are not quite the same thing,  which raises some 
semantic issues:

 
  

most order parameters

common terminology

What are people trying to prove, in order to “prove” confinement?
And what do they mean by that word?
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     1    linear static quark potential, rising to infinity  
         
     2.    colorless asymptotic particle states

These are not quite the same thing,  which raises some 
semantic issues:

against #1 -  in real QCD, with quarks, the static potential rises 
and then levels off, due to string breaking.

       so is real QCD not confining?
    
against #2 -   asymptotic particle states are also colorless in a 
Higgs theory, where there is no linear potential at all.    

      so are Higgs theories confining?
  

most order parameters

common terminology

What are people trying to prove, in order to “prove” confinement?
And what do they mean by that word?



  

The Fradkin-Shenker-Osterwalder-Seiler Theorem

Consider an SU(2) gauge-Higgs theory with lattice action 

S = β
∑
plaq

1
2
Tr[UUU†U†] + γ

∑
x,µ

1
2
Tr[φ†(x)Uµ(x)φ(x + µ̂)]

It has a phase diagram something like this:

The theorem says that 
there is no complete 
separation between the 
Higgs-like and the 
confinement-like regions.

 

 

      (Campos, 1997)



  

More precisely:  between a point

”a” deep in the confinement-like regime    (                 ) , and a point                    

“b” deep in the Higgs regime    (                 )  ,

there is a path from a to b such that all Green’s functions of all local, 
gauge-invariant operators

vary analytically along the path.

β, γ ! 1

β, γ ! 1

〈A(x1)B(x2)C(x3)...〉

This rules out an abrupt 
transition from a colorless to 
a color-charged spectrum.

a

b



  

Creation operators for three colorless vector mesons:

where

!φ†(x)Uµ(x)!φ(x + µ) , Re
[
!φ†(x)Uµ(x)!ϕ(x + µ)

]
, Im

[
!φ†(x)Uµ(x)!ϕ(x + µ)

]

!ϕ(x) = σ2
!φ(x)

Higgs-like region:  “W-bosons”

Confinement-like region:  Mesons (with scalar constituents) 



  

   So “color confinement” in the asymptotic spectrum doesn’t 
distinguish between Higgs and “real QCD”-like dynamics.

Question

    Can the confinement phase of a gauge theory be regarded 
as the symmetric (or broken) realization of a gauge symmetry?

This idea appears in a number of popular approaches, in particular:

      i)    Dual superconductivity

      ii)   the Kugo-Ojima criterion

      iii)  Coulomb-gauge confinement



  

〈ϕ〉 = 0

Elitzur’s Theorem:

    Local gauge symmetries do not break spontaneously.  In the absence 
of gauge fixing,                regardless of the shape of the Higgs potential.

 
However, although local symmetries can’t break spontaneously, it is still 
possible to break a global subgroup of the local symmetry.

Subgroups of this kind are typically what remains of the local symmetry 
after a gauge choice.

                                                          
                                                        

Naively, symmetry breaking of gauge invariance violates



  

g(x) = g

Landau gauge

Remnant symmetries are homogenous gauge transformations

There are also inhomogenous transformations 

analogous to abelian transformations
with

〈φ〉≠0   remnant gauge symmetry breaking.                           

g(x) = exp[iΛa(ε;x)
1
2
σa]

Λa(ε;x) = εa
µxµ − g

1
∂2

(Aµ × εµ)a + O(g2)

Aµ → Aµ + ∂µφ

φ(x) = c + εµxµ

(Hata, 1983)



  

Coulomb gauge

In addition to                       there is a much larger, time-dependent 
remnant symmetry

Define

                 

 
Then                                                  for constant transformations,  but

〈Tr[L]〉  in Coulomb gauge probes the breaking of a remnant gauge 
symmetry which is different from that probed by  〈φ〉  in Landau gauge.  
It is insensitive to the breaking of the homogenous g(x)=g symmetry. 
            

g(x, t) = g(t)

g(x) = g

L(x, T ) = P exp

[
i

∫ T

0
dtA0(x, t)

]

Tr[L(x, T )] != Tr[g(0)L(x, T )g†(T )]

Tr[L(x, T )] = Tr[gL(x, T )g†]



  

In principle,  〈Tr[L]〉  and 〈φ〉  could show transitions (0 → non-zero) at 
different places in the space of couplings. 

Do different global subgroups of the gauge group break in different 
places in the phase diagram?

If they do, then there is an ambiguity is the phrase “spontaneously 
broken gauge symmetry”.  Precision requires specifying which 
symmetry is actually broken.

With this in mind, we revisit three confinement criteria which are 
based on the symmetric or broken realization of a gauge 
symmetry.



  

I.  The Kugo-Ojima Criterion

Kugo and Ojima introduce a function                 defined by 

where  ca(x)  is the ghost field in a covariant gauge.   They then show that
the expectation value of charge vanishes in any physical state

                                                                            (confinement?)

providing the following conditions are satisfied: 

uab(p2)

uab(p2)
(

gµν − pµpν

p2

)
=∫

d4x eip(x−y)〈0|T [Dµca(x)g(Aν × c)b(y)|0〉

〈phys |Qa|phys〉 = 0



  

1.  Remnant symmetry  under  g(x) = g  is unbroken

2.  The criterion                              is satisfied.

     It turns out that (2)  implies that the spatially inhomogenous 
remnant symmetry in Landau gauge is also unbroken  (Hata, Kugo).

     Therefore, the Kugo-Ojima scenario requires that the 
entire remnant gauge symmetry in Landau gauge is 
unbroken, i.e. 〈φ〉 = 0 .

uab(0) = −δab



  

II.  The Coulomb Criterion     Marinari, Parisi, Paciello, Taglienti (1993)
                                                                               Olejnik, Zwanziger, JG  (2004)

The idea is to show that

  The Coulomb energy of an isolated color charge is infinite;

  The color Coulomb potential is confining.

It turns out that both of these are implied by unbroken remnant gauge 
symmetry 

which means that       

g(x, t) = g(t)

〈
Tr

[
L(x, T )

]〉
= 0



  

Isolated Charge 

propagation  in time

infinite energy if  G(T)=0 , which implies 〈Tr[L]〉 = 0

Color-Coulomb Potential

 
Vcoul(R) goes flat at G(R) → ∞ (no confinement) if  〈Tr[L]〉 ≠ 0 

So both conditions require unbroken remnant gauge symmetry.

Ψa
q = qa(x)Ψ0

G(T ) = 〈Ψa
q |e−(H−E0)T |Ψa

q 〉
∝ 〈

Tr
[
L(x, T )

]〉

Vcoul(R) = − lim
T→0

d

dT
log

[
Tr[L(x, T )L†(y, T )]

]



  

Remnant Symmetry Breaking in the Gauge-Higgs Model

                                Landau Gauge                         Coulomb Gauge                     

order parameters

φ̃ =
1
V

∑
x

φ(x)

QL =
〈

1
2
Tr[φ̃φ̃†]

〉
symmetric phase

broken phase
QL ∝ 1

V

Ũ(t) =
1
V3

∑
x

U0(x, t)

QC =
1
Lt

Lt∑
t=1

〈
1
2
Tr[Ũ(t)Ũ†(t)]

〉

lim
V→∞

QL > 0 lim
V→∞

QC > 0

QC ∝ 1
V3



  

We see a thermodynamic transition (or sharp crossover) for β > 2.0
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For β > 2.0 , the  Landau and Coulomb gauge transitions happen at about 
the same γ .  For β < 2.0 , these transitions happen at different γ . 

We need to pinpoint the location of the transitions...  
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Plotting Q vs lattice extension L shows that  indeed

below the transition, and  Q ≈ constant above....

QL ∝ 1
V

QC ∝ 1
V3

and

but a better method is to look for peaks in the susceptibilities.
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Let                       and define susceptibilities  Q = 〈Q̃〉

χL = V 2
(
〈Q̃2

L〉 − Q2
L

)
χC = V 2

3

(
〈Q̃2

C〉 − Q2
C

)
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The final result:
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confinement-like region

higgs-like region
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Coulomb and Landau remnant gauge symmetries break in 
different places, and they break in the absence of any 
discontinuity in the spectrum, or in the Green’s functions.

    Order parameters for confinement??  Unlikely!

β



  

III.  Dual Superconductivity     Mandelstam and ‘t Hooft, mid-1970’s

In compact U(1) gauge theories there is a conserved magnetic current

associated with a dual U(1) gauge symmetry.

Spontaneous breaking of the dual gauge symmetry leads to confinement 
via a dual Meissner effect.

How to detect spontaneous breaking of a dual (global) gauge symmetry?

Pisa Proposal   Di Giacomo, Paffuti, D’Elia, Lucini, del Debbio...

The order parameter for dual symmetry breaking is a monopole 
creation operator, denoted μ, which doesn’t commute with magnetic

 charge.       

jM
µ = ∂νF̃µν



  

The monopole operator inserts a monopole field centered at a given point x

accomplished by

(In a non-abelian theory, an abelian subgroup is picked out by abelian 
projection.)

In practice one computes

A large negative peak in ρ at some  β=βc , growing with lattice volume, is the 
sign that                ,  and dual superconductivity disappears, for β>βc .

µ(x)|Ai〉 = |Ai + AM
i 〉

µ(x) = exp
[
i

∫
d3y AM

i (y)Ei(y)
]

〈µ〉 = 0

ρ =
∂

∂β
log〈µ〉 = 〈S〉S − 〈SM 〉SM



  

In case after case, a symmetry restoration transition
                       ρ → −∞  ,   〈µ〉→ 0   
occurs at the deconfinement temperature.

But what about the behavior of ρ near other types of transitions; 
e.g. in the gauge-Higgs model, at zero temperature? 

Pure SU(2),  NT=4
Di Giacomo et al. (1999)



  

Dual Gauge Symmetry Transitions

There is strong evidence of µ→0 (dual symmetry restoration) 
transitions in the absence of any transition from a confining to a non-
confining phase, and even in the absence of any change of phase 
whatever.

We find such µ→0 transitions, at zero temperature, in

1.  SU(5) gauge theory 

2.  mixed fundamental-adjoint SU(2) gauge theory

3.  pure SU(2) (Wilson action)

4.  gauge-Higgs theory  

5.  G(2) gauge theory  (Cossu et al.)
 

(Lucini & JG)



  

 

Example 1 - SU(5)

    Pure SU(5) gauge theory is known to have a first order transition 
around β = 16.3.  And there, as it turns out, µ→0 .  But the transition is 
not deconfining.     
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Example 2 - SU(2) mixed action

The mixed fundamental adjoint action is

and many years ago Creutz and Bhanot found the phase structure

βA=1.5

S = β
∑ 1

2
Tr[U(P )] + βA

∑ 1
2
TrA[U(P )]



  

There is a µ→0 transition along the (non-deconfining) Bhanot-Creutz 
transition line
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Example 3 - pure SU(2) Wilson action

There even appears to be a µ → 0 transition in pure (Wilson action) 
SU(2) LGT, although it requires rather large volumes to see the (much 
broader) peak at β=2.3.
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Example 4 - SU(2) gauge-Higgs action

We also find µ → 0 transitions in the gauge-Higgs model, where the 
Fradkin-Shenker theorem tells us that the phase diagram is connected.
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Example 5 - G(2) gauge theory

Apart from us:  the Pisa group themselves  have found a µ → 0 
transition, at zero temperature, in G(2) lattice gauge theory.

Cossu, D’Elia, Di Giacomo, 
Lucini, Pica (2006)



  

Is it possible to find some other order parameter µ’ such that

i)   µ’(β) = µ(β)   at  large β ≥ βlarge

    ii)    µ’(β)  has no transition               

Answer: No!  Given (i), a transition µ→0 guarantees a 
transition in µ’.    Here’s why: 

If   µ(βlarge)=0  then, by (i),  also µ’(βlarge)=0 .

All that can happen is that, since ρ’(β) ≠ ρ(β)  ,  the transition may 
happen at a different β < βlarge ,  the peak may be broader, and the 
transition harder to see at small (or even fairly large) volumes.

log[µ(βlarge)] = lim
V→∞

∫ βlarge

0
dβ ρ(β) + log[µ(0)]

?



  

to summarize

Global gauge symmetries associated with the

a)  Kugo-Ojima
     b)  Coulomb confinement
     c)  Dual superconductor

scenarios are found to have transitions where there is no 
transition to/from a confinement phase, and even where 
there is no change of phase whatever.

in consequence

Global gauge symmetries do not seem to provide us with 
good order parameters for confinement.



  

So, what’s in a name?

If “confinement” means:

   color-singlet spectrum

then there is probably no meaningful 
distinction between the confined and 
Higgs phases, at least in terms of 
symmetries

But there is a difference in physics!  Flux tube formation, linear potential, 
Regge trajectories....as opposed to a Yukawa potential.

If we focus on these, rather than on color neutrality, then it is better to say 
that confinement is the phase of 
             
                                    magnetic disorder

Then there is a relevant associated symmetry.



  

Magnetic Disorder      

means:  the existence of vacuum fluctuations strong enough to induce 
an area law falloff in Wilson loops at arbitrarily large scales.

The vacuum of the gauge-Higgs theory satisfies this condition only as 
γ→0, and there is a symmetry which distinguishes  γ=0 from  γ>0 : 



  

Magnetic Disorder     

means:  the existence of vacuum fluctuations strong enough to induce 
an area law falloff in Wilson loops at arbitrarily large scales.

The vacuum of the gauge-Higgs theory satisfies this condition only as 
γ→0, and there is a symmetry which distinguishes  γ=0 from  γ>0 :

       
When center symmetry is broken, either 
spontaneously 

    

or explicitly,

or doesn’t exist 
              

magnetic disorder is lost.

deconfinement 
adjoint rep matter fields

fundamental rep matter fields 

G(2) gauge group

Center Symmetry



  

The traditional order parameters for confinement test center symmetry:    

    A.  finite asymptotic string tension                  (implies linear potential)

    B.  vanishing Polyakov lines (isolated charge has infinite energy)

    C.   ‘t Hooft loop  (center vortex creation operator)  

    
    D.   center vortex free energy: 

           if                                                     then                         
                           
None of these conditions are satisfied if global center symmetry is 
broken, either spontaneously or explicitly.   

W (C) =
〈

P exp[i
∮

C
dxµAµ]

〉
∼ exp[−σArea(C)]

P (!x) =

〈
P exp[i

∫ T

0
dt A0(!x, t)]

〉
= 0

Fv = LzLt exp[−σ′LxLy] σ ≥ σ′

B(C) ∼ exp[−µPerimeter(C)]

σ > 0



  

Question:
 
   “If the center is so important, then what confines gluons?”

Answer: 
  
   The same thing that “confines” large electric charge in QED.

 
                                                   

spectrum sense!

↑



  

In QED it is impossible to have an object of nuclear size having an 
electric charge much greater than |Qc| ≈ 170.

QED vacuum
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The same process goes on for adjoint charges in non-abelian theories, 
given sufficient charge separation

Yang-Mills vacuum
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The same process goes on for adjoint charges in non-abelian theories, 
given sufficient charge separation

Yang-Mills vacuum



  

The same process goes on for adjoint charges, with sufficient 
separation

QCD vacuum

I prefer to call this “color screening”, rather than color “confinement”.



  

Representation dependence of the string tension:

Casimir scaling at intermediate distances;
 
N-ality dependence asymptotically.

The latter is due to string-breaking by gluons and/or matter fields.  
No big mystery.

But this is a “particle” explanation...  

What is the “field” explanation, for both Casimir and N-ality 
behavior, in terms of vacuum fluctuations which dominate the 
relevant functional integral?   

Group Disorder and Center Disorder
K. Langfeld, S. Olejnik, H. Reinhardt, T. Tok, & J.G.   (2006)



  

Basic idea:  In a surface slice, the vacuum is dominated by 
overlapping center domains on some scale R.  Fluctuations within 
each domain (beyond some confinement scale     ) are subject 
only to the weak constraint that the total magnetic flux adds up to 
a center element of the gauge group.    

rc

Fluctuations within a domain                 Group disorder, Casimir scaling
Existence of domains                            Center disorder,  N-ality



  

A simple model:   center domain in the plane of a Wilson loop 
contributes a factor

z0 = 1zn ∈ ZN

z = Ḡr[αn]

=
1
dr

χr

[
exp[i#αn · #H]

]

where         is the group character,       the generators of the 
Cartan subalgebra, and the         depend on the overlap of the 
domain with the interior of the loop.

χr !H
!αn



  

            is proportional to the quadratic Casimir for small     , and 
goes to a center element (which may be             )   for enclosed 
domains.

             represents the average magnetic flux in the overlap 
region of loop and domain.   

We suppose that fluctuations in different regions of each domain 
are correlated only by the constraint that they add up to center 
element.   If            is the area of the domain, and          is the 
area contained in the loop, then for SU(2) we get

Ḡr[α] α
z0 = 1

!α · !H

AD A

(
α1(x)

)2
= const.

[
A

AD
− A2

A2
D

]
+

(
2π

A

AD

)2

(
α0(x)

)2
= const.

[
A

AD
− A2

A2
D

]



  

Difference between G(2) and SU(2):  G(2) has only one type of 
center domain, only         contributes, string tension is 
asymptotically zero.

For SU(2), the domain model gives results for the static potential 
like these:

α0

Casimir scaling
(short distance)

Color screening
   (asymptotic)
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If “confinement” means:

   color-singlet spectrum

then there is probably no meaningful 
distinction between the confined and 
Higgs phases, at least in terms of global  
gauge symmetries

These symmetries show transitions in the wrong places!

But, if confinement means 
             
                                    magnetic disorder

Then the relevant symmetry is center symmetry.

Conclusions



  

A Question

to people who compute ghost/gluon propagators on the 
lattice, and who see, e.g., an infrared enhanced ghost 
propagator:

    what happens to κ in the gauge-Higgs coupling plane?  
    is there a transition at the remnant-symmetry transition?


