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The Physical                         ... are quite different  
degrees of                             from the 
freedom of                             underlying
matter at low                        building 
scales ...                                 blocks        

It would be very desirable to 
have a direct connection of the 
physical observables to the 
dynamics of the fundamental 
local constituents

Some kind of Construction manual ...

Description of matter



Degrees of freedom
Quenched QCD Suited 
to study confinement

Pert. RG breaks down

Scale generation

description in terms of 
initial local degrees of 
freedom could fail ...

but non-perturbative 
dynamics prevents 
this for long ranged 
gauge interactions



mized’’ cutoff functions have been proposed !17". The opti-
mization criterion focuses on improving the convergence of

approximate solutions to flow equations; in fact, for scalar

O(N) symmetric theories, it leads to better results for the

critical exponents !18".
Spectrally adjusted cutoff. The class of cutoff functions

employed in this work is also considered to be improved in

the sense mentioned above. In this case, the improvement

does not refer to the precise shape of the cutoff function, but

rather to the choice of its argument. Here, we will use not

just the spectrum of the Laplace operator #which would be
the gauge-covariant generalization of the momentum

squared$, but the full second functional derivative of the ef-
fective average action %k

(2) evaluated at the background field.

The argument of the cutoff function can be understood as

a parameter which controls the order and size of the momen-

tum shell that is integrated out upon lowering the scale from

k to k!&k . It appears natural that a truncated flow can be

controlled better if each momentum shell covers an equal

part of the spectrum of quantum fluctuations. The spectrum

itself is not fixed, but k dependent; lower modes get dressed

by integrating out higher modes. In order to adapt the cutoff

function to this spectral flow, we insert the full %k
(2) into its

argument, and so obtain a ‘‘spectrally adjusted’’ cutoff.

This has two technical consequences: first, as the flow

equation is evaluated at the background field in our trunca-

tion, the right-hand side can be transformed into a proper

time representation; here, we have powerful tools at our dis-

posal that allow us to keep track of the full dependence of

the flow equation on the field strength squared. Second, the

degree of nonlinearity of the flow equation strongly in-

creases, inhibiting its straightforward analytical or numerical

computation even within simple truncations. We solve this

technical problem by first expanding the flow for the gauge

coupling in an asymptotic series, and then reconstructing an

integral representation for this series by analyzing the lead-

ing #and subleading$ asymptotic growth of the series coeffi-
cients. Whereas most parts of our work are formulated in d

"2 dimensions and for the gauge group SU(N), this final
analysis concentrates on the most interesting cases of d#4
and N#2 or N#3.
Results. As a result, we find a representation of the '

function of Yang-Mills theory. For weak coupling, we redis-

cover an accurate perturbative behavior. As the scale k ap-

proaches the infrared, the coupling grows and finally tends to

an infrared stable fixed point, (s→(
*
. Our quantitative re-

sults are

(
*

!11.3 for SU#2 $,

(
*

!7.7$2 for SU#3 $. #3$

The uncertainty in the SU#3$ case arises from an unresolved

color structure in our calculation #cf. Appendix E$.
The complete flow of the running coupling is depicted in

Fig. 1 for pure SU#2$ Yang-Mills theory in comparison with
perturbation theory. For illustrative purposes, we use

(s(MZ)!0.117 as the initial value (MZ!91.2 GeV). Siz-
able deviations from perturbation theory occur for k

%1 GeV, and the fixed point plateau is reached for k

#O (10 MeV). We shall argue below that a larger trunca-

tion as well as the inclusion of dynamical quarks are ex-

pected to decrease the value of (
*
.

The paper is organized as follows. Section II briefly re-

calls the framework of flow equations in gauge theories with

the background-field method and describes our basic ap-

proximations. In Sec. III we boil down the flow equation as

required for our truncation. Section IV is devoted to extract-

ing the RG flow of the running gauge coupling, which is the

main result of the present work. The role of the spectrally

adjusted cutoff is illustrated in Sec. V. Section VI contains

our conclusions and a discussion of our results in the light of

related literature.

II. FLOW EQUATION FOR YANG-MILLS THEORY

We begin with a brief outline of the flow equation and the

background-field formalism as they are employed in this

work. We focus on direct applicability and the required ap-

proximations and leave aside more formal #though impor-
tant$ aspects, as they are presented in !12" and !19". Let us
therefore start with a more explicit representation of the flow

equation for the effective average action,

) t%k!A ,Ā"# 1
2 STr*) tRk#%k

(2)! Ā ,Ā" $

&†%k
(2)!A ,Ā"'Rk#%k

(2)! Ā ,Ā" $‡!1+, #4$

where we denote the so-called classical gauge field by A,
a ,

which is the usual field variable of the quantum effective

action #conjugate to the source$. We also introduce a back-
ground field Ā,

a , and have already inserted %k
(2) evaluated at

the background field into the cutoff function.1 The symbol

STr implies tracing over all internal indices and provides for

1This %k
(2) is evaluated at the background field because an A de-

pendence would spoil the one-to-one correspondence of the flow

equation to the functional integral.

FIG. 1. Running coupling (s versus momentum scale k in GeV

for gauge group SU#2$, using the initial value (s(MZ)!0.117. The
solid line represents the result of our calculation in comparison with

one-loop perturbation theory #dashed line$.
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Degrees of freedom
Quenched QCD Suited 
to study confinement

Pert. RG breaks down

Scale generation

description in terms of 
initial local degrees of 
freedom could fail ...

but non-perturbative 
dynamics prevents 
this for long ranged 
gauge interactions

H. Gies, Phys. Rev. D 66 (2002) 025006

C.S.Fischer, R.Alkofer, 
Phys. Lett.B 536 (2002) 177



Recent lattice data
Challenging recent data on large lattices

Gluon seems to become IR finite and the ghost 
roughly bare

problems with Gribov copies? 

Problems with the gauge definition?

804 1284

A. Cucchieri, T. Mendes, 
0710.0412 [hep-lat]

--> Axel Maas´s talk

--> Lorenz von Smekal´s talk

Where is the confinement?



Dyson-Schwinger eq´s
Idea: An average should not depend on the way 
the sum is performed:
(in YM theory             )

Formulation in terms 
of the effective action   :

Higher Greens functions via further 
functional differentiation ...
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IR-Analysis
Confinement is a long range / IR phenomenon

Classical Yang-Mills theory is “conformal” but 
quantum Fluctuations induce a scale 

Renormalization group:

far below this scale Greens functions should 
be described by some kind
of scaling solution

After the tensor decomposition the Integrals 
within the DSEs are dominated by the poles of 
the integrands

∼ c ·
(

p2

Λ2
QCD

)δ

ΛQCD

characteristic
momentum

anomalous
IR-exponent

I3(p, q) =
∫

ddk

(2π)d

1
(k + p)2α

1
(k − q)2β

1
k2γ



Power counting
The parametric IR-dependence of the integrals on 
the external scale can be obtained via a power 
counting analysis

Without numerically solving the DSEs

Leading loop correction & leading tensor 
structure dominates and determines scaling of 
the vertex --> algebraic equations for exponents

E.g. Gluon DSE

Solvable system of such algebraic equations
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--> Christian Fischer´s talk
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Mandelstam solution
Simplest self-consistent DSE truncation in 
Landau gauge

Only gluon DSE solved

IR-enhanced Gluon Propagator

Confining Forces - “infrared slavery”

But ... inconsistent with loop graphs in 3g DSE!

Solution explicitly excluded by 
vertex DSE!

G. West, Phys. Lett. B 115 (1983) 468

S. Mandelstam, Phys. Rev. D 20 (1979) 3223
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Skeleton expansion
Expand higher order n-point functions in terms 
of dressed primitively divergent propagators and 
vertices

Example: 
ghost-gluon 
scattering kernel

Minimal assumption in order to describe the 
physics in terms of local degrees of freedom:

Skeleton expansion should not 
explicitly diverge!

But no convergence assumed ...



Skeleton constraints
The skeleton expansion can be generated by 
replacement rules

They should not increase the IR-divergence

This yields powerful constraints:

These cancel basically all non-linearities in the 
IR DSEs!

2δgg + 2δgh + δgl ≥ 0 ,

δ3g + δgg + δgh + 2δgl ≥ 0 ,

2δ3g + 3δgl ≥ 0 ,

δ4g + 2δgl ≥ 0

= + + +

e.g.: ghost-gluon vertex:



Skeleton reduction
The DSE system for the IR exponents ...

                                      ... simplifies considerably!

Unique solution from the DSE system alone

−δgh = min (0, δgg + δgh + δgl) ,

−δgl = min (0, δ3g + 2δgl, δgg + 2δgh, 2δ3g + 4δgl, δ4g + 3δgl)
δgg = min (0, 2δgg + 2δgh + δgl, δ3g + δgg + δgh + 2δgl)
δ3g = min (0, 2δgg + 3δgh, 2δ3g + 3δgl, δ3g + 2δgl, δ4g + 2δgl, 3δ3g + 5δgl, δ4g + δ3g + 4δgl) ,

δ4g = min (0, 3δgg + 4δgh, 3δ3g + 4δgl, δ4g + 2δgl, 2δ3g + 3δgl, δ4g + δ3g + 3δgl, 4δ3g + 6δgl, δ4g + 2δ3g + 5δgl, 2δ4g + 4δgl) .

−δgh = min (0, δgh + δgl) ,

−δgl = min (0, 2δgh) ,

δgg = 0 ,

δ3g = min (0, 3δgh) ,

δ4g = min (0, 4δgh, 3δ3g + 4δgl)

R.Alkofer, C.S.Fischer and F.J.Llanes-Estrada, Phys. Lett. B 611 (2005) 279,
C.S.Fischer and J.Pawlowski, Phys. Rev. D 75 (2007) 025012



Possible IR enhancement of Greens functions 
whenever momenta becomes small ...

Unique IR-limit for the  propagators

possibly Additional kinematic Divergence for the 
vertices

Even more possibilities for higher vertices ...

IR singularities

uniform soft
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Finite scales & masses
For higher order Greens functions IR 
divergences can occur when any subset of the 
momenta vanishes (“soft / kinematic divergences”)

Yang-Mills:   ,    ,    ,    ,    ,    ,    ,    ...

Soft singularities have 
a larger support and can 
have quantitative impact

fluctuations on hard scales can 
generate finite masses in the IR
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t (q1, · · · , qn)

δgl δgh δu
gg δgh

gg δgl
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IR sensitive regions
When both hard    and soft    external momenta 
are present (                      )...

Loop momenta    of the order of all external 
scales contribute

Different regions of the integral are 
IR sensitive and could dominate:

Soft region

Mixed region

Hard region

q q q q
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IR analysis
Neglect 4-point vertices and 2-loop graphs

Skeleton constraints strongly simplify the 
leading IR dynamics

Additional contributions from hard momenta in 
the loop integral due to soft divergences
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Renormalization
Loop graphs require
renormalization

Simple due to 
asymptotic freedom

Ghost renormalization:

Cancels tree level 
ghost term exactly!

But not for a generic 
renormalization 
prescription

Two qualitatively different fixed points

G−1(p2 = 0) = 0

L. v. Smekal, A. Hauck & R. Alkofer, 
Phys. Rev, Lett. 79 (1997) 3591



IR fixed points
Two qualitatively different (“unique”) solutions 
depending on the renormalization prescription

Decoupling scenario

Vertices are not IR-enhanced

IR regime is entirely finite 

No description of quark confinement

No area law behavior of the Wilson loop

C.S.Fischer, private communication
P.Boucaud, et.al., arXiv:0801.2721 [hep-ph]

A.C.Aguilar, D.Binosi, J.Papavassiliou, arXiv:0802.1870 [hep-ph]



IR fixed points
Two qualitatively different (“unique”) solutions 
depending on the renormalization prescription

Scaling solution

Ghost dominance picture basically unchanged

supplemented by mild soft-gluon singularities

Confirmed via explicit computation

induces strong IR singularities in the quark-
gluon vertex and confines quarks via IR slavery

R. Alkofer, C. Fischer, F. Llanes-Estrada, K. Schwenzer, in preparation

L. v. Smekal, A. Hauck & R. Alkofer, Phys. Rev, Lett. 79 (1997) 3591

--> Markus Huber´s Poster



Conclusion
Unique scaling fixed point 
in Landau gauge Yang-Mills theory

IR regime is dominated by Ghost dynamics

More structure due to kinematic singularities 

provides a coherent picture 
of the strongly interacting vacuum

chiral symmetry breaking & confinement 

spontaneous & anomalous mass generation

Decoupling solution cannot be excluded

BUT ... the IR regime is not enhanced at all!

--> Richard Williams´s talk

--> Christian Fischer´s talk




