IR FIXED POINTS IN LANDAU GAUGE YANG-MILLS THEORY

REINHARD ALKOFER, MARKUS HUBER & KAI SCHWENZER, UNIVERSITY OF GRAZ

R. ALKOFER, M. HUBER AND K. SCHWENZER, ARXIV:0801.2762 [HEP-TH]

DESCRIPTION OF MATTER

THE PHYSICAL DEGREES OF FREEDOM OF MATTER AT LOW SCALES ARE QUITE DIFFERENT FROM THE UNDERLYING BUILDING BLOCKS

TECHNIC

7

IT WOULD BE VERY DESIRABLE TO HAVE A DIRECT CONNECTION OF THE PHYSICAL OBSERVABLES TO THE DYNAMICS OF THE FUNDAMENTAL LOCAL CONSTITUENTS

SOME KIND OF CONSTRUCTION MANUAL ...

DEGREES OF FREEDOM

QUENCHED QCD SUITED TO STUDY CONFINEMENT

PERT. RG BREAKS DOWN

SCALE GENERATION

DESCRIPTION IN TERMS OF INITIAL LOCAL DEGREES OF FREEDOM COULD FAIL ...

BUT NON-PERTURBATIVE DYNAMICS PREVENTS THIS FOR LONG RANGED GAUGE INTERACTIONS

DEGREES OF FREEDOM

QUENCHED QCD SUITED TO STUDY CONFINEMENT

PERT. RG BREAKS DOWN

SCALE GENERATION

DESCRIPTION IN TERMS OF INITIAL LOCAL DEGREES OF FREEDOM COULD FAIL ...

BUT NON-PERTURBATIVE DYNAMICS PREVENTS THIS FOR LONG RANGED GAUGE INTERACTIONS

H. GIES, PHYS. REV. D 66 (2002) 025006

C.S.FISCHER, R.ALKOFER, PHYS. LETT.B 536 (2002) 177

RECENT LATTICE DATA

CHALLENGING RECENT DATA ON LARGE LATTICES

A. CUCCHIERI, T. MENDES, 0710.0412 [HEP-LAT]

- GLUON SEEMS TO BECOME IR FINITE AND THE GHOST ROUGHLY BARE
 - PROBLEMS WITH GRIBOV COPIES? --> AXEL MAAS'S TALK
 - PROBLEMS WITH THE GAUGE DEFINITION? --> LORENZ VON SMEKAL'S TALK Where is the confinement?

DYSON-SCHWINGER EQ'S

IDEA: AN AVERAGE SHOULD NOT DEPEND ON THE WAY THE SUM IS PERFORMED: (IN YM THEORY $\phi \equiv (A, \bar{c}, c)$) $\delta \langle e^{J \cdot \phi} \rangle = \int D\phi \frac{\delta}{\delta \phi} e^{-S[\phi] + J \cdot \phi} = 0$

• FORMULATION IN TERMS OF THE EFFECTIVE ACTION Γ :

TION Γ : $\frac{\delta\Gamma}{\delta\Phi_i} = \frac{\delta S}{\delta\phi_i}\Big|_{\phi_i \to \Phi_i + \Delta_{ij}}$

HIGHER GREENS FUNCTIONS VIA FURTHER FUNCTIONAL DIFFERENTIATION ...

VERTEX DSES

PROPAGATOR DSES INVOLVE THE VERTICES

INFINITELY COUPLED SYSTEM OF EQUATIONS

APPROXIMATION SCHEME REQUIRED!

GHOST-GLUON VERTEX (V1 & 2)

3-GLUON VERTEX

4-GLUON VERTEX

IR-ANALYSIS

CONFINEMENT IS A LONG RANGE / IR PHENOMENON

CLASSICAL YANG-MILLS THEORY IS "CONFORMAL" BUT QUANTUM FLUCTUATIONS INDUCE A SCALE Λ_{QCD}

RENORMALIZATION GROUP:

FAR BELOW THIS SCALE GREENS FUNCTIONS SHOULD BE DESCRIBED BY SOME KIND OF SCALING SOLUTION

> CHARACTERISTIC MOMENTUM

AFTER THE TENSOR DECOMPOSITION THE INTEGRALS WITHIN THE DSES ARE DOMINATED BY THE POLES OF THE INTEGRANDS

POWER COUNTING

THE PARAMETRIC IR-DEPENDENCE OF THE INTEGRALS ON THE EXTERNAL SCALE CAN BE OBTAINED VIA A POWER COUNTING ANALYSIS

WITHOUT NUMERICALLY SOLVING THE DSES

LEADING LOOP CORRECTION & LEADING TENSOR STRUCTURE DOMINATES AND DETERMINES SCALING OF THE VERTEX --> ALGEBRAIC EQUATIONS FOR EXPONENTS

E.G. GLUON DSE

SOLVABLE SYSTEM OF SUCH ALGEBRAIC EQUATIONS

MANDELSTAM SOLUTION

SIMPLEST SELF-CONSISTENT DSE TRUNCATION IN LANDAU GAUGE 5. MANDELSTAM, PHYS. REV. D 20 (1979) 3223

• ONLY GLUON DSE SOLVED

IR-ENHANCED GLUON PROPAGATOR 1/q

CONFINING FORCES - "INFRARED SLAVERY"

G. WEST, PHYS. LETT. B 115 (1983) 468

BUT ... INCONSISTENT WITH LOOP GRAPHS IN 3G DSE!

 $\Delta \Gamma^{abc}_{\mu\nu\sigma}(q_1, q_2) \longrightarrow p^4 \left(\left(p^2 \right)^{-1+\delta_{gl}} \right)^2 \left(p^2 \right)^{\frac{1}{2}+\delta^v_{3g}} \sim \left(p^2 \right)^{\frac{1}{2}+\delta^v_{3g}+2\delta_{gl}}$

SOLUTION EXPLICITLY EXCLUDED BY VERTEX DSE!

SKELETON EXPANSION

EXPAND HIGHER ORDER N-POINT FUNCTIONS IN TERMS OF DRESSED PRIMITIVELY DIVERGENT PROPAGATORS AND VERTICES

EXAMPLE: GHOST-GLUON SCATTERING KERNEL

- MINIMAL ASSUMPTION IN ORDER TO DESCRIBE THE PHYSICS IN TERMS OF LOCAL DEGREES OF FREEDOM:
 - SKELETON EXPANSION SHOULD NOT EXPLICITLY DIVERGE!
 - BUT NO CONVERGENCE ASSUMED ...

SKELETON CONSTRAINTS

SKELETON REDUCTION

THE DSE SYSTEM FOR THE IR EXPONENTS ...

$$-\delta_{gh} = \min(0, \delta_{gg} + \delta_{gh} + \delta_{gl}) ,$$

- $-\delta_{gl} = \min\left(0, \delta_{3g} + 2\delta_{gl}, \delta_{gg} + 2\delta_{gh}, 2\delta_{3g} + 4\delta_{gl}, \delta_{4g} + 3\delta_{gl}\right)$
- $\delta_{gg} = \min(0, 2\delta_{gg} + 2\delta_{gh} + \delta_{gl}, \delta_{3g} + \delta_{gg} + \delta_{gh} + 2\delta_{gl})$
- $\delta_{3g} = \min(0, 2\delta_{gg} + 3\delta_{gh}, 2\delta_{3g} + 3\delta_{gl}, \delta_{3g} + 2\delta_{gl}, \delta_{4g} + 2\delta_{gl}, 3\delta_{3g} + 5\delta_{gl}, \delta_{4g} + \delta_{3g} + 4\delta_{gl}) ,$
- $\delta_{4g} = \min(0, 3\delta_{gg} + 4\delta_{gh}, 3\delta_{3g} + 4\delta_{gl}, \delta_{4g} + 2\delta_{gl}, 2\delta_{3g} + 3\delta_{gl}, \delta_{4g} + \delta_{3g} + 3\delta_{gl}, 4\delta_{3g} + 6\delta_{gl}, \delta_{4g} + 2\delta_{3g} + 5\delta_{gl})$

$$\begin{aligned} -\delta_{gh} &= \min(0, \delta_{gh} + \delta_{gl}) , \\ -\delta_{gl} &= \min(0, 2\delta_{gh}) , \\ \delta_{gg} &= 0 , \\ \delta_{3g} &= \min(0, 3\delta_{gh}) , \\ \delta_{4g} &= \min(0, 4\delta_{gh}, 3\delta_{3g} + 4\delta_{gl}) \dots \text{SIMPLIFIES CONSIDERABLY!} \end{aligned}$$

UNIQUE SOLUTION FROM THE DSE SYSTEM ALONE

R.ALKOFER, C.S.FISCHER AND F.J.LLANES-ESTRADA, PHYS. LETT. B 611 (2005) 279, C.S.FISCHER AND J.PAWLOWSKI, PHYS. REV. D 75 (2007) 025012

IR SINGULARITIES

- POSSIBLE IR ENHANCEMENT OF GREENS FUNCTIONS WHENEVER MOMENTA BECOMES SMALL ...
- UNIQUE IR-LIMIT FOR THE PROPAGATORS
- POSSIBLY ADDITIONAL KINEMATIC DIVERGENCE FOR THE VERTICES $|r^2 \rightarrow 0|$

SOFT

 $p^2 \rightarrow 0$

EVEN MORE POSSIBILITIES FOR HIGHER VERTICES ...

UNIFORM

FINITE SCALES & MASSES

For HIGHER ORDER GREENS FUNCTIONS IR DIVERGENCES CAN OCCUR WHEN ANY SUBSET OF THE MOMENTA VANISHES ("SOFT / KINEMATIC DIVERGENCES") $\Gamma^{\mu_1\cdots\mu_m}(q_1,\cdots,q_n) = \sum_t \sum_i c_{i,t} \left(q_1^2/p_i^2,\cdots,q_n^2/p_i^2\right) \left(p_i^2 \left(q_1^2,\cdots,q_n^2\right)/\Lambda_{QCD}^2\right)^{\delta_{i,t}} T_t^{\mu_1\cdots\mu_m}(q_1,\cdots,q_n)$

YANG-MILLS: δ_{gl} , δ_{gh} , δ_{gg}^{u} , δ_{3g}^{u} , δ_{4g}^{u} , δ_{gg}^{gh} , δ_{gg}^{gl} , δ_{3g}^{gl} ...

SOFT SINGULARITIES HAVE A LARGER SUPPORT AND CAN HAVE QUANTITATIVE IMPACT

FLUCTUATIONS ON HARD SCALES CAN GENERATE FINITE MASSES IN THE IR

IR SENSITIVE REGIONS

- When both hard p_h and soft p_s external momenta are present ($p_s \ll p_h < \Lambda_{QCD}$)...
 - LOOP MOMENTA k of the order of all external scales contribute $I_3(p,q) = \int \frac{d^d k}{(2\pi)^d} \frac{1}{(k+p)^{2\alpha}} \frac{1}{(k-q)^{2\beta}} \frac{1}{k^{2\gamma}}$

DIFFERENT REGIONS OF THE INTEGRAL ARE IR SENSITIVE AND COULD DOMINATE:

IR ANALYSIS

NEGLECT 4-POINT VERTICES AND 2-LOOP GRAPHS

SKELETON CONSTRAINTS STRONGLY SIMPLIFY THE LEADING IR DYNAMICS

 $\begin{aligned} -\delta_{gh} + 1 &= \min\left(1, \delta_{gg}^{u} + \delta_{gh} + \delta_{gl} + 1, \delta_{gg}^{gh} + 1\right) , \\ -\delta_{gl} + 1 &= \min\left(1, \delta_{gg}^{u} + 2\delta_{gh} + 1, \delta_{3g}^{u} + 2\delta_{gl} + 1, \delta_{3g}^{gl}\right) \\ \delta_{gg}^{u} + \frac{1}{2} &= \min\left(\frac{1}{2}, \delta_{3g}^{gl} + \delta_{gg}^{gh} + 1\right) , \\ \delta_{3g}^{u} + \frac{1}{2} &= \min\left(\frac{1}{2}, 2\delta_{gg}^{u} + 3\delta_{gh} + \frac{1}{2}, 2\delta_{3g}^{gl}\right) , \\ \delta_{gg}^{gh} &= \min\left(0, 2\delta_{gg}^{gh} + \delta_{gh} + 2\right) , \\ \delta_{3g}^{gl} &= \min\left(0, \delta_{gg}^{u} + \delta_{gg}^{gh} + 2\delta_{gh} + 1\right) \end{aligned}$

ADDITIONAL CONTRIBUTIONS FROM HARD MOMENTA IN THE LOOP INTEGRAL DUE TO SOFT DIVERGENCES

RENORMALIZATION

LOOP GRAPHS REQUIRE RENORMALIZATION

SIMPLE DUE TO ASYMPTOTIC FREEDOM

• GHOST RENORMALIZATION: $G^{-1}(p^2 = 0) = 0$

 CANCELS TREE LEVEL
GHOST TERM EXACTLY!
L. V. SMEKAL, A. HAUCK & R. ALKOFER, PHYS. REV, LETT. 79 (1997) 3591
BUT NOT FOR A GENERIC RENORMALIZATION

PRESCRIPTION

TWO QUALITATIVELY DIFFERENT FIXED POINTS

IR FIXED POINTS

Two qualitatively different ("Unique") solutions DEPENDING ON THE RENORMALIZATION PRESCRIPTION

	δ_{gh}	δ_{gl}	δ^u_{gg}	δ^u_{3g}	δ^u_{4g}	δ^{gh}_{gg}	δ^{gl}_{gg}	δ^{gl}_{3g}
scaling	$-\kappa$	2κ	0	-3κ	-4κ	0	$1-2\kappa$	$1-2\kappa$
decoupling	0	1	0	-1/2	0	0	0	0

DECOUPLING SCENARIO

C.S.FISCHER, PRIVATE COMMUNICATION P.BOUCAUD, ET.AL., ARXIV:0801.2721 [HEP-PH] A.C.AGUILAR, D.BINOSI, J.PAPAVASSILIOU, ARXIV:0802.1870 [HEP-PH]

- VERTICES ARE NOT IR-ENHANCED
- IR REGIME IS ENTIRELY FINITE
- NO DESCRIPTION OF QUARK CONFINEMENT
- NO AREA LAW BEHAVIOR OF THE WILSON LOOP

IR FIXED POINTS

CONCLUSION

- UNIQUE SCALING FIXED POINT IN LANDAU GAUGE YANG-MILLS THEORY
 - IR REGIME IS DOMINATED BY GHOST DYNAMICS
 - MORE STRUCTURE DUE TO KINEMATIC SINGULARITIES
 - PROVIDES A COHERENT PICTURE OF THE STRONGLY INTERACTING VACUUM
 - CHIRAL SYMMETRY BREAKING & CONFINEMENT --> CHRISTIAN FISCHER'S TALK
 - SPONTANEOUS & ANOMALOUS MASS GENERATION

--> RICHARD WILLIAMS'S TALK

- DECOUPLING SOLUTION CANNOT BE EXCLUDED
 - BUT ... THE IR REGIME IS NOT ENHANCED AT ALL!