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1 Motivation

At imaginary chemical potential QCD has an interesting sym-
metry, known as the Roberge-Weiss (RW) symmetry, resulting
in the RW phase transition and periodicity [1]. Recent lattice
QCD simulations have investigated this phase structure and
found a mass dependence of the RW endpoint [2, 3].
As first-order phase transitions and second-order endpoints

might influence the phase structure at real chemical potential,
this is worth further effort.
In the Polyakov-loop extended Nambu–Jona-Lasinio (PNJL)

model, we thus investigate the phase structure in the µ2− T -
plane. At imaginary quark chemical potential the PNJL model
also features the RW symmetry and we find the RW periodicity
as well as the RW phase transition.
The PNJL model at imaginary chemical potential has already

been investigated by Sakai et al., e.g. [4, 5, 6]. In a two-flavor
PNJL model we extend their work and study the order of the
RW phase transition endpoint for different Polyakov-loop po-
tentials and analyze its dependence on the relative strength of
the potentials.

2 Model

We employ the PNJL model for two light quark flavors at real
and imaginary chemical potential in mean-field approxima-
tion. Parameters are taken from [5].
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We start with the logarithmic Polyakov-loop potential [7]:
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3 Roberge-Weiss periodicity and phase transition

The PNJL model has the same symmetry as QCD at imaginary
chemical potential µ = iθT : Certain shifts in the imaginary
chemical potential can be undone by a Z3 transformation. This
“extended Z3 transformation” is given by

θ → θ + 2πk/3
Φ → Φexp [−i2πk/3] with k ∈ Z.

A convenient definition is the “modified Polyakov loop”,

Ψ= Φexpiθ Ψ̄ = Φ̄exp−iθ

which is then invariant under the extended Z3 transformation.
It can easily be shown that the PNJL model is invariant un-

der the extended Z3 transformation and thus possesses the RW
periodicity at imaginary chemical potential.
At large temperatures the system undergoes a first-order “RW

transition” between different Z3 sectors at θ = (2k + 1)π/3.
θ -even quantities show a cusp, θ -odd quantities have a jump.
For low temperatures this transition is a crossover. The behav-
ior of the order parameters, especially at the RW transition, is
shown in figs. 1 and 2.
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Fig. 1: Modified Polyakov-loop variables and the normalized chiral
condensate at θ = 0 (left) θ = π/3 (right) as function of tempera-
ture.
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Fig. 2: Dependence of the modified Polyakov-loop variables and
the normalized chiral condensate on θ for different temperatures
around TRW = 190.3 MeV (solid red: T = 185 MeV, dashed blue:
188 MeV, dot-dashed green: 191 MeV).

4 Roberge-Weiss endpoint

Lattice QCD simulations at imaginary chemical potential for
two and three quark flavors have shown that the order of the
RW endpoint depends on the quark masses [2, 3]. For low and
high masses, the transition is of first order. In the intermediate
mass range the transition changes to second order with tricrit-
ical points in between. A first-order transition at large quark
masses can be expected from the limit of SU(3) gauge theory.
If the transition at θ = π/3 “ends” in a first-order transition,
there must be first-order lines departing from it.
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Fig. 3: T −m phase diagram for N f = 3 showing lines of triple points
(solid) ending in tricritical points, connected with second-order line,
and “Columbia plot” for RW endpoint at θ = π/3, both from [3].

The PNJL phase diagram in fig. 4 shows first-order lines de-
parting from the triple point. Crossover lines are determined
by the maximum of the chiral susceptibility and the inflection
point of the Polyakov-loop absolute value as function of tem-
perature.
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Fig. 4: Phase diagram in the θ − T (left) plane and the µ2− T (right)
plane. Solid (dashed) lines denote first-order (crossover) transitions.
Dots represent second-order endpoints. Color coding: red: RW tran-
sition, orange: deconfinement transition, blue: chiral transition.

Mass dependence

Using the logarithmic potential we find the RW endpoint to
be a triple point independent of the quark masses, contrary to
lattice results. Increasing the quark masses makes the “RW
legs” grow, see fig. 5. For bare quark masses larger than
about m0 ≈ 180 MeV the first-order lines reach across the
µ = 0 axis. This scenario is shown in fig. 6 in comparison
with the standard-parameter results.
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Fig. 5: RW “legs” in the θ − T phase diagram for different values of
the bare quark mass m0.

 0

 50

 100

 150

 200

 250

-0.1 -0.05  0  0.05  0.1  0.15

T
 in

 M
e

V

μ2 in GeV2

Fig. 6: Phase diagram in the µ2 − T plane. Black lines show
the RW, deconfinement and chiral transitions for the standard
value of m0 = 5.5 MeV. Solid red (dashed yellow) lines show first-
order RW/deconfinement (deconfinement crossover) transitions for
a high bare quark mass m0 = 200 MeV.

The authors of [8] report to reproduce the lattice QCD find-
ings within the EPNJL model (using the logarithmic Polyakov
loop potential), an extension of the PNJL model which uses a
Polyakov-loop dependent coupling gS.

other Polyakov loop potentials

Next we analyze the behavior of other Polyakov-loop poten-
tials. The polynomial parametrization [9] leads to a second-
order transition for all quark masses.
The Fukushima-type Polyakov-loop potential [10] gives a

second-order transition for small quark masses and changes to
first order for very high quark masses where the PNJL model
is not applicable any more. Thus we shift the system towards
the pure gauge limit by other means – by increasing the global
factor b of the Fukushima-type Polyakov-loop potential.
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Fig. 7: The dependence of the transition temperatures and the order
of the transition on parameter b. First-order (crossover) transitions
are depicted as solid (dashed) lines.

Indeed, the RW endpoint changes from second to first order
at about b = 0.09Λ3 (default value for N f = 2 is b = 0.015Λ3).
For b > 0.5Λ3 the RW “legs” reach across the temperature
axis. With increasing b all transition temperatures approach
the pure-gauge limit of Tc = 270 MeV.

5 Outlook

• Calculate N f = 2 + 1 “Columbia plot” for the order of the
RW endpoint.
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