Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

TECHNISCHE UNIVERSITÄT DARMSTADT

David Scheffler, Philipp Scior, Christian Schmidt, Dominik Smith, Lorenz von Smekal

- Introduction
- Observables
- Setting the temperature scale
- Magnetic scaling
- Summary and outlook

GEFÖRDERT VOM

Motivation

- two-color QCD as QCD-like theory where finite density is accessible
- preparations for finite density

chiral properties

- scale setting
- scaling behavior

effective Polyakov loop potential

- influence of quarks
- compare to effective model descriptions
- \rightarrow HK 42.6 Philipp Scior

Boz, Cotter, Fister, Mehta, Skullerud [1303.3223]

Simulation setup

- $N_f = 2$ staggered quarks via RHMC
- $N_t = 4, 6, 8$ with aspect ratio $N_s/N_t = 4$
- finite temperature: vary coupling β
- several masses

symmetry breaking

- continuum: $SU(2N_f) \rightarrow Sp(N_f)$
- ▶ staggered: $SU(2N_f) \rightarrow O(2N_f)$, here: $SU(4) \simeq O(6) \rightarrow O(4)$

Order parameters

Order parameters

Order parameters

Chiral susceptibilities

Runtime

- approx. runtime: 80 GPU months
- ▶ using NVIDIA[®] Tesla[™] K20X
- Lichtenberg-Cluster @ TU Darmstadt

chiral extrapolation

 $\beta_{pc}(m, N_t) = \frac{\beta_c(N_t) + b \cdot am^c}{2}$

chiral extrapolation

 $\beta_{pc}(m, N_t) = \frac{\beta_c(N_t) + b \cdot am^c}{2}$

similar analysis using deconfinement transition in pure SU(2)(Smith et al. [1307.6339])

magnetic scaling

magnetic scaling

Summary and outlook

Summary

- first steps towards scale setting and determination of critical exponents
- ► successful use of Ferrenberg-Swendsen reweighting for N_f = 4 and N_f = 6

Outlook

- chiral properties need more work, especially at $N_t = 8$
- lines of constant physics
- finite density

see HK 42.6

- effective Polyakov loop potentials, Polyakov loop correlators, ...
- in comparison to pure gauge simulations and effective theories