Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

TECHNISCHE UNIVERSITÄT DARMSTADT

David Scheffler, Christian Schmidt, Dominik Smith, Lorenz von Smekal

- Motivation
- Effective Polyakov loop potential
- Chiral properties
- Summary and outlook

GEFÖRDERT VOM

Motivation

effective Polyakov loop potential

- influence of quarks on Polyakov loop potential
- compare to effective model descriptions
- two-color QCD as QCD-like theory where finite density is accessible

chiral properties

- scale setting
- scaling behavior

Boz, Cotter, Fister, Mehta, Skullerud [1303.3223]

Effective Polyakov loop potential

- per-site probability distribution P(l) via histogram
- per-site "constraint" effective potential:

$$V_0(l) = -\log P(l)$$

obtain the actual per-site effective potential via Legendre transform

$$W(h) = \log \int dl \exp(-V_0(l) + hl)$$
$$V_{\text{eff}}(\hat{l}) = \sup_h (\hat{l}h - W(h))$$

Polyakov Loop distributions and effective potentials at $\beta=2.577856$

- pure gauge results by Smith, Dumitru, Pisarski, von Smekal [1307.6339]
- fixed scale

Polyakov Loop distributions and effective potentials at $\beta=2.577856$

- pure gauge results by Smith, Dumitru, Pisarski, von Smekal [1307.6339]
- fixed scale

Polyakov Loop distributions at $\beta = 2.577856$

- add $N_f = 2$ staggered quarks
- neglect scale change through quark masses

Polyakov Loop effective potential at $\beta = 2.577856$

2013/08/02 | Lattice 2013 | D. Scheffler | 6

Polyakov Loop effective potential at $\beta = 2.577856$

Modeling the distributions and potentials Fit coefficients at $\beta = 2.577856$

• pure gauge: for $T \leq T_c$: Vandermonde potential:

$$V_0^{(T_c)}(l) = -\frac{1}{2}\log(1-l^2) - C \qquad P^{(T_c)}(l) = \frac{2}{\pi}\sqrt{1-l^2}$$

satz for $T > T_c$: $V_0(l) = V_0^{(T_c)}(l) + a(T) - b(T)l + c(T)l^2$

^{2013/08/02 |} Lattice 2013 | D. Scheffler | 8

an

Modeling the distributions and potentials Fit coefficients at $\beta = 2.577856$

• pure gauge: for $T \leq T_c$: Vandermonde potential:

$$V_0^{(T_c)}(l) = -\frac{1}{2}\log(1-l^2) - C \qquad P^{(T_c)}(l) = \frac{2}{\pi}\sqrt{1-l^2}$$

atz for $T > T_c$: $V_0(l) = V_0^{(T_c)}(l) + a(T) - b(T)l + c(T)l^2$

ans

Chiral properties Simulation setup

- N_f = 2 staggered quarks via RHMC
- $N_t = 4, 6, 8$ with aspect ratio $N_s/N_t = 4$
- several masses am = 0.005, 0.01, 0.02, 0.1, ...
- Finite temperature: vary β

symmetry breaking

- continuum: $SU(2N_f) \rightarrow Sp(N_f)$
- ▶ staggered: $SU(2N_f) \rightarrow O(2N_f)$, here: $SU(4) \simeq O(6) \rightarrow O(4)$

Order parameters

Order parameters

Order parameters

Chiral susceptibilities

Chiral susceptibilities

Temperature scale

chiral extrapolation

 $\beta_{pc}(m, N_t) = \frac{\beta_c(N_t) + b \cdot am^c}{2}$

Temperature scale

chiral extrapolation

 $\beta_{pc}(m, N_t) = \frac{\beta_c(N_t) + b \cdot am^c}{2}$

Temperature scale

leading scaling behavior:

magnetic scaling

Summary and outlook

Summary

- unquenched effective Polyakov loop potentials
- began scale setting and determine critical exponents

Outlook

- ▶ continue: chiral properties need more work, especially at $N_t = 8$
- main goal: effective Polyakov loop potentials at finite density
- possible direction: adjoint representation

Backup Slides

Fixed scale parameters

pure gauge analysis: Smith, Dumitru, Pisarski, von Smekal [hep-lat/1307.6339]

β	$a\sqrt{\sigma}$	N_t	T/T_c
2.577856	0.140	12	0.83
		10	1.00
		8	1.25
		6	1.67
2.635365	0.116	12	1.00
		10	1.20
		8	1.50
		6	2.00

$$T(N_t) = \frac{1}{N_t a}$$

β	ат	
2.577856	0.5	
	0.1	
2.635365	0.414	
	0.083	

Polyakov Loop distributions at $\beta = 2.635365$

 $\beta = 2.577856$

Polyakov Loop effective potential at $\beta = 2.635365$

Fit coefficients at $\beta = 2.635365$

$$V_0(l) = V^{(T_c)}(l) + a(T) - b(T)l + c(T)l^2$$

TECHNISCHE

UNIVERSITÄT DARMSTADT

Finite volume test $N_t = 8, am = 0.5$

Finite volume test $N_t = 8, am = 0.005$

Finite volume test $N_t = 8, am = 0.005$

