
ISSN 1062-8738, Bulletin of the Russian Academy of Sciences: Physics, 2008, Vol. 72, No. 3, pp. 269–273. © Allerton Press, Inc., 2008.
Original Russian Text © A.A. Dzhioev, A.I. Vdovin, V.Yu. Ponomarev, J. Wambach, 2008, published in Izvestiya Rossiiskoi Akademii Nauk. Seriya Fizicheskaya, 2008, Vol. 72,
No. 3, pp. 294–298.

 

269

 

Gamow–Teller Resonance in Hot Nuclei 
and Astrophysical Applications

 

A. A. Dzhioev

 

a

 

, A. I. Vdovin

 

a

 

, V. Yu. Ponomarev

 

a, b

 

, and J. Wambach

 

b, c

 

a 

 

Bogolyubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research,
ul. Zholio-Kyuri 6, Dubna, Moscow oblast, 141980 Russia

e-mail: dzhioev@theor.jinr.ru

 

b

 

 Institut für Kernphysik, TU-Darmstadt, Schlossgartenstrasse 9, D-64289 Darmstadt, Germany

 

c 

 

GSI, D-64291 Darmstadt, Germany

 

Abstract

 

—A formalism based on thermo field dynamics is described. It allows the effect of the temperature on
the strength distribution of charge-exchange transitions in hot nuclei to be taken into account. Numerical cal-
culations with the pair correlations in the BCS approximation and the schematic 

 

στ

 

 interaction are carried out
for Gamow–Teller-like transitions in the 

 

56

 

Fe

 

 nucleus. The electron capture and 

 

β

 

–

 

 decay rates are calculated
for this nucleus at temperatures and densities corresponding to the late stage of the evolution of massive stars.
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INTRODUCTION

Collective excitation properties of hot nuclei have
been investigated since the 1980s. Both experimental
and theoretical studies are mainly focused on the
behavior of the giant 

 

E

 

1

 

 resonance (see [1, 2]). Despite
the progress made, there still remain unsolved prob-
lems. For example, the total width of the 

 

E

 

1

 

 resonance
at nonzero temperature cannot be quantitatively
described so far, the cause for its increase with increas-
ing temperature is not quite clear either (see, for exam-
ple, [3]).

In the meantime, of great interest is the behavior of
charge-exchange resonances, first of all the Fermi and
Gamow–Teller resonances, in hot nuclei. These reso-
nances are involved in many weak processes occurring
in nuclei, such as nucleosynthesis or stellar core col-
lapse preceding the supernova explosion. Experimental
studies of charge-exchange processes in hot nuclei are
hardly possible and thus it is theory that must answer
the arising questions.

A few approaches have been developed in the theory
of collective excitations of hot nuclei (see [1–3]). One
of them [4, 5], based on the quasiparticle–phonon
model of the nucleus [6] and the thermo field dynamics
(TFD) formalism [7], was already used to analyze the
temperature behavior of the 

 

E

 

1

 

 resonance width [8]. An
important advantage of this approach is that it allows
the relation of the giant resonance to other collective
excitations and thus its fragmentation to be taken into
account.

In this study the above approach is extended in order
to analyze the behavior of charge-exchange resonances
in hot nuclei. Particular calculations are carried out for
the Gamow–Teller resonance in the 

 

56

 

F

 

e

 

 nucleus

because this nucleus is an important component of stel-
lar evolution.

DESCRIPTION OF CHARGE-EXCHANGE 
EXCITATIONS IN A HOT NUCLEUS

The TFD formalism was used to study properties of
hot nuclei not only in [4, 5, 8] but also in [9–11]. In our
description of the main TFD points below, brief as it has
to be, we follow [7] and the above-mentioned papers.

Let us assume that a hot nuclear system in the state
of thermal equilibrium is described by the distribution
function of a large canonical ensemble. The main idea
of the TFD is that instead of the standard statistical
average over the ensemble of an operator 

 

A

 

one calculates the average of the state 

 

|

 

0(

 

T

 

)

 

〉

 

 depending
on the temperature 

 

T

 

Here 

 

H

 

 is the Hamiltonian of the system; we denote its
eigenstates by 

 

|

 

n

 

〉

 

 and eigenvalues by 

 

E

 

n

 

.
The state 

 

|

 

0(

 

T

 

)

 

〉

 

, which is called the thermal vacuum,
cannot be constructed using only functions of the ordi-
nary Hilbert space of states of the system in question
[7]. The thermal vacuum can only be constructed by
formally doubling the number of the system’s degrees
of freedom, which is achieved by introducing space of
so-called tilde states , which are eigenstates of the

tilde Hamiltonian  with the same eigenvalues 

 

E

 

n

 

 as
the ordinary eigenstates. With a certain degree of arbi-
trariness, tilde states may be identified with thermostat

A〈 〉〈 〉 1
Tr H/T–( )exp( )
---------------------------------------Tr A H/T–( )exp[ ]=

A〈 〉〈 〉 0 T( )〈 |A 0 T( )| 〉.=

ñ| 〉
H̃
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states. The direct product of spaces of ordinary and
tilde states makes up the total Hilbert space of states of
the hot system. In this space the operator for the shift of
the system along the time axis is the thermal Hamilto-
nian 

 

�

 

 = 

 

H

 

 – 

 

. This means that 

 

�

 

 should be diago-
nalized for finding the spectrum of excitations of the
hot system and that its thermal behavior is governed by
the thermal vacuum.

The thermal vacuum 

 

|

 

0(

 

T

 

)

 

〉

 

 

 

is the eigenstate of the
zero-energy thermal Hamiltonian. At the same time the
thermal vacuum is a vacuum for the annihilation oper-
ators of the so-called thermal quasiparticles 

 

β

 

jm

 

 and

. The latter are related to the creation and annihila-
tion operators of quasiparticles diagonalizing 

 

H

 

 by the
thermal rotational transformation (also called Bogoly-
ubov rotational transformation) [7].

In this study we use a simple model Hamiltonian
consisting of a mean-field phenomenological potential,
pairing interaction in the BCS form with the constants

 

G

 

n

 

 and 

 

G

 

p

 

, and isovector spin-isospin interaction in the
particle–hole channel characterized by one constant 

 

χ

 

(see, for example, [6, 12]).
We begin diagonalization of the thermal Hamilto-

nian 

 

�

 

 with defining the basis of Bogolyubov quasipar-
ticles in which the thermal effect is also taken into
account [11, 5]. In this basis the part of the thermal
Hamiltonian which involves the mean field and the
pairing interaction becomes diagonal.

The initial thermal Hamiltonian is expressed in
terms of fermion operators of thermal quasiparticles by
means of two successive unitary transformations. The
first of them is the standard Bogolyubov transformation

from the particle operators  and 

 

a

 

jm

 

 to the quasipar-

ticle operators  and 

 

α

 

jm

 

(1)

 

(similarly for the corresponding tilde operators). The
second transformation is thermal rotation mixing ordi-
nary and tilde quasiparticle operators

 

(2)

 

The coefficients (

 

u

 

j

 

, 

 

υ

 

j

 

) and (

 

x

 

j

 

, 

 

y

 

j

 

) are defined from
the condition of the minimum free energy of the system
of independent quasiparticles. Thus, there arise a sys-
tem of equations of superfluidity at nonzero tempera-
ture [13, 11, 5], solutions to which govern the thermal
quasiparticle energies , values of the energy gap 

 

∆

 

τ

 

and chemical potential 

 

λ

 

τ

 

 (

 

τ 

 

= 

 

n

 

, 

 

p

 

 is the isotopic index)
as functions of single-particle energies, interaction con-
stants, and temperature. Note that the coefficients (

 

x

 

j

 

, 

 

y

 

j

 

)

H̃

β̃ jm

a jm
+

α jm
+

a jm u jα jm υ jα jm

+ ,+=

a jm
+ u jα jm

+ υ jα jm
, u j

2 υ j
2+ 1=( )+=

α jm
+ x jβ jm

+ y jβ̃ jm,+=

α̃ jm
+ x jβ̃ jm

+
y jβ jm, x j

2 y j
2+ 1=( ).–=

ε jτ

are expressed in terms of the Fermi–Dirac thermal
occupation factors of Bogolyubov quasiparticles.

The remaining part of the Hamiltonian is diagonal-
ized in the random phase approximation, i.e., on the
assumption that the wave function of the excited state
of the Gamow–Teller (GT) type is expressed in terms of

the thermal GT phonon creation operator  acting on
the thermal phonon vacuum |Ψ0(T)〉

(3)

where [ ]µ denotes coupling of the single-particle angu-
lar momenta j and j ' to the total angular momentum l
with the projection µ. The phonon operators should sat-
isfy the boson commutation relations, which imposes
limitations on the phonon amplitudes [5].

The energy of the single-phonon state |Ψ0(T)〉 is
found from the condition of the minimum energy of the
thermal Hamiltonian in the single-phonon state at the
above-mentioned additional limitations on the ampli-
tudes ψ, φ, η, and ξ and their tilde partners. The corre-
sponding variational equation has the form

(4)

The Lagrange multiplier ωi is the energy of the single-
phonon state. Energies of thermal phonons are solu-
tions to the following secular equation1:

(5)

The functions X(±)(ωi) and X(0)(ωi) are defined by the
expressions

1 Our particle–hole στ interaction is separable.

Qµi
+

Qµi
+ 1

2
------- ψ j p jn

i β j p

+ β jn

+[ ]µ ψ̃ j p jn

i β̃ j p

+
β̃ jn

+
[ ]µ+(

j p jn

∑=

+ η j p jn

i β j p

+ β̃ jn

+
[ ]µ η̃ j p jn

i β̃ j p

+
β jn

+[ ]µ )+

+ φ j p jn

i β
j p

β
jn

[ ]
µ

φ̃ j p jn

i β̃ j pβ̃ jn[ ]µ+(

– ξ j p jn

i β
j p

β̃ jn[ ]
µ

ξ̃ j p jn

i
β̃ j pβ jn

[ ]
µ

),–

Qµi
+

δ Ψ0 T( )〈 |Qµi�Qµi
+ Ψ0 T( )| 〉 ---





–
ωi

2
----- Ψ0 T( )〈 | Qµi Qµi

+,[ ] Ψ0 T( )| 〉 1–[ ]




0.=

χX +( ) ωi( ) 1–[ ] χX –( ) ωi( ) 1–[ ] χX 0( ) ωi( )[ ]2
–  = 0.

X ±( ) ωi( ) 2
3
---

ε j p jn

+( ) f jp jn
( )2 u jp jn

±( )( )2

ε j p jn

+( )( )2 ωi
2–

------------------------------------------- 1 y jp

2– y jn

2–( )
j p jn
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–
ε j p jn

–( ) f jp jn
( )2 υ j p jn

+−( )( )2

ε j p jn
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2–
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where  is the reduced single-particle matrix ele-

ment of the operator στ, ‡  =  ± ,

 =  ± ,  =  ± .

The excitation spectrum of the hot nucleus is
enriched because there are a number of excited quasi-
particles in the thermal phonon vacuum. This is why

poles  appear in secular equation (5) and low-
energy transitions of the hole–hole and particle–parti-
cle type become possible. Note that solutions to (5)
with the negative energy also have a physical meaning:
they correspond to the excitation of tilde phonons

|Ψ0(T)〉.
Variational equation (4) defines the structure of ther-

mal phonon (3) to within the accuracy of the transfor-
mation equivalent to thermal rotation of the phonon
operators2:

As in the case of thermal quasiparticles, the thermal
rotation coefficients are found from the condition of the
minimum free energy (of the system of noninteracting
phonons in this case)

(6)

The symbols  and qµi stand for the operators of the
phonons which can be called “nonhot” (though they
consist of thermal quasiparticles) because Yi = 0 for

them;  is the entropy operator for the system of
bosons [7],

(7)

Varying ΩB(T) with respect to Xi and Yi, we get

(8)

2 This point was ignored in [4, 5, 8].

X 0( ) ωi( ) 2
3
---ωi

f jp jn
( )2u jp jn

+( ) u jp jn

–( )

ε j p jn

+( )( )2 ωi
2–

------------------------------------- 1 y jp

2– y jn

2–( )
j p jn

∑=

–
f jp jn

( )2υ j p jn

–( ) υ j p jn

+( )

ε j p jn

–( )( )2 ωi
2–

-------------------------------------- y jp

2 y jn

2–( ),

f jp jn

u jp jn

±( ) u jp
υ jn

υ j p
u jn

υ j p jn

±( ) u jp
u jn

υ j p
υ jn

ε j p jn

±( ) ε j p
ε jn

ε j p jn

–( )

Q̃µi
+

Qµi
+ XiQµi

+→ YiQ̃µi,–

Q̃µi
+

XiQ̃µi
+→ YiQµi Xi

2 Yi
2– 1=( ).–

ΩB T( ) Ψ0 T( )〈 | ωiqµi
+ qµi

i µ, 0 1±,=

∑ TŜB Ψ0 T( )| 〉.–=

qµi
+

ŜB

1

ŜB qµi
+ qµi Yi

2 qµiqµi
+ Xi

2ln–ln{ }.
i µ, 0 1±,=

∑–=

Y j
2 ωi

T
----- 

 exp 1–
1–

.=

Thus, the coefficients  are Bose–Einstein thermal
occupation factors. They define the number of thermal
phonons qµi in the thermal vacuum:

〈Ψ0(T)| |Ψ0(T)〉 = .

Each single-phonon state |Ψ0(T)〉 and

|Ψ0(T)〉 is a superposition of the excited states of the
(Z + 1, N – 1) and (Z – 1, N + 1) nuclei. This mixing
results from pair correlations and correlations that are
due to residual proton–neutron interaction. The proba-

bility  and energy  of the  transition to

the |Ψ0(T)〉 state are given by the expressions

(9)

where ∆λnp = λn – λp is the difference in value between
the neutron and proton chemical potentials and ∆mnp =
mn – mp = 1.29 MeV is the mass difference between the
neutron and the proton. For the probability and energy

of the transition to the Ψ0(T)〉 state we get

(10)

Thus, to each neutron–proton (proton– neutron) transi-
tion from the compound state of the hot nucleus (i.e.,

thermal phonon vacuum) to the |Ψ0(T)〉 state there
corresponds a proton–neutron (neutron– proton) transi-

tion from the |Ψ0(T)〉 state to the |Ψ0(T)〉 state. Prob-
abilities of these transitions differ in multipliers related
to the boson occupation factors and their energies are
equal in absolute value and differ in sign.

NUMERICAL CALCULATIONS: DECAY
OF THE HOT 56Fe NUCLEUS

Numerical calculations were carried out for the 56Fe
nucleus. Single-particle wave functions and single-par-
ticle energies were calculated in the spherically sym-
metrical Woods–Saxon potential with the parameters
from [14]. Energies of the 1f and 2p shells were taken
from the processed experimental data on nucleon strip-
ping and pickup reactions [15, 16]. The constants Gn

and Gp were determined from the experimental values
of pair energies. The pairing energy gaps for the 56Fe
were found to be ∆n = 1.27 MeV and ∆p = 1.25 MeV.
The constant χ of the isovector spin-dipole interaction
was determined from the position of the experimental
peak of the Gamow–Teller resonance [17, 18]. The

Y j
2

qµi
+ qµi Y j

2

Qµi
+

Q̃µi
+

Φi
+−( ) Ei

+−( ) Éí +−( )

Qµi
+

Φi
+−( ) = Ψ0 T( )〈 ||Sµ

+−( )Qµi
+ | Ψ0 T( )| 〉 2

 = 
9
4
---

1 �i±( )2

χ2�i

----------------------Xi
2,

Ei
+−( ) ωi ∆λnp ∆mnp+( ),+−=

Q̃µi
+

Φ̃i
+−( )

 = Ψ0 T( )〈 ||Sµ
+−( )Qµi

+ | Ψ0 T( )| 〉 2
 = 

9
4
---

1 �i+−( )2

χ2�i

----------------------Yi
2,

Ẽi
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+
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value obtained agrees with the estimate χ = 23/A MeV
[12].

The strength distribution of the GT resonance built
on the 56Fe nucleus as a function of the energy trans-
ferred to the nucleus is shown in Fig. 1 for three tem-

perature values T = 0, 0.5, and 1.0 MeV (remember that
0.1 MeV ≈ 1.2 × 109 K).

Note the characteristic features of the distributions
obtained. For β-stable nuclei, such as 56Fe, at T = 0 all
strength of GT transitions is above the ground-state
energy of the parent nucleus. Therefore, only GT tran-
sitions accompanied by energy absorption, e.g., as a
result of electron or positron capture, are possible in
these nuclei at zero temperature. As the temperature
increases, redistribution of the GT transition strength
takes place and part of it finds itself in the energy region
below the thermal vacuum corresponding to the com-
pound state of the parent nucleus. As a result, GT tran-
sitions accompanied by energy loss become possible.

They correspond in particular to the  decay of the
parent nucleus from the excited state. An increase in the
temperature leads to an increase in the fraction of the
GT strength lying below the thermal vacuum energy,

and thus the probability of  decays increases.

As the temperature increases, the centroid of the GT
resonance moves downward on the energy scale. This
decrease results from two causes. One is weakening
and subsequent disappearance of pair correlations with
increasing temperature. This mechanism dominates at
temperatures below the critical value TC ≤ 0.7 MeV. The
other cause is thermal smearing of the Fermi surface
which increases with temperature. The smearing
increases the fraction of low-energy transitions in the
structure of the strength function. At T = 0 these transi-
tions were strongly suppressed or forbidden by the
Pauli principle (for nuclei of the fp shell beginning
these are mainly transitions like 1f7/2(p) → 1f7/2(n)). At
the same time the contribution from the transitions to
the states below the thermal vacuum increases. In addi-
tion, smearing of the Fermi surface effectively affects
the strength of the particle–hole στ interaction: it
decreases with increasing temperature.

For the reaction of electron capture by nuclei in the
stellar material the lowering of the GT+ resonance cen-
troid leads to a decrease in the reaction threshold and a
substantial increase in the electron capture rate at low
densities of the stellar material, when the Fermi energy
of the degenerate electron gas surrounding atomic
nuclei is small.

The lowering of the GT– resonance centroid with
increasing temperature affects the process of nucleo-
synthesis during the explosion of the supernova, when
neutron-rich nuclei resulting from fast neutron capture
(r-process) undergo neutron decay from excited states
under the effect of the (νe, e–) reaction proceeding just
through excitation of the GT– resonance.

Figure 2 shows calculated electron capture and β–

decay rates for the 56Fe nucleus at temperatures and
densities of the stellar material corresponding to the
late stage of the evolution of massive stars [19, 20].
Under these conditions the atomic nucleus is fully ion-
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Fig. 1. Strength distribution of the GT– (a) and GT+ reso-
nance (b) in the 56Fe nucleus at the temperatures T = 0, 0.5,
and 1.0 MeV. E is the energy transferred to the parent
nucleus.

105

2 4 10
T9

λec, s
–1

100

10–5

10–15

10–10

10–20

(a)

6 8

100

2 4 10

λβ, s–1

10–10

10–20

10–40

10–30

10–50

(b)

6 8

ρYe = 108

109

1010

Fig. 2. Rates of electron capture (a) and β– decay for the
56Fe nucleus as a function of temperature at different densi-
ties ρYe of the stellar material. Temperature T9 is in units of

109 K; density ρYe is in units of mol cm–3.



BULLETIN OF THE RUSSIAN ACADEMY OF SCIENCES: PHYSICS      Vol. 72      No. 3      2008

GAMOW–TELLER RESONANCE IN HOT NUCLEI AND ASTROPHYSICAL APPLICATIONS 273

ized and electrons are captured only from the surround-
ing degenerate electron gas, whose Fermi energy
increases with increasing density.

The electron capture rate increases both with
increasing density and with increasing temperature.
This is primarily because the fraction of electrons with
energy sufficient for excitation of the GT+ resonance
increases in the electron gas. Another cause for the
increase in the electron capture rate is, as was already
mentioned, the lowering of the centroid for the GT+ res-
onance with increasing nuclear temperature.

The effect of the increase in the density and temper-
ature of the stellar material on the probability of the
inverse reaction, β– decay, is quite opposite. The prob-
ability decreases with increasing density because the
chemical potential of the electron gas increases and
more and more states that could be occupied by the
electron emitted from the nucleus turn out to be already
occupied. On the contrary, the increase in temperature
weakens the Pauli blocking effect and increases the
fraction of GT– transitions from excited states of 56Fe.

Rates for electron capture by the 56Fe nucleus shown
in Fig. 2 are in good agreement with the shell-model
calculations [19, 20]. However, our results for the β–

decay rates are much larger than in [19, 20] (by a few
orders of magnitude at low temperatures). A possible
cause for the discrepancy is that the distribution of the
GT transition strength calculated in the random phase
approximation mostly ignores its fragmentation (see
[6, 12]). It is hoped that allowance for the interaction
with complicated configurations in the spirit of the [4,
8] will change the situation for the better.

CONCLUSION

In this study, equations of the thermal random-phase
approximation for charge-exchange excitations are
obtained within the thermo field dynamics. Strength
distributions are calculated for GT transitions like n →
p (GT+) and p → n (GT–) built on the 56Fe nucleus at the
temperature T ≤ 1 MeV. Temperature dependences of
the electron capture and β– decay are calculated for this
nucleus at different stellar material densities. The pre-
sented approach may be further elaborated to include
interaction of single-phonon configurations with more
complicated two-phonon ones, as was done for charge-
exchange resonances in “cold nuclei” in [12]. It is also
desirable to use more realistic effective interactions.
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