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Microscopic calculations of the fine structure of giant resonances for spherical nuclei 

are presented. Excited states are described by wave functions which take into account 
the coupling of simple one-phonon configurations with two-phonon states. Few examples 
are presented: the r-decay of resonances to the ground and low-lying excited states and 

the relativistic Coulomb excitation of the double giant dipole resonance states. 

1. INTRODUCTION 

In the last few years, the experimental study of giant resonances, [l], has benefitted 

from the use of large, “full” geometry detectors and of more and more heavy and 

energetic beams. The particle and r-decay have been studied, branching ratios obtained, 
the direct and the statistical component of the decay processes resolved [2]. These 
exclusive data require rather complete theoretical models to be explained [3-41. One of 

them will be presented and used in this work. 

2. FORMALISM AND DETAILS OF CALCULATIONS 

The calculations presented below have been carried out within the Quasiparticle 

Phonon Model (QPM) [5-7). Th e model Hamiltonian ti includes an average field I$,,) 
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for protons and neutrons, a monopole pairing interaction and isoscalar and isovector 

residual interaction of a separable type with a form factor proportional to dVpt,)/d~. 
Excited states of even-even nuclei are treated in terms of phonon excitations built upon 

the ground state which is considered as a phonon vacuum 10 >ph. The phonon creation 

operators Q&,; of multipolarity Xp are defined as a linear combination of two quasiparti- 

cle creation oj’, and annihilation a+,, operators labelled by the single-particle quantum 

numbers jm of the average field V as follows: 

where 

The forwardgoing r+$$ and backwardgoing ~jj xi, amplitudes are obtained by solving the 

random phase approximation (RPA) equations that yield a set of one-phonon configura- 

tions with excitation energies w~i for the i-th root. Among phonons we obtain both col- 

lective and non-collective states which essentially correspond to pure two-quasiparticle 

excitations. 
The mixing of one-phonon configurations, through which giant resonances are excited 

in inelastic scattering, with more complex configurations is strong in the resonance 

region, because of the high density of states. Thus, we write the wave function of 

resonance states as a sum of configurations of increasing number of phonons. If we limit 

this sum to one- and two-phonon configurations, the wave function for the X:-state has 

the form: 

(2) 

In actual calculations we do not include configurations with two non-collective phonons. 

By this truncation of the two-phonon basis, we remove complex configurations that are 

weakly coupled to one-phonon states and, on the other hand, may strongly violate the 

Pauli principle. 

To obtain the amplitudes &(XY) and P$:(XY), we diagonalise the model Hamilto- 

nian on the basis of wave functions (2). Eigenvalues E, are obtained as the roots of the 

following determinantal equation: 

where 
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is the matrix element of the interaction between one- and two-phonon configura- 

tions. The rank of the determinant (3) is determined by the number of one-phonon 

configurations included in the first term of the wave function (2). 

Numerical calculations have been performed with the Woods-Saxon potential as the 

average field with the parameters from ref. [7]. Parameters of the residual interactions 

were adjusted to the properties of the low-lying collective levels. Natural parity phonons 

with X” = l- - 8+ have been included in the two-phonon term of the wave function (2). 

3. SINGLE RESONANCES 

Giant resonances are not broad featureless structures, but it is possible to study 

experimentally physical processes in which different states from the resonance region 
are excited by different probes, and by measuring the decay properties of these states 

with coincidence techniques, fingerprints of some specific states may be observed. Such 

experiments can be understood within the detailed microscopic description introduced 

above, which considers giant resonances as a set of a large number of states, with their 

own properties. 

3.1. Fine structure of the GDR 

As a first example, let us discuss the fragmentation of the B(EX) strength due to the 
coupling of one-phonon configurations to two-phonon ones in the resonance region. We 

take as an example the giant dipole resonance (GDR) in ‘%Xe. Figure 1 presents the 

B(E1) strength distribution over one-phonon configurations. The major fraction of the 

B(E1) strength is carried by these configurations, the direct excitation of two-phonon 

l- states from the ground state being about three orders of magnitude weaker. The 

one-phonon states exhaust 107% of the classical oscillator strength. 

Of these, 20 states have an oscillator strength which is at least 1% of the strongest 

strength and together exhaust 104% of the classical EWSR. We have used these states in 

the coupling to two-phonon components with energy lower or equal to 21 MeV, obtaining 

2632 two-phonon configurations. One obtains 1614 states of type (2), in the energy 

interval from 7 MeV to 19.5 MeV. The B(E1) al v ue associated with each mixed state 

is calculated through its admixture with one-phonon states, as 1 < ~]]M(E1)1]0 > 1’ = 

I Ci R;(v) < 0~~Q~-i~(~1)~~0 > 1’. Th e coupling of simple (one-phonon) configurations 

to more complex (two-phonon) ones results in a strong fragmentation. The values of 

the centroid and width of the strength distribution are E~nn = 15.1 MeV and Penn = 

4 MeV. 

This example clearly shows how the width of a giant resonance arises theoretically. 

Calculations with the set of wave functions of eq. (2), underestimate by a few hundred 

of keV the experimentally measured widths of giant resonances. This is not surprising 

since configurations more complex than two-phonon ones are not included. 
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E, (MeV) 

Fig. 1. GDR in IsaXe. El-strength distribution over one-phonon configurations result- 
ing from the RPA solution. 

3.2. Substructures of the (-y,n)Pb cross section 
Some substructures of the GDR have been observed in the (7,n) cross sections at 

low excitation energies [8]. Th e experimental (7,r~)“~“Pb cross section is presented in 
the left part of Figure 2. It is compared to the calculated cross section for the dipole 
photoabsorption 

is the dipole strength function (in units e2 fmr) calculated introducing au averaging 
parameter A, the 7 ray energy is in MeV and the cross section in millibarns. One can 
notice from Figure 2 a rather good agreement of experimental data with the theoretical 
calculations. The truncation of the large number of two phonon configurations which are 
weakly coupled with one-phonon states causes some overestimation of the cross section 
near its maximum and some underestimation of the high energy part. 

The results of the RPA calculation for the dipole strength distribution are shown in 
the left figure by vertical lines. The coupling of the RPA collective states with the two- 
phonon states results in a redistribution of the dipole strength. This leads to pronounced 
substructures in the cross sections in the low energy part. The increase of the excitation 
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Fig. 2. Experimental and theoretical (7,n)20sPb cross section. Calculations are per- 

formed with A = 1 MeV (left) and 0.2 MeV (right). 

energy leads to the increase of the level density, and as a result, substructures disappear. 
One cannot observe any substructures in nuclei with open shells because of the high 

level densities and strong coupling between configurations [9]. 
To shed more light on the problem of the existence of substructures, the low energy 

part of the cross section has been calculated in the right part of Figure 2 with a smaller 

value for A = 0.2 MeV. The main structures observed in the experiment at the excitation 

energies 7.6, 8.6, 9.1, 9.5, 10.0 and 11.3 MeV are reproduced. The solid curve includes 

the contribution of El and Ml photoabsorption, while the dashed curve shows the El- 

contribution. It is noted that Ml transitions contribute essentially to the substructure 

at the energy 7.6 MeV. This result is in good agreement with the experimental Ml 
strength distribution measured with highly polarized tagged photons [lo]. It is worth 

mentioning that E2 transitions do not give any noticeable contribution to the cross 

section. 

3.3. r-decay of the GDR into the ground and 2t states 

Recently, “6”24Sn(a,a’7) experiments have been performed at the KVI [ll]. The 

GDR region of excitation was investigated. Coincidence measurements between the 

scattered o-particles and the emitted r-rays were used to select the contribution of the 
GDR from the giant monopole (GMR) and quadrupole (GQR) resonances. It has been 

observed that the population of the first 2+ excited state was nearly as strong as that 
of the ground state. 

The following interpretation of these data has been proposed [12]. As soon as the 
GDR is excited by a particles it decays into the ground state by El transitions and to 
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the 2: state because of the strong coupling of the GDR with two-phonon configurations 

[GDR Q 2&-. 
In the calculation of the (a,a’y) cross sections the ideas of the multistep theory of ’ 

nuclear reactions (see, e.g. [13]) have been applied and the uq&E) coincidence cross 

section has been deduced following the procedure described in ref. [14] as: 

(6) 

where I’.,(E) is the width of the -y-decay of an doorway l- state to the ground or the 2: 

state and P is the GDR width. The second term in eq. (6) corresponds to the compound 

decay. 

Using the calculated structure of the l- states in the GDR region we can obtain 

microscopically both the cross section of excitation u,-+,(E,-,) of each #’ l- state and 

its decay width into the ground state or the 2: state. The GDR excitation at the KVI 

energies is dominated by the Coulomb term. Thus, we can approximate the form factor 

of excitation of the jth one-phonon l- configuration by electromagnetic matrix elements 

< 1; (1 El ]I 0:‘ > multiplied by the energy-dependent part of the excitation cross 

section. 

The decay width l?r(EI-y) of the yth l- excited state in eq. (6) is simply related 
to the r-transition matrix elements between one-phonon configurations and the phonon 

vacuum for the decay into the ground state and between two-phonon and one-phonon 

configurations for the decay into the 2: state. 

The exponential dependence of the Coulomb excitation cross section u&E) as a 

function of excitation energy enhances strongly the lowest energies. As a result, the 

maximum in the up,=,,(E) cross sections is shifted down compared to the El strength 

distribution. The calculated shape of both u++~(E) and uQ,Ptr,t (E) cross sections is 

described rather well without introducing any averaging parameter. But the calculations 

underestimate the experimentally observed population of the 2: state in comparison 

with the ground state population by a factor 1.5-2.0. We have also estimated the 

contribution of excitation and decay of the GQR and the GMR to the total (a,a’7) 

cross section and found it to be equal to only a few percent. 

4. EXCITATION OF DOUBLE GDR RESONANCES 

The excitation of 13’Xe on 2“sPb target at Et.a = 690 MeV/n has recently been 

measured [15]. A prominent structure centered around twice the energy of the GDR 

was observed and interpreted as a multi-step excitation of the double GDR. Making 
use of the results of nuclear structure calculations within the QPM and of the theory of 

relativistic Coulomb excitation [16], th e cross sections associated with the one-phonon 

giant resonances as well as two-step excitation of double resonances have been calcu- 

lated [17]. These cross sections can be written in terms of the first- and second-order 
amplitudes a(‘) and a(‘) respectively as 
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(7) 

For k = 1, the final states have angular momentum If = 1 for the GDR and It = 2 
for the GQR, while for k = 2, both If =0 and 2 are possible. The amplitudes depend 
on the impact parameter b and on the excitation energy tiw. The first-order amplitude 
is equal to [16] 

x ~A,Md.f,(~) , (8) 

where 2, is the charge of the target. The radial integral S, carried out on a straight-line 
trajectory in keeping with the relativistic character of the reaction, is given by 

Here t(b) = wb/vy is the adiabaticity parameter. The functions K,, are modified Bessel 
functions, while the polynomials GE+ are related to the Legendre polynomials. The 
lower limit of integration over impact parameter is to be taken in such a way as to 
exclude nuclear reactions. 

For the GDR we have used the B(E1) strength distribution calculated as described 
above in Sect. 3.1. The isoscalar and the isovector GQR have also been calculated within 
the same approach. The centroid, width and percentage of the EWSR associated with 
the isoscalar mode are 12.5 MeV, 3.2 MeV and 75% respectively. The corresponding 
quantities associated with the isovector GQR are 23.1 MeV, 3.6 MeV and 80%. 

The second order amplitude needed in the calculation of the double phonon excita- 
tion can be written as 

where &A& denotes the angular momentum and projection of the intermediate state. A 
central aspect of the above expression is the interference between the different El- 
amplitudes, and thus between the different components of the dipole response (cf. 
eq.(2)). The p rincipal integral in eq.(lO) has been neglected in the calculations re- 
ported here. It vanishes for the excitation of a sharp dipole state, and is expected to 
give a small contribution even when the state has a finite width. 

The evaluation of a(l) requires the knowledge of the matrix element < 1, I IM( El) I Iii > 
= < vp2~~M(El)~~v, >. B ecause of the phonon character of the operators Qx,,, it can 
be shown that 
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Table 1. Calculated for two values of T, and experimental cross section (in mb) for the 
excitation of giant resonances in 13’Xe. 

GDR GQRm, GQR.c, GDR + GQR [GDR@oGDR]o+,z+ 

T, = 1.5 fm 1480 110 60 1650 50 

Experiment - - - 1480 215 f 50 

= Jl+ayy < Vr(]M(El)]]O > . (11) 

This result emerges from the interference of lo3 states, and shows that the strength 
function for the excitation of the double giant dipole resonance can be derived from the 
one-phonon strength function, considering the multiple excitation of all the ]Y > states, 
with the appropriate boson factor and phase which account for the double excitation of 
the same state. 

The resulting differential Coulomb-excitation cross sections associated with the two- 
phonon dipole excitation displays a centroid at 30.6 MeV, about twice that of the one- 
phonon l--states, while the width is P M 6 MeV, the ratio to that of the one-phonon 
excitation being 1.5. 

The associated integrated values are displayed in Table 1, in comparison with the 
experimental findings. The value of the integrated cross section reported in ref. [15] is 
1.85 f 0.1 b. The nuclear contribution has been estimated to be about 100 mb, while 
about 3% (50 mb) of th e cross section is found at higher energy. Subtracting these two 
contributions and the 2-phonon cross section leads to the value 1480 mb shown in the 
last row of Table 1. 

As can be seen from Eq. (7), the calculated cross sections depend on the choice of 

the value of &in = rO($” + At’“). In keeping with the standard “safe distance”, that 
is, the distance beyond which nuclear excitation can be safely neglected, we have used T, 
= 1.5 fm. It is satisfactory that the measured cross section is rather close to this value. 
Also shown in Table 1 are the predictions associated with the sequential excitation of 
the double giant dipole resonance. The calculated value of 50 mb is a factor of 4 smaller 
than experimentally observed. Reducing T, to 1.2 fm increases the cross section to 130 
mb, a value which is still 50% smaller than the reported experimental value. The fact 
that the one-phonon cross section becomes a factor 1.7 larger than reported indicates 
that this way to proceed is likely not to be correct, and seems to be in contradiction 
with basic predictions of the harmonic picture of the GDR which is at the basis of the 

RPA description of these modes. 
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5. CONCLUSIONS 

The Quasiparticle Phonon Model has been applied to calculations of the fine struc- 

ture of giant resonances. The model Hamiltonian has been diagonalized on the basis of 
the wave functions of excited states which include one- and two-phonon configurations. 

The wave functions produced for each state contributing to a giant resonance allow one 
to consider different properties of single and double resonances on a microscopic basis. 
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