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We present spin- and parity-resolved level densities extracted from high-resolution
hadron and electron scattering data by means of a fluctuation analysis. A nearly model-
independent method based on discrete wavelet transform is introduced for the determi-
nation of a non-resonant background. The data obtained are compared to the predictions
of two models widely used in applications for astrophysical network calculations with an
emphasis on a possible parity dependence of nuclear level densities.

1. Introduction

Level densities play a crucial role in numerous studies. One of the most prominent
examples are astrophysical network calculations. They commonly use two models. One
of them is the back-shifted Fermi gas (BSFG) model [1,2], i.e. a semiempirical approach
taking into account shell closures and pairing effects. Besides, level densities obtained
with a microscopic statistical model [3] are often applied. These calculations are per-
formed using the deformed Hartree-Fock-BCS (HF-BCS) predictions of the ground-state
structure properties and include a consistent treatment of the shell effects, pairing cor-
relations, deformation effects and collective excitations. Although these models provide
comparable degrees of accuracy there are still discrepancies affecting the results of the
network calculations. Thus, one of our goals is to test them by high-resolution studies
of giant resonances. Another aspect is a possible parity dependence of level densities
in the excitation energy region of giant resonances. So far, astrophysical network cal-
culations neglect it [4]. On the other hand, Monte-Carlo shell model calculations [5,6],
although questioned by recent experiments [7], predict a significant parity dependence in
the pf -shell mass region which is of prime interest in astrophysics. Our data with a strong
sensitivity to modes with a specific spin and parity enable us to check this issue.
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2. Fluctuation Analysis

Usually the mean level spacing in the region of giant resonances is smaller than the
achieved energy resolution. Thus, fluctuations result from the high density of non-resolved
states and their incoherent overlap. In this regime level spacings can be determined by
means of a fluctuation analysis. Its detailed description and some examples can be found
elsewhere [8–11]. For the lack of space we give a short introduction only.

This technique is restricted to the energy range where the mean level width is smaller
than the average distance between levels 〈D〉 and is based on two assumptions. In a
highly excited nucleus with strong configuration mixing of levels with the same spin and
parity, the spacing between adjacent states is given by the Wigner distribution [12], and
the transition strengths obey a Porter–Thomas distribution [13]. The analysis is carried
out as follows. The measured spectrum, with the background subtracted, is smoothed by
convolution with a Gaussian function whose width is large compared to the experimental
resolution σ. To reduce uncertainties arising from the finite statistics the spectrum is also
folded with a Gaussian function with a width smaller than σ. Dividing the folded spectra
by each other leads to a stationary spectrum d (Ex) whose individual points lie around
〈d (Ex)〉 = 1. The main idea is to take advantage of the autocorrelation function of d (Ex)
in order to obtain a measure of the cross-section fluctuations with respect to a stationary
mean value. According to [8], this function is connected to 〈D〉 by

C(ε) − 1 =
α · 〈D〉
2σ

√
π

× f (ε, σ) , (1)

where f (ε, σ) denotes a function depending on properties of the experimental spectrum
only. The value α is a sum of the normalized variances of the assumed spacing and
transition width distributions. For a spectrum containing states of several spins and
parities its exact calculation already requires a knowledge of corresponding level densities.
Thus, high selectivity is needed to extract 〈D〉 in a model-independent way and minimize
the systematic error. Another requirement is obvious from Eq. (1). If σ is too large
the autocorrelation function is strongly dumped leading to a significant uncertainty in
the mean level spacing. Therefore, high resolution is also of great importance for the
fluctuation analysis.

3. Experiments

Good selectivity is achieved by proper kinematics. For the present studies we uti-
lize hadron scattering at very forward angles (including zero degrees) and intermediate
energies. Another opportunity is provided by 180◦ electron scattering at low momen-
tum transfers. High energy resolution can be achieved by lateral and angular dispersion
matching, most effectively realized by the so-called ”faint beam” method [14].

A spectrum of the 90Zr(3He,t)90Nb reaction [15] is shown in Fig. 1(a). At E0 = 140
MeV/u and Θ ≈ 0◦ the selectivity to Gamow-Teller (GT) transitions is significantly
enhanced. Owing to the good resolution ΔE = 50 keV (FWHM) the fine structure of the
GT resonance is clearly observed and one can extract level densities of 1+ states in 90Nb.

Electron scattering at 180◦ is a versatile tool to study transverse, first of all magnetic,
excitations. Selectivity to a certain mode can be increased by varying the momentum
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Figure 1. (a) Spectra of the 90Zr(3He,t)90Nb reaction at E0 = 140 MeV/u. (b) Spectra
of the 90Zr(e,e′) reaction at Θ = 180◦. (c) Spectra of the 90Zr(p,p′) reaction at E0 =
200 MeV.

transfer. Thus, E0 ≈ 66 MeV corresponds to the maximum of the M2 form factor in 90Zr
and 2− states prevail in the middle spectrum of Fig. 1(b) taken from [16]. A resolution of
ΔE � 60 keV (FWHM) also reveals the fine structure of the resonance and allows for
an extraction of their densities.

In order to test the parity dependence, hadron scattering can be used for Jπ = 2+

states. Figure 1(c) shows spectra of the 90Zr(p,p′) reaction at E0200 MeV[17]. At Θ = 9◦

excitation of the isoscalar giant quadrupole resonance is dominant. Pronounced fine
structure is visible and level densities of 2+ states can be unraveled from the data.

The same data set exists for A = 58. For 1+ states 58Ni(3He,t)58Cu spectra are avail-
able [18]. High-resolution electron and proton scattering experiments [17,19,20] also stud-
ied M2 and isoscalar giant quadrupole resonances in 58Ni, respectively.

4. Discrete Wavelet Transform and Background Determination

For background determination a wavelet analysis is used. This technique permits a
separation of generic and nongeneric features of the spectrum and the extraction of infor-
mation in the presence of noise [21]. By folding the original spectrum σ(E) with a wavelet
function Ψ, wavelet coefficients

C(Ex, δE) =
1√
δE

∫
σ(E)Ψ(

Ex − E

δE
)dE (2)
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Figure 2. Discrete wavelet transform decomposition of the 90Zr(3He,t)90Nb spectrum of
Fig. 1(a). The dotted line (A8) shows the largest physical scale in the spectrum. The
dashed line in the total spectrum represents the deduced background.

are obtained. The parameters (excitation energy Ex and scale δE) can be varied con-
tinuously or in discrete steps δE = 2j, Ex = kδE, j, k = 1, 2, 3... , corresponding to
continuous or discrete (DWT) wavelet transform, respectively. The latter offers the pos-
sibility to reassemble the original signal from the wavelet coefficients. Another useful
feature is linked to the number of vanishing moments. If the condition
∫

EnΨ (E) dE = 0, n = 0, 1...m (3)

is satisfied, the function Ψ is said to have m + 1 vanishing moments. Therefore, any
non-resonant background in the spectrum does not contribute to the wavelet coefficients
if it can be approximated by a polynomial function of the mth order.

A nearly model-independent background definition is based on a scheme known as two-
channel subband codding in signal processing. It can be interpreted as the application of
lowpass (large δE) and highpass (small δE) filters on the spectrum separating it into a so-
called approximation (A) and detail (D). Starting at the smallest scale one gets σ(E) =
A1 + D1. Since D1 is obtained from the wavelet coefficients, non-resonant background is
found in the approximation. In the second step A1 is decomposed into A2 and D2 and so
forth. An example of such a decomposition is given in Fig. 2. The largest physical scale,
viz. the total width of the GTR in 90Nb, is reproduced by A8. Thus, A9 matches the
shape of the background present in the spectrum. The analysis is repeated independently
for various angle bins. Since the background shows a different angular dependence than
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Figure 3. (a) Level density for 1+ states in 90Nb obtained from the 90Zr(3He,t)90Nb
measurement. (b) Level density for J = 2 states in 90Zr obtained from the 90Zr(e,e′) and
90Zr(p,p′) measurements. (c) Same as (a) but for 1+ states in 58Cu obtained from the
58Ni(3He,t)58Cu measurement. (d) Same as (b) but for J = 2 states in 58Ni obtained
from the 58Ni(e,e′) and 58Ni(p,p′) measurements. Solid lines: BSFG parametrization [1].
Dashed lines: BSFG parametrization [2]. Dashed-dotted lines: HF-BCS calculations [3].

the GT strength, the requirement of a constant level density in all spectra confirms the
validity of the chosen background shape.

5. Results and Test of the Models

Figure 3(a) shows level densities for 1+ states in 90Nb along with the model predictions.
Assuming no parity dependence, one half of the theoretical J = 1 value is taken to compare
to the experimental results. While HF-BCS calculations yield a correct energy dependence
but are about a factor of two too low, the BSFG parametrizations reveal good agreement
with the data. Thus, there is no signature for a parity dependence. Figure 3(b) provides
a direct test of this issue using the data on J = 2 states in 90Zr. The experimental data
points obviously exclude any parity dependence. Similar to the J = 1 case in 90Nb, the
HF-BCS model underestimates the observed level densities by a factor of two, reproducing,
however, their energy dependence, while back-shifted Fermi gas curves are in accordance
with them.

Level densities for 1+ states in 58Cu are plotted in Fig. 3(c). Strong deviations from
the model predictions, both in absolute values, and in the slope, could be a signature
for a parity dependence. Indeed, recent calculations for pf -shell nuclei [4,6] show that
the investigated energy range corresponds to the transition from low excitation energies
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where a single parity dominates to the region where the two densities are equal. On
the other hand, these calculations deal with total level densities while spin-projected ones
may have different behaviors due to alternating gaps between the last occupied and empty
orbits. A direct test of a parity dependence for A = 58 is presented in Fig. 3(d) and does
not disclose any differences for 2+ and 2− states. Also, analogously to the case of 90Zr,
measurements reveal a reasonable agreement between theory and experiment. Thus, even
for A = 58 a parity dependence of nuclear level densities is still questionable.

6. Summary

In summary, the sensitivity of the studied reactions along with the excellent energy
resolution enables an extraction of level densities of 1+, 2+ and 2− states in A = 90 and
A = 58 nuclei by means of a fluctuation analysis. An essential extension of the method
is presented by a DWT analysis which provides a nearly model-independent method for
the background determination. The data obtained give no signature for a possible parity
dependence in A = 90. For A = 58 this question is still open. Application of the
fluctuation analysis to other nuclei and modes is in progress.
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