Measurements and searches with Decay-At-Rest neutrinos produced at J-PARC MLF

Takasumi Maruyama (KEK)

Introduction

- Neutrinos produced by Decay-At-Rest (of π, μ, K) are useful tool for the nuclear / particle physics.
 - O(10) MeV neutrinos are useful to understand the super-nova physics, for example.
 - O(100) MeV neutrinos are useful to understand the systematic uncertainties of neutrino interactions which are used for the neutrino oscillation measurement.
 - Also useful to search for the short baseline neutrino oscillations.
- They have well known energy due to 0 momentum of parent particles.
- They have well known 1/r² dependence of neutrino fluxes due to isotopic decays.
- \square Minus charge parent particles such as $\pi-$ are absorbed by nucleus.
- one disadvantage is the small neutrino flux compared to the horn focused beam).

World DAR sources

Facility	country	Beam	Beam power	Beam energy	Time structure	target
ISIS	UK	Proton Syncrotron (PS)	0.16 MW (@ KARMEN)	0.8 MeV	50Hz (2 bunches)	Ta-D ₂ O
SNS	US	PS	~1.7 MW	~1.3 GeV	60Hz (1 bunch)	Liquid Hg
MLF(J-PARC)	Japan	PS	1.0 MW	3.0 GeV	25Hz (2)	Liquid Hg
CSNS	China	PS	0.1 MW	1.6 GeV	25Hz (2)	Ta cladded W
ESS	Europe (Sweden)	Linac	5.0 MW	2.0 GeV		W (Tungsten)
Los Alamos	US	Linac + dump	0.64 MW	0.8 GeV		H20
Iso-DAR	?	cyclotron + dump				

- → Generally, facilities for neutron (not neutrino) spallation source also give the good DAR neutrinos.
- → DARs using other accelerators are also available, however duty factor of the Linac case is much worse than PS case. (typically more than 100)
- \rightarrow SNS has a few results on cross sections of the coherent neutrino scattering.

Example of application : SuperNova(SN)v and DARv

Neutrinos from μ -DAR have a few tens of MeV ;

-> similar range with SNv

-> Measurements of those DARv can also be useful for detection and evolution study of SNv

Example: Measurements of v-A cross section

Reaction	Neutrino Source	Accuracy
$^{12}C(v_e,e-)^{12}N_{gs}$	Accelerator DAR v	~10%
¹² C(v _e ,e-) ¹² N [*]	Accelerator DAR v	~15%
¹² C(v,v') ¹² C(1+1)	Accelerator DAR v	~20%
¹² C(v _e ,e-) ¹³ N	Accelerator DAR v	76%
⁵⁶ Fe(v _e ,e-) ⁵⁶ Co	Accelerator DAR v	37%
⁷¹ Ga(v _e ,e-) ⁷¹ Ge	RI (⁵¹ Cr)	11%
¹²⁷ I(v _e ,e-) ¹²⁷ Xe	Accelerator DAR v	33%

As seen here, DAR v plays important role obviously.

For the SN physics, good measurements of "various v-A interactions" are crucial. -> There have been measurements for various v-A cross-section -> still uncertainties are large

J-PARC neutrino experiments using Decay-At-Rest Neutrinos

- → Generally, facilities for neutron spallation source also give the good DAR neutrinos.
- → J-PARC Material and Life science Facility (MLF, Japan) is one of the best facility to get such neutrinos.
- → Sterile Neutrino Search (JSNS², JSNS²-II)
- → Pb-v cross section measurement (one test experiment)
- → Some coherent scattering measurements.. (under proposals)

NS² / JSNS²-II Induction (58 collaborator

Japanese institutions (25 membe Korean institutions (24 members) UK institution (1 member) US institutions (5 members) Chinese institution (3 members)

Spokesperson: T.Maruyama (KEK) Co-spokesperson: S.B.Kim (Sun Yat-:

JSNS² and JSNS²-II : Neutrino experiments using DAR

JSNS²-II

10-2

(JSNS²):1 MW x 3 y(near only)

- Commissioning (2020) and four long term physics runs (2023-2024)
- Continue the physics runs
- Analyses are on-going.

$(JSNS^2-II):1 MW \times 5 y$

- Proposed in 2020
 - New far detector: fiducial 32 tonnes and 48 m location.
 - Good sensitivity on low Δm^2 region.
 - Two detectors with two different baselines -> a solid conclusion on LSND anomaly.
 - J-PARC/KEK granted the stage-2 approval in 2022.
 - Construction is almost completed. (now LS was already filled in this summer.)
 - Data taking coming soon!

Beam power and Proton-On-Target (POT) (2020~2024) for JSNS²

□Beam power

Achieved the designed values. (1.0MW @ RCS)
 Also 0.95 MW at MLF during 2024 April - May.

D POT

- Total 4.85 x 10²² POT has been accumulated
- 42.5% of approved POT for JSNS² (with single detector)

Motivation to measure ${}^{12}C(v_e,e^{-}){}^{12}N_{g.s.}$ (CNgs) reaction

 $\hfill\square$ The number of μ^+ can be estimated by CNgs.

- parent particle: $\mu^+ \rightarrow e^+ + \nu_e + \overline{\nu}_{\mu}$

CNgs Sterile search

- **D** No π/K production measurements on Hg+3GeV proton so far \rightarrow in-situ measurement
- **C**Ngs: ${}^{12}C(\nu_e, e^-){}^{12}N_{g.s.}$

$${}^{12}C + \nu_e \rightarrow e + {}^{12}N_{g.s.} \implies {}^{12}N_{g.s.} \rightarrow {}^{12}C + \nu_e + e + ifetime: ~16 ms, Emax=16.8 MeV$$

- prompt: electron, delayed: positron
- reaction of ν_e (neutrino)

- If production rates of π are measured externally, we can also measure the cross section of this reaction
- From energy spectra, we could search for neutrino oscillations from CNgs

Selection criteria for CNgs

CNgs : selected data

2021-2022 data
2.20 x 10²² POT

- Clear excess is seen in signal region.
 - □ 79 events are observed.
 - □ 42.2+-4.8 (BKG, including syst.)
 - □ p-value: 2.9 x 10⁻⁷
 - More than 6 sigmas

Variables

Interpretation to neutrino flux

Interpretation to pions/proton and plan

 \Box (0.48+-0.14) μ^+ /proton from this measurement.

- Much higher production rates compared to ISIS / LAMPH due to proton energy and target.
- □ ISIS (KARMEN) : 0.0448+-0.0030 π^+ / proton
- \blacksquare LAMPF (Los Alamos) : 0.084-0.090 μ^+ / proton
- Once the production rate measurements of π⁺ production (between 3 GeV p and Hg) was done, a precise cross section measurement of CNgs can be done.
 - □ We have more than 10 times POT in JSNS² and JSNS²-II.
 - 2 times data compared to this results in our hand already.
 Additional POTs (6.7 times of current one) are approved by KEK/J-PARC.
- (Maybe we can also feed back to the electron neutrino disappearance oscillation)

A nu-A interaction also can be measured by putting **material block** at the center of the detector.

Just private consideration now

JSNS² can be v-A measurement factory ?

Cross section measurements using Mono-energetic neutrinos (~236 MeV)

3 GeV (of proton) is very close to open the production channels of Kaons. (MLF provides a unique opportunity)

arXiv:2409.01383 (also submitted to PRL)

2024/9/20

Erice 2024

С

18

KDAR (Kaon Decay-At-Rest) v

- Mono-energetic muon neutrinos from Kµ2 (decay-at-rest) gives a rare opportunity to investigate the quasi-elastic interactions and their regarding effects from nucleus. (e.g.: Fermi gas model, FSI, etc..)
- In neutrino experiment, the horn focused beam provides wide neutrino energy.

Selection / background

KDAR results

- Energy unfolding (removal of detector effects) was done by MC. (true E vs observed E matrix)
 - Iterative Bayes (D'Agostini) method was used.
 - Matrix on True Evis vs reconstructed energy was made by KDAR MC (top-right).
 - Shape only measurement. (K production rate is unknown in Hg-p (3GeV).
- The largest systematic uncertainty is coming from generator dependence.
 - Balance of muon / proton energy gives large difference. (proton gives different response from MIP like particles)

Summary

Decay-At-Rest neutrinos are useful tool for various physics.

- Cross section measurements of neutrinos with O(10 MeV) and O(100 MeV) energies.
- □ Search for neutrino oscillation with short baseline
- Facilities for the neutron spallation source is potentially good DAR v sources at the same time.
 ISIS (UK), SNS (US, ORNL), MLF (Japan, J-PARC), CSNS (China), ESS (Europe), ...
- JSNS² (J-PARC Sterile Neutrino Search at J-PARC Spallation Neutron Source) just began to observe the neutrinos produced by DAR.
- We are taking data. Also a new 48m detector have been built recently. Exciting time continued !!

.

Core collapse of Supernova

MLF mercury target and Intrinsic $\overline{v_e}$ BKG estimation

Target π^- absorb μ^- capturesuppressionx π^-/π^+ LSNDH2O96%88%5x10⁻³×0.13J-PARCHg(+Fe+Be)99%~80%1.7x10⁻³x1.

2024/9/20

We will assume ~ 1.7×10^{-3} Intrinsic background hereafter.

Prompt energy

- Prompt energy for CNgs is determined by energy of ν_e from μ^+ and cross section.

Prompt energy

- Q-value of the ν_e -¹²C reaction is 17.3 MeV.
- Right plot shows the prompt energy from the theoretical formula.

selection criteria

Precise energy and timing calibrations

- We can use n-Gd captured events (~8 MeV) and Michel electrons from μ (~53 MeV)
 - Careful energy calibration can be done for CNgs prompt (20-40 MeV) and delayed (10-18 MeV) events.
- The sources of the systematic uncertainties
 - Time variation, spatial dependence, quenching factor of LS (mainly)
 - □ Scale error is less than 1%.
- Timing of FADC was calibrated by accelerator RF timing. (every 40ms). → negligible error.

Efficiencies with systematic uncertainties

item		efficiency	error $(\%)$	
bkg estimatio (MST vs SS)	n	_	10.7~%	
Energy		2021: 0.255 2022: 0.255	$\begin{array}{c} 2021: \ 4.6 \ \% \\ 2022: \ 5.0 \ \% \end{array}$	
(FADC) Timing	prompt	2021: 0.498 2022: 0.468	$\begin{array}{c} 2021: \ 0.4 \ \% \\ 2021: \ 0.2 \ \% \end{array}$	
(IADO) Thining	Δ_t	2021: 0.5180 2022: 0.7805	2021: 0.08 % 2022: 0.05 %	
muon veto		2021: 0.885 2022: 0.901	$\begin{array}{c} 2021 \\ 0.4 \ \% \\ 2022 \\ 0.3 \ \% \end{array}$	
Michel electron veto	prompt delayed	0.9930 0.9768	$\begin{array}{c} 0.01 \ \% \\ 0.03 \ \% \end{array}$	
$\Delta_{\rm VTX}$	•	0.881	0.8~%	
fiducial		- (related to the number of ^{12}C)	8 %	
item		value and error		
The number of	$^{12}\mathrm{C}$	$(4.68 \pm 0.37) \times 10^{29}$ (PSD fiducial volume)		
Cross section	1	$(9.1 \pm 0.7) \times 10^{-42} \text{ cm}^2$		

Total selection eff. 2021: 4.97+-0.24% 2022: 7.17+-0.37%

Average: 5.88+-0.21%