P- and CP-odd effects in heavy ion collisions

Harmen Warringa, Goethe Universität, Frankfurt

Collaborators: Kenji Fukushima, Dmitri Kharzeev and Larry McLerran.

Fukushima, Kharzeev & HJW, arXiv:0912.961
Observation I:

Topological charge fluctuations present in QCD and hence in heavy ion collisions

Topological charge of gauge field: \[Q = \frac{g^2}{32\pi^2} \int d^4 x \quad F_{\mu\nu}^a \tilde{F}_{\mu\nu}^a = \Delta N_{\text{CS}} \]

Nonzero Q contributes to path-integral, and hence to physical quantities.

The nontrivial vacuum structure of a SU(N) gauge theory

Energy

\[N_{\text{CS}} = -3 \quad -2 \quad -1 \quad 0 \quad 1 \quad 2 \quad 3 \]

Instanton with Q = 1

Sphaleron with Q = -1

Belavin et. al. ('75), Jackiw & Rebbi ('76), Callan et al. ('76), 't Hooft ('76), Klinkhamer & Manton ('84),
Observation I:

Topological charge fluctuations present in QCD and hence in heavy ion collisions

Topological charge of gauge field: \[Q = \frac{g^2}{32\pi^2} \int d^4 x \, F^a_{\mu \nu} \tilde{F}^{a\mu \nu} = \Delta N_{\text{CS}} \]

Nonzero Q contributes to path-integral, and hence to physical quantities.

\[\langle Q^2 \rangle \neq 0 \]
Mass of eta-prime meson. ('t Hooft, Witten, Veneziano)
\[\frac{2N_f}{f^2 \pi V_4} \langle Q^2 \rangle = m_{\eta'}^2 + m_{\eta}^2 - 2m_K^2 \]

\[\langle Q \rangle = 0 \]
Neutron electric dipole moment (Baker et.al. ('06))
\[|\theta| < 10^{-10} \]
No P- and CP-violation in QCD!
But Q can induce P- and CP-odd effects.
Observation II:
Ultra high-energy heavy ion collisions = Ultra strong (EM) magnetic fields

Gold – Gold collision: two currents which carry 79 charges each
Observation II:
Ultra high-energy heavy ion collisions
= Ultra strong (EM) magnetic fields

\[eB(\tau = 0.2 \text{ fm/c}) \approx 10^3 \sim 10^4 \text{ MeV}^2 \approx 10^{17} \text{ G} \]

See also Minakata and Müller ('96)
Outline

To explain you that

Topological charge + Magnetic Field =

$\langle Q \rangle = 0$

$\langle Q^2 \rangle \neq 0$

Charge separation

This can potentially be observed in experiment by charge correlation study [Voloshin ('04)]
Topological charge induces chirality

This is the P- and CP-odd effect

Chirality: difference between number of quarks + antiquarks with right- and left-handed helicity

$$N_5 = \# q_R + \# \bar{q}_R - \# q_L - \# \bar{q}_L$$

Axial anomaly: topological charge induces chirality

Steinberger ('49), Schwinger ('51), Alder ('69), Bell and Jackiw ('69)

$$\partial_\mu \langle \bar{\psi} \gamma^\mu \gamma^5 \psi \rangle_A = 2 m \langle \bar{\psi} i \gamma^5 \psi \rangle_A - 2 \frac{g^2}{32 \pi^2} F^{a}_{\mu \nu} \tilde{F}^{\mu \nu a}$$

Change in chirality over time for each flavor

$$\Delta N_5 = -2Q$$
Magnetic field induces polarization

Magnetic field aligns spins, depending on electric charge

No Magnetic Field: No polarization

Magnetic field: Polarization

The momenta of the quarks align along the magnetic field

Quark with R-helicity obtains momentum opposite to one with L-helicity

Hence magnetic field distinguishes between right and left
Topological Charge + Magnetic field = Chirality + Polarization =

\[Q = -1 \]

\[\Delta N_5 = 2 \]

Q < -1: Positively charged particles move parallel to magnetic field, negatively charged antiparallel

... = Electromagnetic Current

Chiral Magnetic Effect: Kharzeev, McLerran & HJW ('07)
Topological Charge + Magnetic field = Chirality + Polarization =

Size of Current: \[J = \int d^3 x \langle \bar{\psi} \gamma^3 \psi \rangle = -2Q \sum_f |q_f| \]

Valid for full polarization, what about smaller fields?

Chiral Magnetic Effect: Kharzeev, McLerran & HJW ('08)
Nonzero Chirality: Nonzero chiral chemical potential μ_5

$$H \rightarrow H - \mu_5 \int d^3 x \bar{\psi} \gamma^0 \gamma^5 \psi$$

Compute induced current in magnetic field
Magnitude of the induced current

Alekseev, Cheianov, Fröhlich ('98), Fukushima, Kharzeev and HJW ('08)

1. Energy conservation
 \[j = \frac{N_c \sum_f q_f^2}{2 \pi^2} \mu_5 B \]
 Nielsen and Ninomiya ('83)

2. Density in Lowest Landau Level
 \[j = \frac{N_c \sum_f q_f^2}{2 \pi^2} \mu_5 B \]
 See also Metlitsky and Zhitnitsky ('06)

3. Chern-Simons term
 \[j = \frac{N_c \sum_f q_f^2}{2 \pi^2} \mu_5 B \]

4. Thermodynamic potential
 \[j = \frac{N_c \sum_f q_f^2}{2 \pi^2} \mu_5 B \]

5. Linear response
 \[j = \frac{N_c \sum_f q_f^2}{2 \pi^2} \mu_5 B \]

6. Propagator in magnetic field
 \[j = \frac{N_c \sum_f q_f^2}{2 \pi^2} \mu_5 B \]

Result follows from EM axial anomaly. Therefore exact and independent of coupling strength. Anomaly induced currents: c.f. Goldstone and Wilczek ('81)
Magnitude of the induced current

\[j = \frac{N_c \sum_f q_f^2}{2 \pi^2} \mu_5 B \]

But what is \(\mu_5 \)?

\[n_5 = \frac{\partial \Omega}{\partial \mu_5} \]

\[N_5 = -2Q \]

Computed at high T (lo. pert. QCD)

Current as a function of magnetic field

\[\frac{j}{eN} \left| \frac{J}{q N_5^0} \right|_5 \]

\(T = 0 \)

\(T = 2n_5^{1/3} \)

Strong fields:

\[J = -2Q \sum_f |q_f| \]

\(\rightarrow \)

\[J = -\frac{3}{\pi^2} \frac{Q}{T^2 + \mu^2 / \pi^2} B \sum_f q_f^2 \]

\(Q = -1 \)

\(\Delta N_s = 2 \)
Chiral Magnetic Effect in time-dep. field

Kharzeev and HJW ('09)

\[\vec{j} = \sigma_E \vec{E} \quad \sigma_E = \text{electrical conductivity} \]

\[\vec{j} = \sigma_\chi \vec{B} \quad \sigma_\chi = \text{chiral magnetic conductivity} \]

Compute induced current using linear response

\[\langle j^\mu(x) \rangle = \int d^4x' \, \Pi_R^{\mu\nu}(x-x') \, A_\mu(x') + o(A_\mu^2) \]

\[\sigma_\chi(\omega) = \lim_{p' \to 0} \frac{1}{2i \, p^i} \epsilon^{ijk} \, \tilde{\Pi}_R^{jk}(\omega, p) \]

Leading order \(\tilde{\Pi}_R^{jk} \)

\[\mu_5, T \]

Off diagonal, antisymmetric part of photon polarization tensor. Nonzero with \(\mu_5 \)
CM conductivity: weak vs. strong coupling

Displayed: normalized conductivity as a function of frequency.

\[\sigma_0 = \frac{N_c \sum_f q_f^2}{2\pi^2} \mu_s \]

Weak coupling (1 loop pert. QCD)

Strong coupling (holographic model of QCD)

Kharzeev and HJW ('09)

Ho-Ung Yee ('09)

Real part: in-phase response, imaginary part: 90 degrees out of phase response
Chiral Magnetic Effect in time-dep. field

\[j(t) = \int_0^\infty \frac{d\omega}{\pi} \left[\sigma'_x(\omega) \cos(\omega t) + \sigma''_x(\omega) \sin(\omega t) \right] \tilde{B}(\omega) \]

Current: const. chirality + time dep. mag. field

\[B(t) = \frac{B_0}{\left[1 + (t/\tau)^2\right]^{3/2}} \]

Red: current in slowly changing fields, adiabatic appr. = ok

Blue and green curves, faster changing mag field, but still induced current.

Even stronger response in strongly coupled regime.

Conclusion: also sizable current in fast changing magnetic field
Chiral Magnetic Effect: other methods

Lattice QCD:
Buividovich, Chernodub, Luschevskaya and Polikarpov ('09)
Abramczyk, Blum, Petropoulos and Zhou ('09)

AdS/CFT:
H.U. Yee ('09)
Rebhan, Schmitt and Stricker ('09)

Instanton:
S. Nam ('09)
Induced current in color-flux tube

By B_z, F_z Flux tube generates chirality dynamically

Perpendicular magnetic field to color flux tube

Flux tubes naturally arise in glasma

Krasnitz et al. ('02), Lappi & McLerran, ('06)
P- and CP-odd effects in Heavy Ion Collisions

Topological charge Q fluctuates anywhere in the QGP

Measure: variances = nonzero

Medium causes screening

Variance of charge difference between upper and lower side reaction plane:

$$\langle \Delta_{\pm}^2 \rangle = 2 \int_{t_i}^{t_f} dt \int_V d^3 x \Gamma \left[\xi_+^2(x_\perp) + \xi_-^2(x_\perp) \right] \left(\sum_f \frac{3 q_f^2 e B}{\pi^2 T^2} \right)$$

Time & Volume integral
Overlap region
Rate of creation
Topological charge
Screening Functions
Square of Change
Charge difference

Estimate magnitude relative asymmetry for large impact parameter 10^{-4} with 1-2 orders of magnitude uncertainty.
Experimental observables

Correlations in azimuthal angle of charged particles

\[
a_{++} = \left\langle \frac{1}{N_+ N_+} \sum_{i, j=1}^{N_+, N_+} \cos (\phi_i + \phi_j - 2 \Psi_{RP}) \right\rangle
\]

\[
= \left\langle \frac{1}{N_+^2} \left[\sum_{i=1}^{N_+} \cos (\phi_i - \Psi_{RP}) \right]^2 \right\rangle
\]

\[
- \left\langle \frac{1}{N_+^2} \left[\sum_{i=1}^{N_+} \sin (\phi_i - \Psi_{RP}) \right]^2 \right\rangle
\]

Charge fluctuations in x-direction

Minus fluctuations in y direction

Average is over many similar minimum bias events

Take symmetric interval around zero rapidity

Analysis (and problems) similar to elliptic flow.
See also talks by Jean-Yves Ollitrault and Raimond Snellings

STAR detector
Full azimuthal coverage
Charge correlations at RHIC

Au-Au and Cu-Cu @ 200 GeV

min. bias, $|\eta|<1.0, \ 0.15<p_t<2\text{GeV/c}$

Strong charge correlations observed at RHIC
is it due to P- and CP-odd effects or something else?

See also B. Müller, Physics 2, 104 (2009)

Data cannot be explained by

HIJING
HIJING+v2,
MeVSIM,
UrQMD
STAR data due to P- and CP-odd effects?

Deconfinement necessary to separate quarks
Chiral Symmetry restoration necessary to induce chirality

Hence no Chiral Magnetic Effect at low energies. Test energy scan. Also test at LHC

Magnetic field the correlators proportional to Z^2.

Test: compare collisions with same A and different Z, isobars
Argon-40 ($Z=18$), vs. Calcium-40 ($Z=20$), 23% increase in signal

More quantitative phenomenology really necessary
More data also possible: individual charged particle correlations

Think of other explanations
Cluster model of F. Wang ('09), ???
Conclusions: P- and CP-odd effects in heavy ion collisions

\[\langle Q^2 \rangle \neq 0 \]

\[\langle N_5^2 \rangle \neq 0 \]

\[\langle J_z^2 \rangle > \langle J_{x,y}^2 \rangle \]

\[\langle \cos(\phi_i^\pm + \phi_j^\pm, \mp - 2 \Psi_{RP}) \rangle \neq 0 \]

\[\langle \Delta_{\pm}^2 \rangle > 0, \quad \langle \Delta + \Delta_{-} \rangle < 0 \]
RIKEN-BNL-CATHIE Workshop on

P- and CP-odd Effects in Hot and Dense Matter

Brookhaven National Laboratory,
Long Island, New York, USA
April 26-30, 2010

P- and CP-odd effects in:
nuclear, particle, condensed
matter physics and cosmology

Organizing Committee

• Kenji Fukushima (Kyoto Univ)
• Dmitri Kharzeev (BNL)
• Harmen Warringa (Johann Wolfgang Goethe-Univ)
• Abhay Deshpande (Stony Brook Univ. / RBRC)
• Sergei Voloshin (Wayne State Univ.)

International Advisory Committee

• J. Bjorken (SLAC)
• H. En'yo (RIKEN)
• M. Gyulassy (Columbia Univ.)
• F. Karsch (BNL & Bielefeld)
• T.D. Lee (Columbia Univ.)
• A. Nakamura (Hiroshima Univ.)
• M. Polikarpov (ITEP)
• K. Rajagopal (MIT)
• V. Rubakov (INR)
• J. Sandweiss (Yale Univ.)
• E. Shuryak (Stony Brook Univ.)
• A. Tsvelik (BNL)
• N. Xu (BNL)
• V. Zakharov (ITEP)

Additional information and registration at
http://www.bnl.gov/riken/hdm/

Registration deadline:
March 1, 2010

Supported by RIKEN-BNL Center, Brookhaven National Laboratory
and Stony Brook University (Office of Vice-President for BNL Affairs)