Towards an effective relativistic density functional for dense matter in supernovae and compact stars

Stefan Typel
GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt
Nuclear Astrophysics Virtual Institute

Astrophysics and Nuclear Structure
International Workshop XLI on Gross Properties of Nuclei and Nuclear Excitations
January 26 – February 1, 2013
Hirschegg, Kleinwalsertal, Austria
Outline

• Introduction
 Astrophysics and Equation of State, Nuclear and Stellar Matter, Constraints, Correlations, Relativistic Density Functional

• Nuclear Correlations in Matter
 Generalized Relativistic Density Functional, Light and Heavy Clusters, Low-Density Limit, Scattering Correlations, Neutron Matter

• Coulomb Correlations in Matter
 Coulomb Interaction in Matter, One-Component Plasma, Gas/Liquid Phase, Solid Phase

• Summary
Introduction
Astrophysics and Equation of State

- essential ingredient in astrophysical model calculations:

 Equation(s) of State (EoS) of dense matter

 ⇒ dynamical evolution of **supernovae**
 ⇒ static properties of **neutron stars**
 ⇒ conditions for **nucleosynthesis**
 ⇒ energetics, **chemical composition**, transport properties, . . .
Astrophysics and Equation of State

- essential ingredient in astrophysical model calculations:

 Equation(s) of State (EoS) of dense matter

 ⇒ dynamical evolution of **supernovae**

 ⇒ static properties of **neutron stars**

 ⇒ conditions for **nucleosynthesis**

 ⇒ energetics, **chemical composition**, transport properties, . . .

- **timescale of reactions ≪ timescale of system evolution**

 ⇒ **equilibrium** (thermal, chemical, . . .)

 ⇒ application of **EoS** reasonable
EoS Parameters

standard choice:

- **density**:
 \[10^{-9} \lesssim \frac{\rho}{\rho_{\text{sat}}} \lesssim 10\]
 with nuclear saturation density
 \[\rho_{\text{sat}} \approx 2.5 \cdot 10^{14} \text{ g/cm}^3\]
 \[(n_{\text{sat}} = \frac{\rho_{\text{sat}}}{m_n} \approx 0.15 \text{ fm}^{-3})\]

- **temperature**:
 \[0 \text{ MeV} \leq k_B T \lesssim 50 \text{ MeV}\]
 \[(\approx 5.8 \cdot 10^{11} \text{ K})\]

- **electron fraction**:
 \[0 \leq Y_e \lesssim 0.6\]

sometimes other choices
more appropriate:
e.g. crust of neutron stars
(density → pressure)
EoS Constituents

most relevant particles: (at low temperatures and not too high densities)

- neutrons, protons
- nuclei
- electrons, (muons) (charge neutrality!)
- neutrinos (often not in equilibrium, treated independently of EoS)

more particles under extreme conditions: e.g. high densities, high temperatures (hyperons, mesons, . . .)
EoS for Astrophysical Applications

- many EoS developed in the past:
 from simple parametizations to sophisticated models
- many investigations of detailed aspects:
 often restricted to particular conditions
⇒ only few realistic global EoS used in astrophysical simulations
EoS for Astrophysical Applications

• many EoS developed in the past:
 from simple parametizations to sophisticated models
• many investigations of detailed aspects:
 often restricted to particular conditions
⇒ only few realistic global EoS used in astrophysical simulations

• challenge:
 covering of full parameter space in a single model
⇒ combination of different features/approaches required
EoS for Astrophysical Applications

- many EoS developed in the past:
 from simple parametizations to sophisticated models
- many investigations of detailed aspects:
 often restricted to particular conditions
 ⇒ only few realistic global EoS used in astrophysical simulations

- challenge:
 covering of full parameter space in a single model
 ⇒ combination of different features/approaches required

- here:
 - effect of correlations
 ⇒ formation and dissolution of clusters
 ⇒ phase transition: gas/liquid ↔ solid
EoS for Astrophysical Applications

- many EoS developed in the past:
 from simple parametizations to sophisticated models
- many investigations of detailed aspects:
 often restricted to particular conditions
 ⇒ only few realistic global EoS used in astrophysical simulations

- challenge:
 covering of full parameter space in a single model
 ⇒ combination of different features/approaches required

- here:
 - effect of correlations
 ⇒ formation and dissolution of clusters
 ⇒ phase transition: gas/liquid ↔ solid

- important distinction:
 nuclear matter ↔ stellar matter
 ⇒ very different systems
Nuclear Matter

- only strongly interacting particles
- no electromagnetic interaction, no charge neutrality
Nuclear Matter

- only strongly interacting particles
- no electromagnetic interaction, no charge neutrality
- many-body correlations due to short-range nuclear interaction
 ⇒ clustering ⇒ liquid-gas phase transition in thermodynamic limit
 ⇒ balance attraction ↔ repulsion ⇒ feature of saturation
- characteristic nuclear matter parameters ρ_{sat}, E_{sat}/A, K, J, L, ...
Nuclear Matter

- only strongly interacting particles
- no electromagnetic interaction, no charge neutrality
- many-body correlations due to short-range nuclear interaction
 ⇒ clustering ⇒ liquid-gas phase transition in thermodynamic limit
 ⇒ balance attraction ↔ repulsion ⇒ feature of saturation
- characteristic nuclear matter parameters ρ_{sat}, E_{sat}/A, K, J, L, . . .

\begin{itemize}
 \item “non-congruent” phase transition
\end{itemize}
Stellar Matter

- both hadrons and leptons
- strong and electromagnetic interaction
- condition: charge neutrality
Stellar Matter

- both hadrons and leptons
- strong and electromagnetic interaction
- condition: charge neutrality
- many-body correlations due to short-range and long-range interactions ⇒
 - formation of inhomogeneous matter and finite-size structures
 - clustering ⇒ new particle species (nuclei) ⇒ change of chemical composition
 - lattice formation ⇒ phase transition: liquid/gas ↔ solid
 - “pasta phases”
 - modification of thermodynamic properties
Stellar Matter

- both hadrons and leptons
- strong and electromagnetic interaction
- condition: charge neutrality
- many-body correlations due to short-range and long-range interactions ⇒
 - formation of inhomogeneous matter and finite-size structures
 - clustering ⇒ new particle species (nuclei) ⇒ change of chemical composition
 - lattice formation ⇒ phase transition: liquid/gas ↔ solid
 - “pasta phases”
 - modification of thermodynamic properties

aim:
- consider these (and more) features by extending
 relativistic mean-field (RMF) model for nuclei
- theoretical formulation as “density functional”
 with well-constrained parameters
nuclear physics

- nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, ...)

Constraints

- **nuclear physics**
 - nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, . . .)
 - nuclear matter (saturation properties, characteristic parameters, . . .)

Constraints

- **nuclear physics**
 - nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, . . .)
 - nuclear matter (saturation properties, characteristic parameters, . . .)
 - heavy-ion collisions (flow, particle production, fragment yields, . . .)

- **nuclear physics**
 - nuclei (binding energy, radii, charge formfactor, spin-orbit splittings, . . .)
 - nuclear matter (saturation properties, characteristic parameters, . . .)
 - heavy-ion collisions (flow, particle production, fragment yields, . . .)
- **astrophysics**
 - compact stars (static properties, cooling, . . .)

Correlations

• interacting many-body system
 ⇒ information on correlations in spectral functions
Correlations

- interacting many-body system
 \[\Rightarrow\] information on correlations in spectral functions

- approximation: quasiparticles with self-energies
 - change of particle properties
 - reduction of residual correlations
 - definition of chemical composition?
 - extreme case: uncorrelated quasiparticles
Correlations

- interacting many-body system
 ⇒ information on correlations in **spectral functions**

- approximation: **quasiparticles** with **self-energies**
 - change of particle properties
 - reduction of residual correlations
 - definition of chemical composition?
 - extreme case: uncorrelated quasiparticles

- quasiparticle concept very successful in **nuclear physics**
 ⇒ **phenomenological mean-field models** (e.g. Skyrme, Gogny, relativistic)
 with only nucleons as degrees of freedom
Correlations

- Interacting many-body system
 ⇒ Information on correlations in spectral functions

- Approximation: quasiparticles with self-energies
 - Change of particle properties
 - Reduction of residual correlations
 - Definition of chemical composition?
 - Extreme case: uncorrelated quasiparticles

- Quasiparticle concept very successful in nuclear physics
 ⇒ Phenomenological mean-field models (e.g. Skyrme, Gogny, relativistic)
 - With only nucleons as degrees of freedom

- Low densities: clusters as new degrees of freedom
 ⇒ Benchmark: virial equation of state
 (see e.g. C. J. Horowitz, A. Schwenk, Nucl. Phys. A 776 (2006) 55)
Correlations

- interacting many-body system
 ⇒ information on correlations in spectral functions

- approximation: quasiparticles with self-energies
 - change of particle properties
 - reduction of residual correlations
 - definition of chemical composition?
 - extreme case: uncorrelated quasiparticles

- quasiparticle concept very successful in nuclear physics
 ⇒ phenomenological mean-field models (e.g. Skyrme, Gogny, relativistic)
 with only nucleons as degrees of freedom

- low densities: clusters as new degrees of freedom
 ⇒ benchmark: virial equation of state
 (see e.g. C. J. Horowitz, A. Schwenk, Nucl. Phys. A 776 (2006) 55)

⇒ transition in unified model?
• **constituents**: nucleons $\Rightarrow \psi_i \ (i = n, p)$ Dirac spinors
Relativistic Density Functional

- **constituents**: nucleons $\Rightarrow \psi_i \ (i = n, p)$ Dirac spinors
- **interaction**:
 - strong \Rightarrow meson fields $A_m \ (m = \sigma, \omega, \rho$, convenient auxiliary fields$)$
 - electromagnetic $\Rightarrow A_\gamma$
Relativistic Density Functional

- **constituents:** nucleons $\Rightarrow \psi_i$ ($i = n, p$) Dirac spinors
- **interaction:**
 - strong \Rightarrow meson fields A_m ($m = \sigma, \omega, \rho$, convenient auxiliary fields)
 - electromagnetic $\Rightarrow A_\gamma$
- **energy of nucleus**

 $$E = \int d^3r \varepsilon(\vec{r}) + E_{cm} + E_{pair} + \ldots$$

with energy density functional

$$
\varepsilon = \sum_i w_i \left[t_i + (m_i - \Gamma_i \sigma A_\sigma) n_i^{(s)} + (\Gamma_{i\omega} A_\omega + \Gamma_{i\rho} A_\rho + \Gamma_{i\gamma} A_\gamma) n_i \right] + \frac{1}{2} \left(m_\sigma^2 A_\sigma^2 + \nabla A_\sigma \cdot \nabla A_\sigma - m_\omega^2 A_\omega^2 - \nabla A_\omega \cdot \nabla A_\omega - m_\rho^2 A_\rho^2 - \nabla A_\rho \cdot \nabla A_\rho - \nabla A_\gamma \cdot \nabla A_\gamma \right)
$$

- **single-particle densities** $t_i = \bar{\psi}_i \vec{\gamma} \cdot \vec{p} \psi_i$
 $n_i^{(s)} = \bar{\psi}_i \psi_i$
 $n_i = \bar{\psi}_i \gamma_0 \psi_i$
- **occupation numbers** w_i
Relativistic Density Functional

- **constituents**: nucleons ⇒ ψ_i ($i = n, p$) Dirac spinors
- **interaction**: o strong ⇒ meson fields A_m ($m = \sigma, \omega, \rho$, convenient auxiliary fields)
 o electromagnetic ⇒ A_{γ}
- **energy of nucleus**

\[E = \int d^3r \ v(r) + E_{cm} + E_{pair} + \ldots \]

with energy density functional

\[\varepsilon = \sum_i w_i \left[t_i + (m_i - \Gamma_i A_\sigma) n_i^{(s)} + (\Gamma_{i\omega} A_\omega + \Gamma_{i\rho} A_\rho + \Gamma_{i\gamma} A_\gamma) n_i \right] \]
\[+ \frac{1}{2} \left(m_\sigma^2 A_\sigma^2 + \vec{\nabla} A_\sigma \cdot \vec{\nabla} A_\sigma - m_\omega^2 A_\omega^2 - \vec{\nabla} A_\omega \cdot \vec{\nabla} A_\omega - m_\rho^2 A_\rho^2 - \vec{\nabla} A_\rho \cdot \vec{\nabla} A_\rho - \vec{\nabla} A_\gamma \cdot \vec{\nabla} A_\gamma \right) \]

- **single-particle densities**
 \[t_i = \bar{\psi}_i \hat{\gamma}_i \cdot \vec{p} \psi_i \]
 \[n_i^{(s)} = \bar{\psi}_i \psi_i \]
 \[n_i = \bar{\psi}_i \gamma_0 \psi_i \]

- **occupation numbers**
 \[w_i \]

- **density dependent meson-nucleon couplings**
 \[\Gamma_{im} = g_{im} \Gamma_m(q) \quad q = n_n + n_p \]
 ⇒ medium dependent interaction
 ⇒ rearrangement contributions to self-energies
 \[\Gamma_{i\gamma} = Q_i \Gamma_\gamma \] with charge number Q_i
Nuclear Correlations in Matter
Theoretical Approaches

- ideal mixture of independent particles, no interaction
 ⇒ **Nuclear Statistical Equilibrium/Law of Mass Action**
 most simple approach, suppression of nuclei ⇒ **excluded volume mechanism**
Theoretical Approaches

- ideal mixture of independent particles, no interaction
 ⇒ **Nuclear Statistical Equilibrium/Law of Mass Action**
 most simple approach, suppression of nuclei ⇒ excluded volume mechanism

- mixture of interacting particles/correlations
 ⇒ **Virial Equation of State**
 model-independent low-density benchmark
Theoretical Approaches

• ideal mixture of independent particles, no interaction
 ⇒ Nuclear Statistical Equilibrium/Law of Mass Action
 most simple approach, suppression of nuclei ⇒ excluded volume mechanism

• mixture of interacting particles/correlations
 ⇒ Virial Equation of State
 model-independent low-density benchmark

• considering medium effects with increasing density
 ⇒ Quantum Statistical/Generalized Beth-Uhlenbeck Approach
 correlations of quasiparticles with medium-dependent properties,
 microscopic origin of cluster dissolution/Mott effect (action of Pauli principle)
Theoretical Approaches

• ideal mixture of independent particles, no interaction
 \[\Rightarrow \text{Nuclear Statistical Equilibrium/Law of Mass Action}\]
 most simple approach, suppression of nuclei \[\Rightarrow \text{excluded volume mechanism}\]

• mixture of interacting particles/correlations
 \[\Rightarrow \text{Virial Equation of State}\]
 model-independent low-density benchmark

• considering medium effects with increasing density
 \[\Rightarrow \text{Quantum Statistical/Generalized Beth-Uhlenbeck Approach}\]
 correlations of quasiparticles with medium-dependent properties,
 microscopic origin of cluster dissolution/Mott effect (action of Pauli principle)

• interpolation from low to high densities around nuclear saturation
 \[\Rightarrow \text{Generalized Relativistic Density Functional}\]
 correct limits, formation and dissolution of nuclei
• include **new degrees of freedom** with medium-dependent properties:
 ○ light nuclei (**deuteron**, **triton**, **helion**, **α-particle**)
 ○ nucleon-nucleon scattering correlations (**nn**, **pp**, **np channels**)
 ○ heavy nuclei (**$A > 4$**)
 ⇒ interaction via minimal coupling to mesons/photon with scaled strengths
Generalized Relativistic Density Functional

- include new degrees of freedom with medium-dependent properties:
 - light nuclei (deuteron, triton, helion, \(\alpha \)-particle)
 - nucleon-nucleon scattering correlations (nn, pp, np channels)
 - heavy nuclei (\(A > 4 \))
 \(\Rightarrow \) interaction via minimal coupling to mesons/photon with scaled strengths

- model parameters
 - vacuum masses of nucleons, electrons, nuclei
 - effective resonance energies and degeneracy factors
 - density-dependent meson-nucleon/nucleus couplings, fitted to properties of atomic nuclei
 - medium-dependent mass shifts of clusters (bound and continuum states)

Details:
Light Nuclei

shift of binding energies/masses

- solve in-medium Schrödinger equation with realistic nucleon-nucleon potentials
- parametrization of shifts Δm_i
- main effect: Pauli principle
 \Rightarrow blocking of states in the medium!
Light Nuclei

shift of binding energies/masses

- solve in-medium Schrödinger equation with realistic nucleon-nucleon potentials
- parametrization of shifts Δm_i
- main effect: Pauli principle \Rightarrow blocking of states in the medium!

- example: symmetric nuclear matter, nuclei at rest in medium
- in vacuum: experimental binding energies
- nuclei become unbound ($B_i < 0$) with increasing density of medium
- dissolution of clusters at high densities \Rightarrow Mott effect
inhomogeneous matter at low densities

- comparison with uniform matter
 \[\Rightarrow \text{increase in binding energy} \]
inhomogeneous matter at low densities

- comparison with uniform matter
 ⇒ increase in binding energy
- spherical Wigner-Seitz cell calculation
 - generalized rel. density functional
 - extended Thomas-Fermi approximation
 - electrons for charge compensation
 - heavy nucleus surrounded by gas of nucleons
- self-consistent calculation with interacting nucleons, electrons

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Graph showing particle number density over radius.}
\end{figure}

\begin{align*}
A_{\text{heavy}} &= 147.1 \\
Z_{\text{heavy}} &= 62.3
\end{align*}

T = 5 \text{ MeV} \\
n = 0.01 \text{ fm}^{-3} \\
Y_p = 0.4
inhomogeneous matter at low densities

- comparison with uniform matter
 ⇒ increase in binding energy
- spherical Wigner-Seitz cell calculation
 - generalized rel. density functional
 - extended Thomas-Fermi approximation
 - electrons for charge compensation
 - heavy nucleus surrounded by gas of nucleons and light clusters
- self-consistent calculation with interacting nucleons, electrons and light nuclei
- increased probability of finding light clusters at surface of heavy nucleus
Heavy Nuclei II

- traditional approach in EoS tables:
 - single-nucleus approximation (SNA)
 (one representative heavy nucleus)
 - no distribution of nuclei
Heavy Nuclei II

- traditional approach in EoS tables:
 - single-nucleus approximation (SNA) (one representative heavy nucleus)
 - no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 - vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)
• traditional approach in EoS tables:
 ○ single-nucleus approximation (SNA)
 (one representative heavy nucleus)
 ○ no distribution of nuclei

• extended approach:
 ○ full table of nuclei included
 (c.f. NSE calculations)
 ○ vacuum binding energies needed
 ○ medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)
Heavy Nuclei II

- traditional approach in EoS tables:
 - single-nucleus approximation (SNA) (one representative heavy nucleus)
 - no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 - vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)
Heavy Nuclei II

- **traditional approach in EoS tables:**
 - single-nucleus approximation (SNA) (one representative heavy nucleus)
 - no distribution of nuclei

- **extended approach:**
 - full table of nuclei included (c.f. NSE calculations)
 - vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)
Heavy Nuclei II

- traditional approach in EoS tables:
 - single-nucleus approximation (SNA) (one representative heavy nucleus)
 - no distribution of nuclei
- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 - vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)
Heavy Nuclei II

- traditional approach in EoS tables:
 - single-nucleus approximation (SNA) (one representative heavy nucleus)
 - no distribution of nuclei

- extended approach:
 - full table of nuclei included (c.f. NSE calculations)
 - vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)
Heavy Nuclei II

- traditional approach in EoS tables:
 - single-nucleus approximation (SNA)
 (one representative heavy nucleus)
 - no distribution of nuclei

- extended approach:
 - full table of nuclei included
 (c.f. NSE calculations)
 - vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA

AME2011: G. Audi, W. Meng (private communication)
Heavy Nuclei II

- traditional approach in EoS tables:
 - single-nucleus approximation (SNA)
 (one representative heavy nucleus)
 - no distribution of nuclei
- extended approach:
 - full table of nuclei included
 (c.f. NSE calculations)
 - vacuum binding energies needed
 - medium-dependent shift of binding energies from SNA
- medium effects:
 - relative stabilization of heavier and exotic nuclei
 - dissolution of nuclei depending on density, temperature, np-asymmetry
- parametrization of mass shifts Δm_i,
 only preliminary results

AME2011: G. Audi, W. Meng (private communication)
Low-Density Limit I

- only two-body correlations relevant

- comparison of generalized relativistic density functional with virial Equation of State (model-independent benchmark, depends only on experimental binding energies and phase shifts $\delta^{(ij)}_l$)
Low-Density Limit I

- only **two-body correlations** relevant

- **comparison** of generalized relativistic density functional with virial Equation of State (model-independent benchmark, depends only on experimental binding energies and phase shifts $\delta_{(ij)}$)

- **fugacity expansion** of thermodynamic potential Ω
 \[C_m = \frac{\Gamma_m^2}{m_m^2} \quad (m = \omega, \sigma, \rho, \delta) \]
 ⇒ consistency relations with *virial coefficients* and zero-density meson-nucleon couplings
 \[E_{ij}(T) \quad (i, j = n, p) \]
 representing NN scattering correlations
 ⇒ **effective degeneracy factors** $g_{ij}^{(\text{eff})}(T)$
 (cf. treatment of excited states of nuclei)
 ⇒ relativistic corrections
• zero temperature limit of consistency relations without scattering correlations

\[C_\omega - C_\sigma = \frac{\pi}{2m} \left[a_{nn}(^1S_0) + a_{pp}(^1S_0) + a_{np}(^1S_0) + 3a_{np}(^3S_1) \right] \]

\[C_\rho - C_\delta = \frac{\pi}{2m} \left[a_{nn}(^1S_0) + a_{pp}(^1S_0) - a_{np}(^1S_0) - 3a_{np}(^3S_1) \right] \]

with scattering lengths \(a_{ij} \) and assuming \(m = m_n = m_p \)
Low-Density Limit II

- zero temperature limit of consistency relations without scattering correlations

 \[C_\omega - C_\sigma = \frac{\pi}{2m} \left[a_{nn}(^1S_0) + a_{pp}(^1S_0) + a_{np}(^1S_0) + 3a_{np}(^3S_1) \right] \]

 \[C_\rho - C_\delta = \frac{\pi}{2m} \left[a_{nn}(^1S_0) + a_{pp}(^1S_0) - a_{np}(^1S_0) - 3a_{np}(^3S_1) \right] \]

 with scattering lengths \(a_{ij} \) and assuming \(m = m_n = m_p \)

- comparison of experiment with RMF parametrizations

<table>
<thead>
<tr>
<th></th>
<th>exp.</th>
<th>DD2 [1]</th>
<th>DD-ME(\delta) [2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_\omega - C_\sigma) [fm(^2)]</td>
<td>-14.15</td>
<td>-5.39</td>
<td>-4.90</td>
</tr>
<tr>
<td>(C_\rho - C_\delta) [fm(^2)]</td>
<td>-9.61</td>
<td>2.48</td>
<td>2.55</td>
</tr>
</tbody>
</table>

⇒ conventional mean-field models don’t reproduce effect of correlations at very-low densities
⇒ explicit scattering correlations needed
NN Scattering Correlations

- **Effective resonance energies**

\[
\sum_l g_l^{(ij)} \int \frac{dE}{\pi} \frac{d\delta_l^{(ij)}}{dE} \exp \left(-\frac{E}{T} \right) = \pm g_0^{(ij)} \exp \left(-\frac{E_{ij}}{T} \right)
\]

Effective-range expansion for s-wave phase shifts:

\[
k \cot \delta_0^{(ij)} = -\frac{1}{a_{ij}} + \frac{r_{ij} k^2}{2}
\]

⇒ analytical results

low \(T \):

\[
I_0^{(ij)}(T) \rightarrow -a_{ij} \sqrt{\mu_{ij} T/(2\pi)}
\]

unitary limit: \(E_{ij}(T) = T \ln 2 \)
NN Scattering Correlations

- effective resonance energies

\[\sum_l g_l^{(ij)} \int \frac{dE}{\pi} \frac{d\delta_l^{(ij)}}{dE} \exp \left(-\frac{E}{T} \right) = \pm g_0^{(ij)} \exp \left(-\frac{E_{ij}}{T} \right) \]

- effective degeneracy factors

\[\sum_l g_l^{(nn)} \int \frac{dE}{\pi} \frac{d\delta_l^{(nn)}}{dE} \exp \left(-\frac{E}{T} \right) = g_{nn}^{(eff)} \exp \left(-\frac{E_{nn}}{T} \right) - g_n \frac{\lambda_{nn}^3}{\lambda_n^6} \frac{C_+}{2T} \]

\[C_+ = C_\omega - C_\sigma + C_\rho - C_\delta \]

\[\lambda_i = \sqrt{2\pi/(m_i T)} \]
Neutron Matter at Low Densities I

comparison: different effects

- nonrelativistic ideal gas

![Graph showing internal energy per nucleon vs. density](image)

internal energy per nucleon \(E/A \)

(ideal gas: \(E/A = 3T/2 \))

- T = 10 MeV
comparison: different effects

- nonrelativistic ideal gas
 \[\downarrow \text{rel. kinematics + quantum statistics} \]
- relativistic Fermi gas

internal energy per nucleon \(E/A \)

(ideal gas: \(E/A = 3T/2 \))

![Graph showing internal energy per nucleon as a function of density for different models.](image)

- ideal gas
- relativistic Fermi gas
comparison: different effects
- nonrelativistic ideal gas
 ↓ rel. kinematics + quantum statistics
- relativistic Fermi gas
 ↓ two-body correlations
- virial EoS with relativistic correction

internal energy per nucleon \(E/A \)
(ideal gas: \(E/A = 3T/2 \))

![Diagram showing internal energy per nucleon vs density](image-url)
Neutron Matter at Low Densities I

comparison: different effects

- **nonrelativistic ideal gas**
 ▼ rel. kinematics + quantum statistics
- **relativistic Fermi gas**
 ▼ two-body correlations
- **virial EoS with relativistic correction**
 (not included in standard virial EoS)
 ▼ mean-field effects
- **standard RMF model with density dependent couplings**

internal energy per nucleon E/A
(ideal gas: $E/A = 3T/2$)

![Graph showing internal energy per nucleon E/A vs. density n at $T = 10$ MeV, with lines for different models: ideal gas, relativistic Fermi gas, relativistic virial EoS, and standard RMF.](graph.png)
Neutron Matter at Low Densities I

comparison: different effects

- nonrelativistic ideal gas
 ↓ rel. kinematics + quantum statistics
- relativistic Fermi gas
 ↓ two-body correlations
- virial EoS with relativistic correction
 (not included in standard virial EoS)
 ↓ mean-field effects
- standard RMF model with
density dependent couplings
 ↓ two-body correlations
- generalized relativistic density
 functional (gRDF) with contributions
 from nn scattering

internal energy per nucleon E/A
(ideal gas: $E/A = 3T/2$)

![Graph showing internal energy per nucleon vs density for different models: ideal gas, relativistic Fermi gas, relativistic virial EoS, standard RMF, and gRDF. The graph compares the energy at $T = 10$ MeV across various densities.](image)
comparison: p/n in different models (ideal gas: $p/n = T$)

Light Clusters and Continuum Correlations

- particle fractions
 \[X_i = A_i \frac{n_i}{n_b} \quad n_b = \sum_i A_i n_i \]

- low densities:
 two-body correlations most important

- high densities:
 dissolution of clusters
 \(\Rightarrow \) Mott effect

generalized relativistic density functional

\(T = 10 \text{ MeV} \)
\(Y_p = 0.4 \)

(without heavy clusters)
Light Clusters and Continuum Correlations

- particle fractions
 \[X_i = A_i \frac{n_i}{n_b} \quad n_b = \sum_i A_i n_i \]

- low densities:
 two-body correlations most important

- high densities:
 dissolution of clusters
 \(\Rightarrow \) Mott effect

- effect of NN continuum correlations
 - dashed lines: without continuum
 - solid lines: with continuum
 \(\Rightarrow \) reduction of deuteron fraction,
 redistribution of other particles

- correct limits with generalized relativistic density functional

(Without heavy clusters)
Coulomb Correlations in Matter
Coulomb Interaction in Matter

- explicit potential A_γ only in systems with spatially inhomogeneous charge distribution, homogeneous approaches for EoS \Rightarrow effective treatment of Coulomb effects
Coulomb Interaction in Matter

- explicit potential A_γ only in systems with spatially inhomogeneous charge distribution, homogeneous approaches for EoS \Rightarrow effective treatment of Coulomb effects
- crystal:
 lattice-periodic Coulomb potential \rightarrow potential in Wigner-Seitz approximation:
 single nucleus and electron background in spherical cell with size such that total charge vanishes \Rightarrow screening of Coulomb potential
Coulomb Interaction in Matter

- explicit potential A_γ only in systems with spatially inhomogeneous charge distribution, homogeneous approaches for EoS \Rightarrow effective treatment of Coulomb effects

- crystal:
 lattice-periodic Coulomb potential \rightarrow potential in Wigner-Seitz approximation: single nucleus and electron background in spherical cell with size such that total charge vanishes \Rightarrow screening of Coulomb potential

- analytical solution for homogeneously charged sphere (ion, radius R, charge Q_e) and constant electron density $n_e = 3/(4\pi R^3) = Q n_{ion}$

\Rightarrow Coulomb energy $E_C^{(WS)} = E_C^{(sph)} + \Delta E_C^{(WS)}$
Coulomb Interaction in Matter

- explicit potential $A_γ$ only in systems with spatially inhomogeneous charge distribution, homogeneous approaches for EoS \Rightarrow effective treatment of Coulomb effects

- crystal:
 lattice-periodic Coulomb potential \rightarrow potential in Wigner-Seitz approximation: single nucleus and electron background in spherical cell with size such that total charge vanishes \Rightarrow screening of Coulomb potential

- analytical solution for homogeneously charged sphere (ion, radius R, charge Q_e) and constant electron density $n_e = 3/(4\pi R_e^3) = Qn_{ion}$

 \Rightarrow Coulomb energy $E_C^{(WS)} = E_C^{(sph)} + \Delta E_C^{(WS)}$

 with

 $E_C^{(sph)} = \frac{3}{5} \frac{Q^2 e^2}{R}$ part of energy of nucleus

 $\Delta E_C^{(WS)} = -\frac{9}{10} \frac{Q^2 e^2}{R_e} \left(1 - \frac{R^2}{3R_e^2}\right)$ energy shift with finite-size correction

 \Rightarrow approximation for lattice Coulomb energy, often applied in EoS models in liquid phase (?)
One-Component Plasma (OCP) I

- N ions (point particles, charge $Q_e > 0$) in homogeneous background of electrons (density $n_e = 3/(4\pi a_e^3)$) at temperature T
One-Component Plasma (OCP) I

- *N ions* (point particles, charge $Qe > 0$) in homogeneous background of *electrons* (density $n_e = 3/(4\pi a_e^3)$) at temperature T
- *classical model with screened Coulomb interaction* between ions (calculation: Ewald method)
- *internal energy* of ions: $U_{\text{ion}} = U_{\text{kin}} + U_{\text{pot}}$ with $U_{\text{kin}} = \frac{3}{2}NT$
One-Component Plasma (OCP) I

- \(N \) ions (point particles, charge \(Qe > 0 \)) in homogeneous background of electrons (density \(n_e = 3/(4\pi a_e^3) \)) at temperature \(T \)
- classical model with screened Coulomb interaction between ions (calculation: Ewald method)

- internal energy of ions: \(U_{\text{ion}} = U_{\text{kin}} + U_{\text{pot}} \) with \(U_{\text{kin}} = \frac{3}{2}NT \)

- Monte Carlo simulation, only one relevant parameter \(\Gamma = \frac{Q^2e^2}{a_eT} \) for \(U_{\text{pot}}/(NT) \)
One-Component Plasma (OCP) I

- N ions (point particles, charge $Qe > 0$) in homogeneous background of electrons (density $n_e = 3/(4\pi a_e^3)$) at temperature T
- classical model with screened Coulomb interaction between ions (calculation: Ewald method)
- internal energy of ions: $U_{\text{ion}} = U_{\text{kin}} + U_{\text{pot}}$ with $U_{\text{kin}} = \frac{3}{2}NT$
- Monte Carlo simulation, only one relevant parameter $\Gamma = \frac{Q^2e^2}{a_eT}$ for $U_{\text{pot}}/(NT)$
- example: 1024 ions in $8 \times 8 \times 8$ bcc lattice
One-Component Plasma (OCP) II

- limits:
 \[\Gamma \to 0 : \text{liquid phase} \]
 \[U^{(L)}_{\text{pot}}/(NT) \to -\frac{\sqrt{3}}{2} \Gamma^{3/2} \]
 (Debye-Hückel)

 \[\Gamma \to \infty : \text{solid phase} \]
 \[U^{(S)}_{\text{pot}}/(NT) \to \frac{3}{2} + C_M \Gamma \]
 \(C_M^{(bcc)} = -0.895929255682 \) Madelung constant)
• limits:
 \[\Gamma \to 0 : \text{liquid phase} \quad U_{\text{pot}}^{(L)}/(NT) \to -\frac{\sqrt{3}}{2} \Gamma^{3/2} \] (Debye-Hückel)
 \[\Gamma \to \infty : \text{solid phase} \quad U_{\text{pot}}^{(S)}/(NT) \to \frac{3}{2} + C_M \Gamma \]
 \((C_M^{(bcc)} = -0.895929255682 \text{ Madelung constant}) \)
• parametrization of Monte Carlo results

One-Component Plasma (OCP) II

- **limits:**
 - $\Gamma \to 0$: liquid phase
 \[U^{(L)}_{\text{pot}}/(NT) \to -\frac{\sqrt{3}}{2} \Gamma^{3/2} \]
 (Debye-Hückel)
 - $\Gamma \to \infty$: solid phase
 \[U^{(S)}_{\text{pot}}/(NT) \to \frac{3}{2} + C_M \Gamma \]
 ($C_M^{(\text{bcc})} = -0.895929255682$ Madelung constant)

- **parametrization** of Monte Carlo results

- **free energies:** $F^{(L)}_{\text{pot}}, F^{(S)}_{\text{pot}}$ from integration

 \[\frac{F^{(L)}_{\text{pot}}(\Gamma)}{NT} = \int_0^\Gamma d\Gamma' \frac{U_{\text{pot}}(\Gamma')}{NT} \quad \frac{F^{(S)}_{\text{pot}}(\Gamma)}{NT} = \ldots \]

 $\Rightarrow F^{(L)}, F^{(S)}$ (integration constants!)

One-Component Plasma (OCP) II

- **limits:**
 - $\Gamma \to 0$: liquid phase \quad $U_{pot}^{(L)}/(NT) \to -\sqrt{3/2} \Gamma^{3/2}$ (Debye-Hückel)
 - $\Gamma \to \infty$: solid phase \quad $U_{pot}^{(S)}/(NT) \to \frac{3}{2} + C_M \Gamma$

 $(C_M^{(bcc)} = -0.895929255682$ Madelung constant)

- **parametrization** of Monte Carlo results

- **free energies**: $F_{pot}^{(L)}$, $F_{pot}^{(S)}$ from integration

 \[
 \frac{F_{pot}^{(L)}(\Gamma)}{NT} = \int_0^\Gamma d\Gamma' \frac{U_{pot}(\Gamma')}{NT} \quad \frac{F_{pot}^{(S)}(\Gamma)}{NT} = \ldots
 \]

 $\Rightarrow F^{(L)}$, $F^{(S)}$ (integration constants !)

- **melting point**: $F^{(L)}(\Gamma_m) = F^{(S)}(\Gamma_m)$

 $\Rightarrow \Gamma_m \approx 175$

 - very sensitive to Coulomb correlations
 - Wigner-Seitz approximation fails

Gas/Liquid Phase I

constituents \((i)\):
- baryons \((n, p, \Lambda, \Sigma^+, \Sigma^0, \Sigma^-, \Xi^0, \Xi^-, \ldots) \Rightarrow\) fermions \((\sigma_i = +1)\)
- mesons \((\pi^+/\pi^-, \pi^0, K^+/K^-, K^0/\bar{K}^0, \omega, \rho, \ldots) \Rightarrow\) bosons \((\sigma_i = -1)\)
- light nuclei \((^2\text{H}, ^3\text{H}, ^3\text{He}, ^4\text{He}) \Rightarrow\) fermions/bosons
- heavy nuclei \((^A_iZ_i), \text{NN scattering correlations} \Rightarrow\) classical particles \((\sigma_i = 0)\)
- leptons \((e^-/e^+, \mu^-/\mu^+, \nu_e/\bar{\nu}_e, \nu_\mu/\bar{\nu}_\mu, \ldots) \Rightarrow\) fermions
- photons \((\gamma) \Rightarrow\) bosons
Gas/Liquid Phase I

constituents \((i)\):
- baryons \((n, p, \Lambda, \Sigma^+, \Sigma^0, \Sigma^-, \Xi^0, \Xi^-, \ldots)\) \(\Rightarrow\) fermions \((\sigma_i = +1)\)
- mesons \((\pi^+/\pi^−, \pi^0, K^+/K^−, K^0/\bar{K}^0, \omega, \rho, \ldots)\) \(\Rightarrow\) bosons \((\sigma_i = −1)\)
- light nuclei \((^2H, ^3H, ^3He, ^4He)\) \(\Rightarrow\) fermions/bosons
- heavy nuclei \((A_iZ_i)\), NN scattering correlations \(\Rightarrow\) classical particles \((\sigma_i = 0)\)
- leptons \((e^−/e^+, \mu^−/\mu^+, \nu_e/\bar{\nu}_e, \nu_\mu/\bar{\nu}_\mu, \ldots)\) \(\Rightarrow\) fermions
- photons \((\gamma)\) \(\Rightarrow\) bosons

- consider particles \((\eta_i = +1)\) and antiparticles \((\eta_i = −1)\)
- degeneracy factors \(g_i\)
- distinguish individual constituents \((g_i = \text{const.}, i \in \mathcal{I})\)
 and effective constituents \((g_i(T, n_j), i \in \mathcal{E})\)
Gas/Liquid Phase I

constituents (i):
- baryons $(n, p, \Lambda, \Sigma^+, \Sigma^0, \Sigma^-, \Xi^0, \Xi^-, \ldots) \Rightarrow$ fermions ($\sigma_i = +1$)
- mesons $(\pi^+/\pi^-, \pi^0, K^+/K^-, K^0/\bar{K}^0, \omega, \rho, \ldots) \Rightarrow$ bosons ($\sigma_i = -1$)
- light nuclei $(^2H, ^3H, ^3He, ^4He) \Rightarrow$ fermions/bosons
- heavy nuclei $(^A_iZ_i)$, NN scattering correlations \Rightarrow classical particles ($\sigma_i = 0$)
- leptons $(e^-/e^+, \mu^-/\mu^+, \nu_e/\bar{\nu}_e, \nu_\mu/\bar{\nu}_\mu, \ldots) \Rightarrow$ fermions
- photons $(\gamma) \Rightarrow$ bosons

- consider particles ($\eta_i = +1$) and antiparticles ($\eta_i = -1$)
- degeneracy factors g_i
- distinguish individual constituents ($g_i = \text{const.}, i \in I$) and effective constituents ($g_i(T, n_j), i \in E$)
- quasi-particles with relativistic energy

$$e_i^{(\eta_i)}(k) = \sqrt{k^2 + (m_i - S_i)^2} + \eta_i V_i$$

S_i scalar potential, V_i vector potential, m_i rest mass in vacuum, k momentum
interaction

- Lorentz scalar mesons \(m \in S = \{\sigma, \delta, \sigma_\star, \ldots\} \)
- Lorentz vector mesons \(m \in V = \{\omega, \rho, \phi, \ldots\} \)
Gas/Liquid Phase II

interaction

• Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
• Lorentz vector mesons $m \in V = \{\omega, \rho, \phi, \ldots\}$

○ represented by (classical) fields A_m with mass m_m
○ coupling to constituents: $\Gamma_{im} = g_{im}\Gamma_m$
 with scaling factors g_{im} and density dependent $\Gamma_m = \Gamma_m(\varrho)$, $\varrho = \sum_i B_i n_i$
Interaction

- Lorentz scalar mesons $m \in S = \{\sigma, \delta, \sigma_*, \ldots\}$
- Lorentz vector mesons $m \in V = \{\omega, \rho, \phi, \ldots\}$

- Represented by (classical) fields A_m with mass m_m
- Coupling to constituents: $\Gamma_{im} = g_{im} \Gamma_m$
 with scaling factors g_{im} and density dependent $\Gamma_m = \Gamma_m(\varrho)$, $\varrho = \sum_i B_i n_i$

- Scalar potential
 $$S_i = \sum_{m \in S} \Gamma_{im} n_m^{(\text{source})} - \Delta m_i$$
 with medium-dependent mass shift $\Delta m_i(T, n_j)$

- Vector potential
 $$V_i = \sum_{m \in V} \Gamma_{im} n_m^{(\text{source})} + V_i^{(\text{em})} + V_i^{(r)}$$
interaction

- Lorentz scalar mesons \(m \in S = \{\sigma, \delta, \sigma_{*}, \ldots\} \)
- Lorentz vector mesons \(m \in V = \{\omega, \rho, \phi, \ldots\} \)

- represented by (classical) fields \(A_m \) with mass \(m_m \)
- coupling to constituents: \(\Gamma_{im} = g_{im} \Gamma_m \)
 with scaling factors \(g_{im} \) and density dependent \(\Gamma_m = \Gamma_m(\varrho), \varrho = \sum_i B_i n_i \)

- scalar potential \(S_i = \sum_{m \in S} \Gamma_{im} n^{(source)}_m - \Delta m_i \)
 with medium-dependent **mass shift** \(\Delta m_i(T, n_j) \)

- vector potential \(V_i = \sum_{m \in V} \Gamma_{im} n^{(source)}_m + V^{(em)}_i + V^{(r)}_i \)
 with electromagnetic contribution \(V^{(em)}_i = T f_L(\Gamma_i) \) from fit of OCP data
 assuming linear mixing rule \((\Gamma_i = Q_i^{5/3} \Gamma_Q, \Gamma_Q = e^2/(a_Q T), a_Q = [3/(4\pi n_Q)]^{1/3}) \)
 and **rearrangement contribution** \(V^{(r)}_i = B_i V^{(r)} + U^{(mass)}_i + U^{(em)}_i + U^{(deg)}_i \)
 \(V^{(r)} = \sum_{m \in V} \Gamma'_m A_m n^{(source)}_m - \sum_{m \in S} \Gamma'_m A_m n^{(source)}_m, \Gamma'_m = d \Gamma_m / d \varrho \)
effective density functional

- grand canonical potential density

\[\omega(L) = \omega_{qp}(L) + \omega_{\text{strong}}(L) + \omega_{\text{em}}(L) \]
Effective Density Functional

- Grand canonical potential density

\[\omega^{(L)} = \omega_{qp}^{(L)} + \omega_{\text{strong}}^{(L)} + \omega_{\text{em}}^{(L)} \]

- Contribution of quasi-particles

\[\omega_{qp}^{(L)} = \sum_{i \in I} g_i \left(\omega_i^{(r)} + \omega_i^{(p)} \delta_{\sigma_i,+1} + \omega_i^{(c)} \delta_{\sigma_i,-1} \right) + \sum_{i \in \mathcal{E}} \left(g_i \omega_i^{(r)} - U_{i}^{(\text{deg})} n_i \right) \]
Gas/Liquid Phase III

effective density functional

- **grand canonical potential density**
 \[\omega^{(L)} = \omega_{qp}^{(L)} + \omega_{\text{strong}}^{(L)} + \omega_{\text{em}}^{(L)} \]

- **contribution of quasi-particles**
 \[\omega_{qp}^{(L)} = \sum_{i \in I} g_i \left(\omega_i^{(r)} + \omega_i^{(p)} \delta_{\sigma_i,+1} + \omega_i^{(c)} \delta_{\sigma_i,-1} \right) + \sum_{i \in E} \left(g_i \omega_i^{(r)} - U_i^{\text{(deg)}} n_i \right) \]

 - **regular contribution**
 \[\omega_i^{(r)} = -\frac{T}{\sigma_i} \int \frac{d^3k}{(2\pi)^3} \sum_{\eta_i} \ln[1 + \sigma_i \exp(-E_i^{(\eta_i)}/T)] \]

 with \(E_i^{(\eta_i)} = e_i^{(\eta_i)} - \mu_i \)

 - **pairing contribution** \(\omega_i^{(p)} = \ldots \)

 - **condensate contribution** \(\omega_i^{(c)} = \ldots \)
Gas/Liquid Phase III

effective density functional

- **grand canonical potential density**
 \[\omega^{(L)} = \omega_{qp}^{(L)} + \omega_{\text{strong}}^{(L)} + \omega_{\text{em}}^{(L)} \]

- **contribution of quasi-particles**
 \[\omega_{qp}^{(L)} = \sum_{i \in \mathcal{I}} g_i \left(\omega_i^{(r)} + \omega_i^{(p)} \delta_{\sigma_i,+1} + \omega_i^{(c)} \delta_{\sigma_i,-1} \right) + \sum_{i \in \mathcal{E}} \left(g_i \omega_i^{(r)} - U_i^{(\text{deg})} n_i \right) \]
 - **regular contribution**
 \[\omega_i^{(r)} = -\frac{T}{\sigma_i} \int \frac{d^3k}{(2\pi)^3} \sum_{\eta_i} \ln[1 + \sigma_i \exp(-E_i^{(\eta_i)}/T)] \]
 with \(E_i^{(\eta_i)} = e_i^{(\eta_i)} - \mu_i \)
 - **pairing contribution** \(\omega_i^{(p)} = \ldots \)
 - **condensate contribution** \(\omega_i^{(c)} = \ldots \)

- **contribution from strong interaction**
 \[\omega_{\text{strong}}^{(L)} = \sum_{m \in \mathcal{S}} m_m^2 A_m^2 - \sum_{m \in \mathcal{V}} m_m^2 A_m^2 - V^{(r)} q - \sum_{i \in \mathcal{I} \cup \mathcal{E}} U_i^{(\text{mass})} n_i \]
Gas/Liquid Phase III

effective density functional

- grand canonical potential density

\[\omega(L) = \omega_{qp}^{(L)} + \omega_{strong}^{(L)} + \omega_{em}^{(L)} \]

- contribution of quasi-particles

\[\omega_{qp}^{(L)} = \sum_{i \in \mathcal{I}} g_i \left(\omega_i^{(r)} + \omega_i^{(p)} \delta_{\sigma_i,+1} + \omega_i^{(c)} \delta_{\sigma_i,-1} \right) + \sum_{i \in \mathcal{E}} \left(g_i \omega_i^{(r)} - U_i^{(deg)} n_i \right) \]

- regular contribution

\[\omega_i^{(r)} = -\frac{T}{\sigma_i} \int \frac{d^3k}{(2\pi)^3} \ln \left[1 + \sigma_i \exp \left(-E_i^{(\eta)} / T \right) \right] \]

with \(E_i^{(\eta)} = e_i^{(\eta)} - \mu_i \)

- pairing contribution \(\omega_i^{(p)} = \ldots \)

- condensate contribution \(\omega_i^{(c)} = \ldots \)

- contribution from strong interaction

\[\omega_{strong}^{(L)} = \sum_{m \in \mathcal{S}} m^2 m^2 A_m^2 - \sum_{m \in \mathcal{V}} m^2 A_m^2 - V^{(r)} q - \sum_{i \in \mathcal{I} \cup \mathcal{E}} U_i^{(mass)} n_i \]

- contribution from electromagnetic interaction

\[\omega_{em}^{(L)} = - \sum_{i \in \mathcal{I} \cup \mathcal{E}} U_i^{(em)} n_i \]
fermions \Rightarrow pairing correlations

- pairing potential $v_i(k, k')$
fermions \Rightarrow pairing correlations

- pairing potential $v_i(k, k')$

- pairing contribution to $\omega_{qp}^{(L)}$

$$\omega_i^{(p)} = \int \frac{d^3k}{(2\pi)^3} \sum \eta_i \left\{ \frac{1}{2} [e_i^{(\eta_i)}(k) - \mu_i - E_i^{(\eta_i)}(k)] + \Delta_i^{(\eta_i)}(k) \nu_i^{(\eta_i)}(k) \right\}$$

$$+ \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} \int \frac{d^3k'}{(2\pi)^3} \sum \eta_i \nu_i^{(\eta_i)}(k) \nu_i^{(\eta_i)}(k, k') \nu_i^{(\eta_i)}(k')$$

$$E_i^{(\eta_i)} = \pm \sqrt{[e_i^{(\eta_i)}(k) - \mu_i]^2 + [\Delta_i^{(\eta_i)}(k)]^2}, \quad \Delta_i^{(\eta_i)}(k) \text{ pairing gap}$$

$$\nu_i^{(\eta_i)}(k) = \frac{\Delta_i^{(\eta_i)}(k)}{2E_i^{(\eta_i)}(k)} [1 - 2 f_{+1}(E_i^{(\eta_i)}(k))] \text{ anomalous distribution function,}$$

$$f_{+1}(E) = [\exp(E) + 1]^{-1} \text{ Fermi-Dirac distribution function}$$
fermions \Rightarrow pairing correlations

- pairing potential $v_i(k, k')$

- pairing contribution to $\omega^{(L)}_{qp}$

$$\omega_i^{(p)} = \int \frac{d^3k}{(2\pi)^3} \sum_i \left\{ \frac{1}{2} [e_i^{(\eta_i)}(k) - \mu_i - E_i^{(\eta_i)}(k)] + \Delta_i^{(\eta_i)}(k) \nu_i^{(\eta_i)}(k) \right\}$$

$$+ \frac{1}{2} \int \frac{d^3k}{(2\pi)^3} \int \frac{d^3k'}{(2\pi)^3} \sum_i \nu_i^{(\eta_i)}(k) \nu_i^{(\eta_i)}(k, k') \nu_i^{(\eta_i)}(k')$$

$$E_i^{(\eta_i)} = \pm \sqrt{[e_i^{(\eta_i)} - \mu_i]^2 + [\Delta_i^{(\eta_i)}]^2}, \Delta_i^{(\eta_i)}(k) \text{ pairing gap}$$

$$\nu_i^{(\eta_i)}(k) = \frac{\Delta_i^{(\eta_i)}(k)}{2E_i^{(\eta_i)}(k)} [1 - 2f_+(E_i^{(\eta_i)})] \text{ anomalous distribution function,}$$

$$f_+(E) = [\exp(E) + 1]^{-1} \text{ Fermi-Dirac distribution function}$$

- $\partial \omega^{(L)} / \partial \Delta_i^{(\eta_i)}(k) = 0 \Rightarrow$ gap equation

$$\Delta_i^{(\eta_i)}(k) + \int \frac{d^3k'}{(2\pi)^3} \nu_i^{(\eta_i)}(k, k') \nu_i^{(\eta_i)}(k') = 0$$
Gas/Liquid Phase V

bosons \Rightarrow condensation

- condensate contribution to $\omega_{qp}^{(L)}$

$$
\omega_i^{(c)} = \frac{1}{2}[\zeta_i^{(\eta_i)}]^{2}[\left(m_i - S_i\right)^2 - \left(\mu_i - V_i\right)^2]
$$

with parameter $\zeta_i^{(\eta_i)}$
Gas/Liquid Phase V

bosons ⇒ **condensation**

- condensate contribution to $\omega^{(L)}_{q\mathbf{p}}$

$$\omega_{i}^{(c)} = \frac{1}{2}[\zeta_{i}^{(\eta_{i})}]^{2}[(m_{i} - S_{i})^{2} - (\mu_{i} - V_{i})^{2}]$$

with parameter $\zeta_{i}^{(\eta_{i})}$

- general condition on chemical potential μ_{i}

$$|\mu_{i} - V_{i}| \leq m_{i} - S_{i}$$
Gas/Liquid Phase V

bosons ⇒ condensation

- condensate contribution to $\omega_{qp}^{(L)}$

$$\omega_i^{(c)} = \frac{1}{2}[\zeta_i^{(\eta_i)}]^2[(m_i - S_i)^2 - (\mu_i - V_i)^2]$$

with parameter $\zeta_i^{(\eta_i)}$

- general condition on chemical potential μ_i

$$|\mu_i - V_i| \leq m_i - S_i$$

- $\partial \omega^{(L)}/\partial \zeta_i^{(\eta_i)} = 0 \Rightarrow$ condition for condensation solutions:
 - $\zeta_i^{(\eta_i)} = 0$: no condensation
 - $\zeta_i^{(\eta_i)} \neq 0, \mu_i = V_i + m_i - S_i$: condensation of particles
 - $\zeta_i^{(\eta_i)} \neq 0, \mu_i = V_i - m_i + S_i$: condensation of antiparticles

value of $\zeta_i^{(\eta_i)}$ determined by density of condensate state
densities ⇒ usual form for quasiparticles

- net particle density

\[n_i = g_i \sum \eta_i \left\{ \int \frac{d^3k}{(2\pi)^3} \eta_i f_{\sigma i}(\eta_i)(k) + \left[\xi_{\sigma i}(\eta_i) \right]^2 (\mu_i - \nu_i) \delta_{\sigma i, -1} \right\} \]

\[f_{\sigma i}(\eta_i) = \frac{1}{2} \left\{ 1 - \frac{e_i(\eta_i)}{E_i(\eta_i)} \left[1 - 2 f_{\sigma i}(E_i(\eta_i)) \right] \right\}, \quad f_{\sigma}(E) = \left[\exp(E) + \sigma \right]^{-1} \]
Gas/Liquid Phase VI

densities ⇒ usual form for quasiparticles

- **net particle density**

 \[
 n_i = g_i \sum \eta_i \left\{ \int \frac{d^3k}{(2\pi)^3} \eta_i f_i^{(\eta_i)}(k) + \left[\zeta_i^{(\eta_i)} \right]^2 (\mu_i - V_i) \delta_{\sigma_i, -1} \right\}
 \]

 \[
 f_i^{(\eta_i)} = \frac{1}{2} \left\{ 1 - \frac{e_i^{(\eta_i)} - \mu_i}{E_i^{(\eta_i)}} \right\} [1 - 2 f_{\sigma_i}(E_i^{(\eta_i)})], \quad f_{\sigma}(E) = [\exp(E) + \sigma]^{-1}
 \]

- **net scalar density**

 \[
 n_i^{(s)} = g_i \sum \eta_i \left\{ \int \frac{d^3k}{(2\pi)^3} \sqrt{m_i - S_i} f_i^{(\eta_i)}(k) + \left[\zeta_i^{(\eta_i)} \right]^2 (m_i - S_i) \delta_{\sigma_i, -1} \right\}
 \]
Gas/Liquid Phase VI

densities ⇒ usual form for quasiparticles

- **net particle density**

\[
n_i = g_i \sum \eta_i \left\{ \int \frac{d^3k}{(2\pi)^3} \eta_i f_i^{(\eta_i)}(k) + [\zeta_i^{(\eta_i)}]^2(\mu_i - V_i)\delta_{\sigma_i,-1} \right\}
\]

\[
f_i^{(\eta_i)} = \frac{1}{2} \left\{ 1 - \frac{e_i^{(\eta_i)} - \mu_i}{E_i^{(\eta_i)}} \left[1 - 2f_\sigma(E_i^{(\eta_i)}) \right] \right\}, \quad f_\sigma(E) = [\exp(E) + \sigma]^{-1}
\]

- **net scalar density**

\[
n_i^{(s)} = g_i \sum \eta_i \left\{ \int \frac{d^3k}{(2\pi)^3} \frac{m_i - S_i}{\sqrt{k^2 + (m_i - S_i)^2}} f_i^{(\eta_i)}(k) + [\zeta_i^{(\eta_i)}]^2(m_i - S_i)\delta_{\sigma_i,-1} \right\}
\]

- **source densities**
 - Lorentz scalar mesons, \(m \in S \)

\[
n^{(\text{source})}_m = \sum_{i \in I \cup E \cup S} g_{im} n_i^{(s)}
\]

 - Lorentz vector mesons, \(m \in V \)

\[
n^{(\text{source})}_m = \sum_{i \in I \cup E \cup S} g_{im} n_i
\]
thermodynamic consistency

- natural variables of $\omega^{(L)}$: T, μ_i, A_m, $\Delta_i^{(\eta)}(k)$, $\zeta_i^{(\eta_i)}$

but $\omega^{(L)}$ depends explicitly on densities n_i, $n_i^{(s)}$ (already defined!)
Gas/Liquid Phase VII

thermodynamic consistency

- natural variables of $\omega^{(L)}$: $T, \mu_i, A_m, \Delta_i^{(\eta_i)}(k), \zeta_i^{(\eta_i)}$

but $\omega^{(L)}$ depends explicitly on densities $n_i, n_i^{(s)}$ (already defined!)

- consistency criterion

$$n_j = - \frac{\partial}{\partial \mu_j} \omega^{(L)}(T, \mu_i, A_m, \Delta_i^{(\eta_i)}(k), \zeta_i^{(\eta_i)}) \bigg|_{T, \mu_i \neq j, A_m, \Delta_i^{(\eta_i)}(k), \zeta_i^{(\eta_i)}}$$
thermodynamic consistency

- natural variables of $\omega^{(L)}$: $T, \mu_i, A_m, \Delta_i^{(\eta_i)}(k), \zeta_i^{(\eta_i)}$

but $\omega^{(L)}$ depends explicitly on densities $n_i, n_i^{(s)}$ (already defined!)

- consistency criterion

$$n_j \overset{!}{=} - \frac{\partial}{\partial \mu_j} \omega^{(L)}(T, \mu_i, A_m, \Delta_i^{(\eta_i)}(k), \zeta_i^{(\eta_i)}) \bigg|_{T, \mu_i \neq j, A_m, \Delta_i^{(\eta_i)}(k), \zeta_i^{(\eta_i)}}$$

\Rightarrow definition of rearrangement potentials

- $U_i^{(\text{mass})} = \sum_{j \in I \cup E} \frac{\partial \Delta m_j}{\partial n_i} n_j^{(s)}$
- $U_i^{(\text{em})} = \sum_{j \in I \cup E} \frac{\partial V_j^{(\text{em})}}{\partial n_i} n_j$
- $U_i^{(\text{deg})} = \sum_{j \in E} \frac{\partial g_j}{\partial n_i} \omega_j^{(r)}$
Gas/Liquid Phase VII

thermodynamic consistency

- natural variables of $\omega^{(L)}$: $T, \mu_i, A_m, \Delta_i^{(\eta)}(k), \zeta_i^{(\eta)}$

but $\omega^{(L)}$ depends explicitly on densities $n_i, n_i^{(s)}$ (already defined!)

- consistency criterion

$$n_j \equiv - \frac{\partial}{\partial \mu_j} \omega^{(L)}(T, \mu_i, A_m, \Delta_i^{(\eta)}(k), \zeta_i^{(\eta)}) \bigg|_{T, \mu_i \neq j, A_m, \Delta_i^{(\eta)}(k), \zeta_i^{(\eta)}}$$

\Rightarrow definition of rearrangement potentials

- $U_i^{(\text{mass})} = \sum_{j \in I \cup E} \frac{\partial \Delta m_j}{\partial n_i} n_j^{(s)}$

- $U_i^{(\text{em})} = \sum_{j \in I \cup E} \frac{\partial V^{(em)}}{\partial n_i} n_j$

- $U_i^{(\text{deg})} = \sum_{j \in E} \frac{\partial g_j}{\partial n_i} \omega_j^{(r)}$

- non-standard contributions to entropy density

$$s = - \frac{\partial \omega^{(L)}}{\partial T} \bigg|_{\mu_i, A_m, \Delta_i^{(\eta)}(k), \zeta_i^{(\eta)}}$$
Solid Phase I

combination of models

- homogeneously distributed constituent particles
 - leptons, photons, neutrons, certain nuclei(?), . . .
 - contribution to grand canonical potential as in gas/liquid phase
Solid Phase I

combination of models

- homogeneously distributed constituent particles
 - leptons, photons, neutrons, certain nuclei(?), . . .
 - contribution to grand canonical potential as in gas/liquid phase

- nuclei on lattice sites, excitation of lattice vibrations/phonons
 - Einstein/Debye-like model, three branches ($\lambda = 0, 1, 2$)
Solid Phase I

combination of models

- homogeneously distributed constituent particles
 - leptons, photons, neutrons, certain nuclei(?), . . .
 - contribution to grand canonical potential as in gas/liquid phase

- nuclei on lattice sites, excitation of lattice vibrations/phonons
 - Einstein/Debye-like model, three branches \((\lambda = 0, 1, 2)\)
 - one longitudinal mode:
 \[
 \omega_i(0, \vec{q}) = \alpha_0 \omega_i^{(p)}
 \]
 - two transversal modes:
 \[
 \omega_i(1, \vec{q}) = \alpha_1 \omega_i^{(p)} \frac{q}{k_i^{(D)}} \\
 \omega_i(2, \vec{q}) = \alpha_2 \omega_i^{(p)} \frac{q}{k_i^{(D)}}
 \]

plasma frequency \(\omega_i^{(p)} = \sqrt{4\pi Q_i e^2 n_Q / m_i}\)
Debye wave number \(k_i^{(D)} = (6\pi^2 n_i)^{1/3}\)
parameters \(\alpha_0, \alpha_1, \alpha_2\)
Solid Phase II

- **parameters** α_0, α_1, α_2

 fitted to reproduce known frequency moments

$$\mu_n = \frac{1}{3} \sum_{\lambda, \vec{q}} \omega_i(\lambda, \vec{q}) / \omega_i^{(p)} [n]$$

for $n = 1, 2$

and consistency relation in classical limit ($3\bar{\mu} = \ln(\alpha_0\alpha_1\alpha_2) - 2/3$)
Solid Phase II

- **parameters** $\alpha_0, \alpha_1, \alpha_2$
 fitted to reproduce known frequency moments

$$\mu_n = \frac{1}{3} \sum_{\lambda, \vec{q}} \omega_i(\lambda, \vec{q}) / \omega_i^{(p)} \right] n$$

for $n = 1, 2$

and consistency relation in classical limit $(3\bar{\mu} = \ln(\alpha_0\alpha_1\alpha_2) - 2/3)$

bcc lattice

<table>
<thead>
<tr>
<th></th>
<th>exact calculation*</th>
<th>model</th>
<th>significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>μ_{-2}</td>
<td>12.972</td>
<td>12.850</td>
<td>mean square displacement (classical)</td>
</tr>
<tr>
<td>μ_{-1}</td>
<td>2.79855</td>
<td>2.79031</td>
<td>mean square displacement (quantal)</td>
</tr>
<tr>
<td>μ_1</td>
<td>0.5113875</td>
<td>exact</td>
<td>zero-point oscillation energy</td>
</tr>
<tr>
<td>μ_2</td>
<td>1/3</td>
<td>exact</td>
<td>Kohn rule</td>
</tr>
<tr>
<td>μ_3</td>
<td>0.25031</td>
<td>0.24905</td>
<td></td>
</tr>
<tr>
<td>$\bar{\mu}$</td>
<td>-0.831298</td>
<td>exact</td>
<td>classical limit of free energy</td>
</tr>
</tbody>
</table>

Solid Phase III

effective density functional
- canonical description \Rightarrow free energy density

$$f^{(S)} = \sum_{i \in S} n_i [m_i + F_i^{(ph)} + F_i^{(em)} + F_i^{(mix)}]$$
Solid Phase III

effective density functional

- canonical description \Rightarrow free energy density

$$f^{(S)} = \sum_{i \in S} n_i \left[m_i + F_i^{(ph)} + F_i^{(em)} + F_i^{(mix)} \right]$$

- contribution of phonons

$$F_i^{(ph)} = T \left\{ \frac{3}{2} \mu_1 \eta_i + \sum_{\lambda=0}^{2} \ln \left[1 - \exp(-\alpha_\lambda \eta_i) \right] - \frac{1}{3} \sum_{\lambda=1}^{2} D_3(\alpha_\lambda \eta_i) \right\}$$

with Debye function $D_3(x)$

essential parameters $\eta_i = \omega_i^{(p)}/T$

$\eta_i \to 0$: classical limit
$\eta_i \to \infty$: quantal effects
effective density functional

- canonical description \Rightarrow free energy density

$$f^{(S)} = \sum_{i \in S} n_i [m_i + F^{(ph)}_i + F^{(em)}_i + F^{(mix)}_i]$$

- contribution of phonons

$$F^{(ph)}_i = T \{ \frac{3}{2} \mu_1 \eta_i + \sum_{\lambda=0}^{2} \ln [1 - \exp(-\alpha \lambda \eta_i)] - \frac{1}{3} \sum_{\lambda=1}^{2} D_3(\alpha \lambda \eta_i) \}$$

with Debye function $D_3(x)$

- essential parameters $\eta_i = \omega_i^{(p)}/T$

$\eta_i \rightarrow 0$: classical limit
$\eta_i \rightarrow \infty$: quantal effects

- contribution of electromagnetic interaction

$$F^{(em)}_i = T [C_{M}^{(bcc)} \Gamma_i + f_S(\Gamma_i)] \quad \text{(from fit to OCP)}$$
effective density functional

- **canonical description** ⇒ **free energy density**
 \[
 f^{(S)} = \sum_{i \in S} n_i [m_i + F^{(ph)}_i + F^{(em)}_i + F^{(mix)}_i]
 \]

 - contribution of **phonons**
 \[
 F^{(ph)}_i = T \left\{ \frac{3}{2} \mu_1 \eta_i + \sum_{\lambda=0}^{2} \ln[1 - \exp(-\alpha_\lambda \eta_i)] - \frac{1}{3} \sum_{\lambda=1}^{2} D_3(\alpha_\lambda \eta_i) \right\}
 \]

 with Debye function \(D_3(x)\)

 essential parameters \(\eta_i = \omega_i^{(p)}/T\)

 \(\eta_i \to 0\): classical limit
 \(\eta_i \to \infty\): quantal effects

 - contribution of **electromagnetic interaction**
 \[
 F^{(em)}_i = T \left[C^{(bcc)}_M \Gamma_i + f_S(\Gamma_i) \right] \quad \text{(from fit to OCP)}
 \]

 - **mixing** contribution
 \[
 F^{(mix)}_i = T \ln\left(\frac{Q_{ini}}{g_i n_Q} \right) \quad n_Q = \sum_i Q_i n_i
 \]
• EoS of cold outer crust very well known
 \((\beta \text{ equilibrium}, \ T = 0 \text{ MeV}) \)

\[\beta \text{ equilibrium, } T = 0 \text{ MeV} \]

- EoS of cold outer crust very well known (β equilibrium, $T = 0$ MeV)

- calculation in Wigner-Seitz and Thomas-Fermi approximation (WS-TF) not sufficient

β equilibrium, $T = 0$ MeV

- EoS of cold outer crust very well known
 (β equilibrium, $T = 0$ MeV)

- calculation in Wigner-Seitz and Thomas-Fermi approximation (WS-TF) not sufficient

- effects of temperature
 - change of chemical composition
 - melting of crystal, solidification of gas/liquid

β equilibrium, $T = 0$ MeV

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-10} - 10^{10}</td>
</tr>
</tbody>
</table>

ERDF - 35
Stefan Tytel
• EoS of cold outer crust very well known (β equilibrium, $T = 0$ MeV)

• calculation in Wigner-Seitz and Thomas-Fermi approximation (WS-TF) not sufficient

• effects of temperature
 ○ change of chemical composition
 ○ melting of crystal, solidification of gas/liquid

• general electron fraction
 ○ out of β equilibrium
 \Rightarrow global EoS table
Solid Phase IV

- EoS of cold outer crust very well known (β equilibrium, $T = 0$ MeV)

- calculation in Wigner-Seitz and Thomas-Fermi approximation (WS-TF) not sufficient

- effects of temperature
 - change of chemical composition
 - melting of crystal, solidification of gas/liquid

- general electron fraction
 - out of β equilibrium
 - \Rightarrow global EoS table

- details of phase transitions

- work in progress

β equilibrium, $T = 0$ MeV

Summary
construction of **effective relativistic density functional** for dense matter

- extended set of *constituents* ⇒ nucleons, hyperons, mesons, nuclei, leptons, . . .
 ⇒ *quasiparticles* with medium dependent properties
- nuclear interaction ⇒ meson exchange with density dependent couplings
- electromagnetic interaction ⇒ effective potential from Monte Carlo simulations
- formation and dissolution of *clusters*
- rearrangement contributions for thermodynamic consistency
- phase transition liquid/gas ↔ solid
- well constrained *parameters*, correct limits
- work in progress

⇒ preparation of *EoS tables* for astrophysical applications
Thanks

• to my collaborators
 Gerd Röpke (Universität Rostock)
 Niels-Uwe Bastian (Universität Rostock)
 David Blaschke (Uniwersytet Wrocławski)
 Thomas Klähn (Uniwersytet Wrocławski)
 Hermann Wolter (Ludwig Maximilians-Universität München)
 Maria Voskresenskaya (GSI Darmstadt)

• for support from
 ◦ Helmholtz Association (HGF)
 – Nuclear Astrophysics Virtual Institute (VH-VI-417)
 – Helmholtz International Center (HIC) for FAIR
 ◦ Excellence Cluster ‘Universe’, Technische Universität München

• to the organizers of the Hirschegg 2013 workshop
 for the invitation and support

• to you, the audience
 for your attention and patience