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Motivation

e What can we say about a few-body system without
knowing much detail about the interaction?

* If interaction is short-range, in first approximation
systems can be described by only the scattering «|
length. 3

o Interesting effects: universal dimer and Efimov
trimers if scattering length is large vl

e Explored in many directions: Bosons, Fermions, mass
imbalanced systems, N-body systems ...

e Experimental realisation in ultracold atom systems
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Motivation

e Efimov predicted effect for nuclei
e Experimentally difficult because scattering length cannot be tuned
e Charge disturbs effects
e What happens to the universal dimer and Efimov trimers if
Coulomb potential is added?
e Candidate system: « particles
o Bosons

o Large scattering length
o Experimental data about « clusters available (8Be, Hoyle state..)
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Efimov Effect
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Efimov Effect

@}
@}
O}
—4—>
<
L=

v

5/19




Efimov Effect
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System and Interaction

N identical bosons (mass m and charge q)

attractive Gaussian plus repulsive Coulomb potential

2
rij C
_ ij c__ C
0 ij
e Natural length scale: ry
e Natural energy scale: E; = h—22
mro
e Natural scale for the strength of the Coulomb potential: ¢s = ,Z—io

cc contains g2
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Gaussian Expansion Method
Implementation by Hiyama, Kino, Kamimura PPNP 51, 223 (2003)

e Rayleigh-Ritz Variational Method
e Gaussian base functions
e Matrix elements analytic for Gaussian and Coulomb potentials

e Base functions are selected via geometric progression between a
minimum and a maximum range

e Fast convergence for a wide range of states

e Find optimized base functions via random sampling
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Coulomb-modified scattering length

More Detail in PhD Thesis of S. Kénig (2013)

e Coulomb potential is not short-range

e Scattering length cannot be found by matching
inner solution with free waves at zero energy

e Have to use Coulomb Functions as outside ooo
solutions

e Cannot calculate for zero energy
e Have to calculate for small energies and
extrapolate to zero via fitting

~ 1 1
Cg’opcotdo(p) +vh(n) = T +5 Sp® + ..
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Coulomb-modified scattering length

) . 0.0216 . .
C,op cotdo(p) +vh(n) =
1 + 1 eCpr2 + ... "= 0.02155
ac 2 =
F\
+ 0.0215
- o
" 2P’ T ’%002145
r(in) °
h(n) = Re = — log|n| S
r(m) % 0.0214
b0 is Coulomb-modified U
scattering phase shift
0.02135
0 3x103 p2 6x1073

— Calculate ac, re% for each triplet of Vg, rp, cc
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Efimov Plot with Coulomb Interaction

Trimers and Dimer for ¢./cs = 0.007 for different Gaussian ranges ry
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Efimov Plot with Coulomb Interaction

Trimers and Dimer for ¢./cs = 0.07 for different Gaussian ranges ry
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Efimov Plot with Coulomb Interaction

Trimers and Dimer for ¢./cs = 0.7  for different Gaussian ranges ry
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Application to Real System: 3«
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Additionally fix r& for a$, = (—1920 4 90) fm

Values for a$,, and r% from Higa, Hammer, v. Kolck. NPA 809, 171 (2008)
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“Efimov Plot” (only Dimer) with ry = 2.3fm

The ground state of >C cannot be described!

0 1 T T T T T T T
0.5 B
e
> |
S | e Es ..
1.5 F g
v | R
“r ! L ~ (— -1 7
|5 ~ (~1900 fm)
251 B(*2C) ~ 7.3 MeV 1
_3 1 1 1 1 1 1 1 1
-0.005 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04
1 f —1
- m
13 /19 ac [ ]



Summary of Part |

e |n natural units the dimer and trimers are universal even with
Coulomb.
— What about tetramer? Under investigation.

e However, for a real system the effective range needs to be fixed as
well.

e For the 3a system this leads to the ground state of 1C being out
of range of the underlying EFT

e Can we still do something useful with this?
— Look at other systems
— Look at resonances
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Resonances

Toy model from Maier, Cederbaum, Domcke. JP B 13, 119 (1980)

e Stabilisation method

91

e Put system in a harmonic trap T
—

e Vary size b of the trap s

e Resonances appear as avoided
crossings

Energy {au)

e Toy model:
Vshift(r) = Ae_a(r_rshift)Z _ 86_5,2 . )

e Able to reproduce values from q:
MCD (1980), but only two-body B

15 /19



Resonances for the three-body system
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Resonances for the three-body system I
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Outlook

Three- and four-body calculations for the bound state sector

e Resonances with Coulomb barrier

Investigate ®Be, the Hoyle state and 10

Look for other systems with charged bosons (e.g. ions)
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Thank you for your attention!
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