
Joaquín E. Drut 
University of North Carolina 
at Chapel Hill

Hirschegg, January 2018



Bose-Einstein 
condensates 
(1995)

Fermionic condensates 
(2004)

Ultracold atoms



Ultracold atoms

- Temperature (Superfluid transitions) 
- Polarization (LOFF-type phases, polarons) 
- Coupling (BEC-BCS crossover) 
- Shape of external trapping potential 
- Mass imbalance (different isotopes) 
- Dimension (highly anisotropic traps & lattices) 
- Bosons, fermions, mixtures: Li, K, Sr, Yb, Dy, Er,… 

Astonishing degree of control…

… and astonishing degree of measurement/detection… 
- Thermodynamics 
- Phase transitions 
- Collective modes 
- Spin response 
- Hydrodynamic response 
- Entanglement 
- Time-dependent dynamics 
- …



3D Fermions: Hamiltonian & scales
Two species of fermions with a contact two-body force 
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Coupling is dimensionful

Renormalize by solving the two-body problem and  
relating bare coupling to scattering length



Two-body problem in 3D
Bound state appears at a critical attractive coupling 
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Scattering length and density determine the  
                                   physical dimensionless coupling
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Scale anomalies



Ultracold atoms in 2D
There is work by multiple experimental groups around the world 

Heidelberg (Jochim), Hamburg (Moritz), Bonn (Köhl),  
Moscow (Turlapov) 
Melbourne (Vale) 
Toronto (Thywissen) 
Cambridge (Zwierlein) 
.

.

.



2D Fermions: Hamiltonian & scales
Two species of fermions with a contact two-body force 
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Coupling is dimensionless

Factor out center-of-mass motion and solve “relative” problem:

✏B = ⇤e�4⇡/|g|

Find bound-state!
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Classically scale invariant!

Quantum mechanically not scale invariant



Two-body problem & anomaly
Cutoff required, bound state exists for all attractive couplings 

3D
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The binding energy represents a scale anomaly.
Binding energy and density determine the  
                                      dimensionless physical coupling

⌘ =
1

2
ln(2✏F /✏B)✏F / n



Normal
Normal

T

Superfluid?

Superfluid

?
TBKT

TBKT

The 2D BCS-BEC crossover

⌘ = ln kFa



Selected results in 2D
Ground state, thermodynamics, contact 
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Technical aspects: lattice MC
Scales & continuum limit
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Results: Density EoS

E. R. Anderson, J. E. Drut 
Phys. Rev. Lett. 115, 115301 (2015). 



Aside: virial expansion in 2D 

Virial expansion (relative to noninteracting case)

���⌦ = ln(Z/Z0) = Q1

1X

n=2

�bnz
n

Determines the thermodynamics at low fugacity
are typically computed by solving the n-body problem�bn = bn � b(0)n

Results: Density EoS

change due to interactions

z = e�µ



Virial expansion (relative to noninteracting case)

���⌦ = ln(Z/Z0) = Q1

1X

n=2

�bnz
n

are typically computed by solving the n-body problem�bn = bn � b(0)n

Results: Density EoS

�b2 :    Known from Beth-Uhlenbeck formula  
(also derivable using the anomaly; see Ordóñez et al.) 

�b3 :    Determined numerically with exact methods 
     V. Ngampruetikorn, J. Levinsen, and M. M. Parish,  

Phys. Rev. Lett. 111, 265301 (2013).  

Determines the thermodynamics at low fugacity z = e�µ

Aside: virial expansion in 2D 



Aside: Experimental results 

Results: Density EoS

Jochim’s group

Vale’s group
Phys. Rev. Lett. 116, 045302 (2016)

Phys. Rev. Lett. 116, 045303 (2016)



Results: Pressure EoS

E. R. Anderson, J. E. Drut 
Phys. Rev. Lett. 115, 115301 (2015). 



Results: Compressibility

E. R. Anderson, J. E. Drut 
Phys. Rev. Lett. 115, 115301 (2015). 



Results: Tan’s contact

E. R. Anderson, J. E. Drut 
Phys. Rev. Lett. 115, 115301 (2015). 



Results: GS Energetics

N
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L. Rammelmüller, W. J. Porter, J. E. Drut 
Phys. Rev. A 93, 033639 (2016). 



Results: GS Energetics

L. Rammelmüller, W. J. Porter, J. E. Drut 
Phys. Rev. A 93, 033639 (2016). 



A new anomalous system in 1D
Work in collaboration with

Josh McKenney W. Daza 
C. Lin 
C. Ordóñez



A new anomalous system in 1D
Three species of fermions with a contact three-body force 
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Coupling is dimensionless!

Does a 3-body bound state form?
Is there an anomaly?

Three species: 1, 2, 3

Only a contact three-body force (nothing else!)



Three-body problem & anomaly
Factoring motion. Think of this as a 3D problem. 
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           Motion factors into parallel and 
perpendicular to that line. 

    The latter is effectively in 2D.



Three-body problem & anomaly
Mapping to two-dimensional one-body problem 
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Three-body problem & anomaly
Mapping to two-dimensional one-body problem 
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Separating center-of-mass and relative motion…

Scale-anomalous 2D problem!

It is 1D, but not amenable to Bethe Ansatz.



Three-body problem & anomaly
Other cases? 

Coupling units (contact n-body, d-dimensions)
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d(n� 1) = 2

When is it dimensionless?

d = 1 & n = 3

d = 2 & n = 2
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Thermodynamics and contact
Exact properties 

Virial coefficients

No interaction unless 3 or more particles present…

Equivalence of the 1D 3-body and 2D 2-body problems… 
(in relative coordinates) 
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Known from Beth-Uhlenbeck formula

�b2 = 0



Thermodynamics and contact

Truly scale invariant
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Anomalous
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Exact properties 

“Contact density”  
  of our 1D problem



Thermodynamics and contact
Exact properties in a harmonic trap 

Truly scale invariant Anomalous
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“Contact” of our 1D problem



Thermodynamics and contact
Toward the many-body problem 

The path-integral representation of the partition function 
requires a Hubbard-Stratonovich transformation
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Thermodynamics and contact
Toward the many-body problem 

The path-integral representation of the partition function 
requires a Hubbard-Stratonovich transformation

For the three-body force case:

e⌧g3n̂1(x)n̂2(x)n̂3(x) =
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interaction auxiliary field

Z = Tre��(Ĥ�µN̂) =

Z
D�det3M [�]

F (�) = ei2�/3 cos2 �

B = 1.63... (e⌧g3 � 1)1/3

Straightforwardly generalized to n-body forces. But: sign problem.



Thermodynamics and contact
Toward the many-body problem: pressure EoS 
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Fermions
Fermions

T

Trimer gas
?

Trimer gas

?

Tcross

The 1D trimer crossover

Tcross

⌘ = ln(✏F /✏B)



Thermodynamics and contact
Open questions 

How can we realize this system experimentally? 
What is the effect of asymmetries? 
Can we induce superfluid correlations? 
How to deal with sign problem? 
Can we use diagrammatic self-consistent methods (Luttinger-Ward)? 
What are the transport properties?



Summary & Conclusions
    - There are two possible scale-anomalous non-relativistic systems 

with contact interactions: 2D with 2-body forces  
                                                                1D with 3-body forces 

 

- We have the beginnings of a characterization of the 
thermodynamics and contact of these systems, both in the ground 
state and at finite temperature, complementing other approaches 
and comparing with experiments. 

  - There is room for improvement in the 2D case at finite temperature. 

  - Treating the 1D case with 3-body forces in a non-perturbative way 
presents a sign problem that remains open.  

  - However, we have derived universal relations and virial theorems 
involving the 3-body contact, and determined b3. 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Thank you!


