

SEARCH FOR FOUR- AND SIX- QUARK EXOTIC STATES WITH CS QUARK CONTENT

Program:MATTER AND THE UNIVERSETopic:Cosmic Matter in the LaboratoryResearch Unit:IKP-1

Elisabetta Prencipe, Forschungsentrum Jülich (DE)

HIRSCHEGG 2018 – Multiple resonances in hadrons, nuclei and ultra-cold gases

- Introduction
- Main achievements in cs-spectroscopy at e⁺e⁻ colliders
- Resonances with hidden strange quark content
- Open questions and possible interpretation
- Looking forward to new experiments
- Summary

INTRODUCTION

- Standard model of particles physics:
 - Elementary particles
 - Mesons ($\overline{q}q$)
 - Baryons (qqq)
- Other possibilities considered, nowadays. Why?
- Since 2003 several observations not fitting the potential models
- New possibilities:
 - tetraquarks
 - hybrids
 - molecular states
 - hadrocharmonium
 - pentaquarks
 - hexaquarks.....

WHY CHARM- / CHARMONIUM?

- Gell-Mann Zweig idea: Constituent Quark Model (CQM). Still valid since half century
 - \rightarrow it classifies all known hadrons
- QCD describes the force binding quarks into hadrons
- Perturbation theory: limited applicability at scale corresponding to the separation between quarks inside hadrons
- Many models available to describe spectra and properties of hadrons: those incorporating features of the QCD are the most useful
- QCD-motivated models predict the existence of hadrons with more complex structures than simple qq or qqq.
- Lot of experimental effort to prove it!
- No unambiguous evidence for hadrons with non-CQM like structure has been found, but indeed....
- The study of Charm-onium(-like) spectrum (e.g., c(c) + xx) have uncovered a number of candidates that not seem to conform CQM expectations
- Exotic states are predicted to exist in the <u>light meson spectrum</u> →difficult to disentangle from the dense background of conventional states
- Charmonium spectrum provide a cleaner environment: \overline{cc} + xx exotics easier to identify

QUARK BOUND STATES

CHARM- AND CHARM-STRANGE SPECTRUM

 $\overline{M}_{D} = (1864.91 \pm 0.17) \text{ MeV/c}^{2}$ $M_{\pm} - M_{0} = (4.74 \pm 0.28) \text{ MeV/c}^{2}$

Theoretical prediction have been in qualitative agreement with experimental results...until 2003!

CHARMONIUM SPECTRUM

16/01/18

For >30 years theory and experiments agreed. Then something happened.

How has the story begun?

For >30 years theory and experiments agreed. Then something happened.

How has the story begun?

Phys. Rev. Lett. 90 (2003) 242001 BaBar, accepted 17 June 2003 Observation of a Narrow Meson State Decaying to $D_s^+\pi^0$ at a Mass of 2.32 GeV/c²

For >30 years theory and experiments agreed. Then something happened.

How has the story begun?

Phys. Rev. Lett. 90 (2003) 242001BaBar, accepted 17 June 2003Observation of a Narrow Meson State Decaying to $D_s^+ \pi^0$ at a Mass of 2.32 GeV/c2Phys. Rev. Lett. 91 (2003) 262001Belle, accepted 23 December 2003Observation of a Narrow Charmoniumlike State in Exclusive $B^{\pm} \rightarrow K^{\pm}\pi^{+}\pi^{-}J/\psi$ Decays

HIGHLIGHT PAPER IN BABAR: D_{s0}*(2317)⁺

BaBar experiment optimized for CP violation study, measurement of angles and sides of the CKM matrix. For comparison:

"Observation of CP violation in the B⁰ meson system"

Phys.Rev.Lett. 87 (2001) 091801 e-Print: <u>hep-ex/0107013</u> Experiment: <u>SLAC-PEP2-BABAR</u> 846 citations

"Observation of a narrow meson decaying to ${\sf D^+_s}\pi^0$ at a mass of 2.32-GeV/c² "

Phys.Rev.Lett. 90 (2003) 242001 e-Print: <u>hep-ex/0304021</u> Experiment: <u>SLAC-PEP2-BABAR</u>

805 citations

THE PUZZLING CASE OF $D_{s0}^{*}(2317)^{+}$ AND $D_{s1}(2460)^{+}$

THE PUZZLING CASE OF $D_{s0}^{*}(2317)^{+}$ AND $D_{s1}(2460)^{+}$

$D_{sJ}^{*}(2317)^{+}$	$D_{sJ}(2460)^+$
Seen	Forbidden
Forbidden	Seen
Allowed	Allowed
Forbidden	Seen
	Seen
Forbidden	Allowed
Allowed	Allowed
Allowed	Allowed
Forbidden	Seen
	$\frac{D_{sJ}^{*}(2317)^{+}}{\text{Seen}}$ Forbidden Allowed Forbidden Forbidden Allowed Allowed Forbidden

(a) Non-resonant only

- **D** $_{s0}^{*}(2317)^{+}$ is found below the DK threshold:
- D_{s0}^{*}(2317)⁺ can in principle decay
 - electromagnetically (no exp. evidence); or
 - through isospin-violation ${\sf D_s}^{*}\pi^0$ strong decay

Is
$$D_{s0}^{*}$$
 the missing 0⁺ state of the *cs-spectrum*?

- Most of theoretical works treat cs-systems as the hydrogen atom (potential models, c = heavy quark):
- D_{s0}^{*}(2317)⁺ and D_{s1}(2460)⁺ are predicted, found with good accuracy <u>but</u>:
- m(D_{s0}^{*}(2317)⁺) found 160 MeV/c² lower
- m(D_{s1}(2460)⁺) found 120 MeV/c² lower than predicted by potential models
- D_{s1}(2460)⁺ is found in the inv. mass $D_s^+\gamma$
- Spin <u>at least</u> 1
- We can exclude the hypothesis 0⁺, because $D_{s1}(2460)^+ \rightarrow D_s^+ \gamma$

Is D_{s1} the missing 1⁺ of the *cs-spectrum*?

THE PUZZLING CASE OF $D_{s0}^{*}(2317)^{+}$ AND $D_{s1}(2460)^{+}$

Is D_{s0}^{*} the missing 0⁺ state of the *cs-spectrum*?

 Most of theoretical works treat cs-systems as the hydrogen atom (potential models, c = heavy quark):
 D_{s0}*(2317)⁺ and D_{s1}(2460)⁺ are predicted, found with good accuracy but: m(D_{s0}*(2317)⁺) found 160 MeV/c² lower m(D_{s1}(2460)⁺) found 120 MeV/c² lower

- than predicted by potential models
- **D**_{s1}(2460)⁺ is found in the inv. mass $D_s^+\gamma$
- Spin <u>at least</u> 1
- We can exclude the hypothesis 0⁺, because $D_{s1}(2460)^+ \rightarrow D_s^+ \gamma$

Is D_{s1} the missing 1⁺ of the *cs-spectrum*?

Different theoretical approaches, different interpretations	$\Gamma(D_{s0}^{*}(2317)^{+} \rightarrow D_{s}^{\pi^{0}}) \text{ (keV)}$
M. Nielsen, Phys. Lett. B 634, 35 (2006)	6 ± 2
P. Colangelo and F. De Fazio, Phys. Lett. B 570, 180 (2003)	7 ± 1
S. Godfrey, Phys. Lett. B 568, 254 (2003)	10 Pure cs state
Fayyazuddin and Riazuddin, Phys. Rev. D 69, 114008 (2004)	16
W. A. Bardeen, E. J. Eichten and C. T. Hill, Phys. Rev. D 68, 054024 (2003)	21.5
J. Lu, X. L. Chen, W. Z. Deng and S. L. Zhu, Phys. Rev. D 73, 054012 (2006)	32
W. Wei, P. Z. Huang and S. L. Zhu, Phys. Rev. D 73, 034004 (2006)	39 ± 5
S. Ishida, M. Ishida, T. Komada, T. Maeda, M. Oda, K. Yamada and I. Yamauchi, AIP Conf. Proc. 717, 716 (2004)	15 - 70
H. Y. Cheng and W. S. Hou, Phys. Lett. B 566, 193 (2003)	10 - 100 Tetraquark state
A. Faessler, T. Gutsche, V.E. Lyubovitskij, Y.L. Ma, Phys. Rev. D 76 (2007) 133	79.3 ± 32.6 DK had. molecule
M.F.M. Lutz, M. Soyeaur, Nucl. Phys. A 813, 14 (2008)	140 Dynamically gen. resonance
L. Liu, K. Orginos, F. K. Guo, C. Hanhart, Ulf-G. Meißner Phys. Rev. D 87, 014508 (2013)	133 ± 22 DK had. molecule
M. Cleven, H. W. Giesshammer, F. K. Guo, C. Hanhart, Ulf-G. Meißner Eur. Phys. J A (2014) 50 -149	Strong and radiative decays of $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$

The measurement of the **narrow width** plays a leading role in the interpretation of $D_{s0}^{*}(2317)^{+}$

PREDICTIONS FOR THE D_{s0}^{*}(2317)⁺ WIDTH

How does the spectrum look like, nowadays?

CHARM-STRANGE SPECTRUM, TODAY

e⁺e⁻ CHARM(-STRANGE) CROSS SECTION

BELLE

Phys. Rev. Lett. 98 (2007) 092001

LOOKING FOR EXOTIC STRUCTURES WITH DOUBLE CS QUARK CONTENT

Analyzing
$$e^+e^- \rightarrow D_s^+ D_s^-$$
, $e^+e^- \rightarrow D_s^{*+} D_s^-$, $e^+e^- \rightarrow D_s^{*+} D_s^{*-}$
via ISR, BaBar looked for the X(4260)

$$\begin{aligned} &\frac{\mathcal{B}(X(4260) \to D_s^+ D_s^-)}{\mathcal{B}(X(4260) \to J/\psi \pi^+ \pi^-)} < 0.7, \\ &\frac{\mathcal{B}(X(4260) \to D_s^{*+} D_s^-)}{\mathcal{B}(X(4260) \to J/\psi \pi^+ \pi^-)} < 44, \\ &\frac{\mathcal{B}(X(4260) \to D_s^{*+} D_s^{*-})}{\mathcal{B}(X(4260) \to J/\psi \pi^+ \pi^-)} < 30. \end{aligned}$$

- If X(4260) is 1⁻⁻ charmonium state, it should decay mostly to open charm
- If X(4260) is a tetraquark, it should decay to $D_s^-D_s^+$

it does not happen @95%c.l. with 525 fb⁻¹ (BaBar data set)!

THE X(4140)

- The X(4140) was observed in the invariant mass system of $J/\psi KK (\phi \rightarrow K^+K^-)$ [ccs]
- The X(4140) can be considered the strange counterpart of the X(3872)
- Is the X(4140) a real particle?

Events/20 MeV

Events/30 MeV

22

X(4140): INTERPRETATION

- In 2016 a new publication from LHCb (x10 data compared to 2010)
- 1⁺⁺ doublet → problem for diquark anti-diquark tetraquarks
- Solution: interpret X(4140) as threshold effect
- J/ $\psi\phi$ hadro–charmonium: doublet o.k., but:
 - sequence should be $0^{++},\,1^{++},\,0^{++},\,1^{++}$
 - m(J/ψ)+m(φ)= 4116 MeV
 - → <u>positive</u> "binding energy" (~20 MeV) molecules ? → no isospin! → η exchange Karliner, Rosner, Nucl. Phys. A 954 (2016) 365

Phys. Rev. Lett. 118 (2016) 022003

ccss bound states: it wold be interesting to look for those in $D_s^{(*)}D_s^{(*)}$ systems: C=1⁻ not seen here! Remember: J/ ψ is a "*nice*" object to reconstruct; D_s^* can be "*nasty*": too many low momentum photons

LOW MOMENTUM PHOTONS: COMPARISON

р –	$\epsilon(B^+ \rightarrow J/\psi K^+)$		
к _е –	$\epsilon(B^+ \rightarrow J/\psi K^{*+})$	CERN-LHCb-PROC-2015-009	PLB538 (2002) 11 PRD67 (2003) 032003
		LHCb (2012)	Belle (2003)
	R_{ϵ}	13.57±0.12	4.68±0.49

- Belle can reconstruct photons at least 3 times better than LHCb:
 - LHCb: p_{γ} >500 keV/c
 - BaBar, Belle: p_y>100 keV/c

- Cusp = kink in the amplitude of an observable
- There is always a cusp at the opening of S-wave threshold
- To produce peaks as pronounced and narrow, non-perturbative interactions among heavy mesons are needed → there should be a near-by pole
- How to distinguish S-matrix poles from cusps?
 - kinematic threshold cusps cannot produce narrow peaks in invariant mass distributions in elastic scattering processes [Guo et al, PRD91 (2015) 051504]
- Cusps are seen mostly in low-mass meson spectrum

CUSP EFFECTS

CUSP EFFECTS

Exotic state <i>X</i> decaying to:	Sum of masses of the <i>X</i> daughters from PDG [GeV/ c^2]	J ^{PC} combination	Possible interpretation of X as a cusp
$X \rightarrow D_{S} D_{S}^{*}$	4080	0~ ⊗ 1-	X(4140) could be a cusp
$X \rightarrow D_s D^*_{s0}(2317)$	4285	$0^- \otimes 0^+$	X(4274) not OK for a cusp in S-wave, but still possible (unusual) in P-wave
$X \rightarrow D_s D_{s1}(2460)$	4428	0 [−] ⊗ 1 ⁺	mass not compatible with X found
$X \rightarrow D_s D_{s1}(2536)$	4504	0 [−] ⊗ 1 ⁺	compatible with $X(4500)$, but not a cusp
$X \rightarrow D_s D_{s2}(2573)$	4541	$0^- \otimes 2^+$	compatible with $X(4500)$, but not a cusp
$X \rightarrow D_s D_{s2}(2710)$	4678	0 [−] ⊗ 2 [−]	it could be the <i>X</i> (4700)
$X \rightarrow D_s D_{s1-3}(2860)$	4828	0 [−] ⊗ 1 [−] , 0 [−] ⊗ 3 [−]	mass not compatible with <i>X</i> found

Is the X(4140) a cusp? A signal in $D_s^{(*)}D_s^{(*)}$ would exclude its cusp hypothesis

WHERE ELSE TO LOOK FOR \overline{CCSS} POSSIBLE RESONACES?

	-	-	1	
Invariant Mass System	Decay from:	Range [GeV/ c^2]		
$D_s^- D_s^+$	B_s^{0}	[3.936 – 5.298]		
$D_s^- D_s^+ \pi^0$	B _s ⁰	[4.071 – 5.433]		
$D_{s}^{-}D_{s}^{*+}$	B _s ⁰	[4.080 - 5.433]	$B^{*}_{s} \rightarrow D_{s}^{*} D_{s}^{*} \pi^{*}$	
$D_s^- D_{s0}^*(2317)^+$	B _s ⁰	[4.285 – 5.433]		
<i>J</i> /ψφ	B^0	[4.117 - 4.783]		_
<i>J</i> /ψφ	B^{\pm}	[4.117 - 4.787]	$B^{0,\pm} \rightarrow J/\psi \phi K^{0,\pm}$	
<i>J</i> /ψφ	continuum	all range	$e^+e^- \rightarrow J/\psi\phi + anything$	
$D_s^{-}D_{s0}^{*}(2317)^{+}, D_s^{-}D_s^{+}\pi^{0}, D_s^{-}D_s^{*+}$	continuum	all range	$e^+e^- \rightarrow D_s^{(*)+}D_s^{(*)-} + anything$	

HEXAQUARK SEARCH

DIBARYONS

- Di-baryon search
 - R.L. Jaffe (1977) predictions (udsuds)
 - d*(2380) observed at WASA-at-COSY (2014)
 in *np* scattering fits the theoretical prediction.

Phys. Rev. Lett 112 (2014) 202301

- Theoretically these particles could form in the interior of a neutron star.
- Accordingly, the study of neutron stars could fix constraints on di-baryon properties
 - ⇒ quark-gluon plasma, new state of matter,...

HEXAQUARK SEARCH

DIBARYONS & MORE...

- Di-baryon search
 - R.L. Jaffe (1977) predictions (udsuds)
 - d*(2380) observed at WASA-at-COSY (2014) in *np* scattering fits the theoretical prediction.

Phys. Rev. Lett 112 (2014) 202301

Other possibilities?

16/01/18

HEXAQUARK SEARCH

DIBARYONS & MORE...

 $D\overline{D}^*D^{(*)}$

X(3872)

- Di-baryon search
 - R.L. Jaffe (1977) predictions (udsuds)
 - d*(2380) observed at WASA-at-COSY (2014) in *np* scattering fits the theoretical prediction.

Phys. Rev. Lett 112 (2014) 202301

Other possibilities? 3 D^(*) meson bound states (non-strange dibaryon predicted by Goldman in 1989) Canham, Hammer, Springer, PRD 80 (2009) 014009

3 c-quarks

S-wave X(3872)-D scattering cross

section can be evaluated

Å

HEXAQUARK SEARCH

WITH CS QUARK CONTENT

From X(3872)D^(*) to X(4140) D^(*)

→ Hyp: X(4140) →D_s^(*)D_s^(*)

BaBar+Belle suitable for this search (1.5 ab⁻¹)

Belle II: x50 Belle luminosity(~2025)

Calculation non trivial with s-quark

Expected reconstruction efficiency $\leq 1\%$

Analysis in continuum

Future perspectives

Mt. Tsukuba

inac

SuperKEKB asymmetric B meson factory, $e+e- \rightarrow BB$ adjusted to Y(4S) resonance, $\sqrt{s}=10.6 \text{ GeV}$ different beam energies 8 GeV \rightarrow 7 GeV (lower emittance). 3.5 GeV \rightarrow 4 GeV (Touschek lifetime) Upgrade: luminosity peak x40, integrated x50

Belle II Detector

Courtesy of S. Lange

GSI, Darmstadt (DE)

- pp interaction, antiproton beam up to 15.0 GeV/c
- Direct access to all quantum number
- High precision: will measure width ≥50 keV

19 September 2017

CHARM-STRANGE SPECTROSCOPY AT PANDA WIDTH OF THE D_{s0}*(2317)⁺ ICHEP2014, HADRON2017

- pp cross sections in the open-charm sector not measured yet (assumption: 1-100 nb)
- Threshold scan to measure $\Gamma(D_{s0}^{*}(2317)^{+})$ $\overline{p}p \rightarrow D_{s0}^{*}(2317)^{+}D_{s}^{-}, D_{s0}^{*}(2317)^{+} \rightarrow D_{s}^{+}\pi^{0}$
 - Important role of HESR: $\Delta p/p < 10^{-4}$
 - Search for new decay modes of $D_s^{(*)}$
 - Chiral symmetry breaking studies

LHCb: p_{γ} >500–600 MeV/c BaBar, Belle(II): p_{γ} >100, $p_{\pi 0}$ >150 MeV/c PANDA: p_{γ} >30 MeV/c

UL(Γ), LHCb ~1 MeV UL(Γ), Belle ~500 keV UL(Γ), PANDA > 56 keV

CHARM-STRANGE SPECTROSCOPY AT PANDA

ICHEP2014, HADRON2017

Ongoing PandaRoot simulations

Expected 870 Ds/day ($\sigma = 1$ nb) $\cong \mathscr{L}_{initial}$ D_sD_s(2317) system: expected $\epsilon = 1-2\%$

EXTRAPOLATIONS

HADRON2017

 	$\overline{L} = 10^{31} \text{ cm}^{-2} \text{ s}^{-1}$	$\overline{L} = 10^{32} \text{ cm}^{-2} \text{ s}$	-1
Input σ (nb)	Produced events per day <mark>(Start up)</mark>	Produced ev per day(Full	/ents lumi)
20	17280	172800	
10	8640	86400	PANDA
5	4320	43200	pp→D _s ⁻ D _s *(2317)+
2	1728	17280	
1	864	8640	

- Conservative range: σ [1 100] nb
- With L = 10^{31} cm⁻² s⁻¹ (average), 864 produced events/day (hyp: $\sigma = 1$ nb)
- BR(D_s→K⁺K⁻π⁻) = 5.34%
- $D_{s0}^{*}(2317)^{+}$ reconstructed on the D_{s}^{-} recoil efficiency = order of a few points per cent PRL 92, 012002 (2004) PRL 91, 262002 (2003) S/B ~ 5/1, $\varepsilon = 8.2\%$ in e+e- $D_{s}D_{s0}^{*}(2317)$ S/B ~ 2/1, $\varepsilon \in [0.42-2.75]$ 10-4 through B decays Belle II will collect ~ 44000 Ds0*(2317) in 10 years of data taking ($\mathscr{L} = 50$ ab-1)

D_{s0}^{*}(2317)⁺ REMARKS

Two scenarios:

- the $D_{s0}^{*}(2317)^{+}$ is a tetraquark: if a signal is found in $D_{s0}^{-}D_{s0}^{*}(2317)^{+}$ this can be hexaquark
- Known limit of Belle in width measurement:

MEASUREMENT OF NARROW WIDTH AT BELLE

Sensitivity to sub-MeV regime!

SUMMARY

- Exploring hadrons with cs quark content is important
- Charm-strange spectrum still under study from experimental point of view
- Search for four- and six quark states at the beginning
- e^+e^- machines: limitation in measuring the narrow width, but Belle demonstrated sensitivity up to 300 keV (Γ)
- Belle+BaBar combined analysis expected to contribute: high profile analysis!

DFG approved project @ Juelich: "Search for four- and six quark states with cs quark content" First combined BaBar+Belle analysis in spectroscopy

- Future pp machines suitable for this search
- Difficult theoretical predictions in evaluating pp→open charm cross section: data are needed!

Thank you for your kind attention!

e.prencipe@fz-juelich.de

"The greatest danger for most of us lies not in setting our aim too high and falling short; but in setting our aim too low, and achieve our mark." (Michelangelo, 1475 - 1564)