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1. Introduction 

(here at MeV energies, typical for nuclear levels) 
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Nonlinear partial diff. equation for equilibration in a Fermi system 
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Although it looks simple, it is difficult to solve analytically due to the nonlinearity. 
It has the correct Fermi-type equilibrium solution with the temperature 
T= - D/v :	

neq(✏) = {1 + exp[�(v/D)(✏� ✏F )]}�1

The transport coefficients are defined as moments of the transition probability. 
In the simplified case of constant v and D, the equation becomes  
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n ⌘ n (✏, t) occupation number probability distribution
v(✏, t) drift coe�cient
D(✏, t) di↵usion coe�cient
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The analytical solution of the nonlinear equation... 

...is obtained either through a nonlinear transformation and subsequent solution of the 
resulting linear diffusion equation, or via a linear transformation and solution of the  
ensuing Burgers‘ equation.  
 
For a simple theta-function initial distribution 
the analytical result is 

ni(✏) = ✓(1� ✏/✏0)

with  			+	=				t +	ε ,    -=    t – ε. The Fermi distribution is the limit for t           . v v 1a a
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2. Equilibration in a Fermi system (here at MeV energies) 
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Equilibration in a Fermi system 
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Equilibration in a Fermi system (MeV energies) 

Analytical solutions recalculated by T. Bartsch, BSc student HD 2018 

ε	(MeV) 

n	(ε,t)	
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Equilibration in a Fermi system 

Comparison of analytical (dashed) and numerical (solid) solutions  
recalculated by T. Bartsch, BSc student HD 2018 

ε	(MeV) 

n	(ε,t)	
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The fermionic solution at LHC energies with antiparticle creation 

(Analytical solutions, agree with the numerical results) 

Antiparticle creation 

Dirac sea 
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3. An analytical model for equilibration in a Bose system 

                       3.1 Relaxation ansatz 

The system relaxes linearly from the initial nonequilibrium distribution ni(ε)  
towards the Bose-Einstein distribution 

according to	

with the solution 

Apply this to a cold quantum gas (CQG) with a schematic 
θ-function initial condition in the peV-energy region 
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Linear relaxation ansatz 
 
 

									

Bosons	equilibrate	quickly	towards	a	
Bose-Einstein	distribution.	
	(τeq	~	9x	faster	for	
bosons	than	for	fermions)	
	
.

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ε ( neV )

n
(ε
,t

)

ni(✏) = Ni✓(1� ✏/✏t)

T= 8 peV ≈ 90 nK < Tc 
µ = - 4.3 peV 

	1	ms	

6	ms	



13	

Video: Linear relaxation ansatz 
 
 

									

	
.

T= 8 peV ≈ 90 nK < Tc, τeq= 3.6 ms 
µ = - 4.3 peV 

ε (neV) 

n (ε,t) 

!  The time evolution is discontinuous at εt 

!   BEC formation not included 

!  The evolution is linear 
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3.2 Derivation of the nonlinear equation 

           Boltzmann collision term for bosons 

hV 2
1234i second moment of the interaction

G (✏1 + ✏2, ✏3 + ✏4) energy-conserving function

! ⇡�(✏1 + ✏2 � ✏3 � ✏4) in infinite systems

nj ⌘ n (✏j , t) occupation number
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@t
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hV 2
1234iG (✏1 + ✏2, ✏3 + ✏4)⇥ (1)
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⇤

The Bose-Einstein distribution is a stationary solution 
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Write the collision term in form of a Master equation (ME) with gain- and loss term 

with	the	transition	probability	(		 accordingly) 

Introduce the density of states gj = g(εj)  

W is peaked at ε1	=	ε4	   . Obtain an approximation to the ME through a Taylor  
expansion of n4 and g4n4 around  ε1	=	ε4		to second order. 
 

Derivation of the nonlinear equation	
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Introduce transport coefficients via moments of the transition probability (x=ε4-ε1)  

and arrive at the nonlinear partial differential equation for the distribution of 
the occupation numbers     

Dissipative effects are expressed through the drift term            , diffusive  
effects through the diffusion term  
 
In the limit of constant transport coefficients, the nonlinear boson diffusion  
equation for the occupation-number distribution becomes 
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The Bose-Einstein distribution neq(ε) is a stationary solution of this equation 
with the equilibrium temperature  

(the drift is towards the infrared region). 
 
For fixed equilibrium temperature T, the nonlinear evolution pushes a certain 
fraction of particles from the thermal cloud into the condensate, provided  
T is below Tc. 
 
The nonlinear boson equation can also be written in the form of a continuity 
equation 

with the probability current 
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At ε = 0, this corresponds to the flow of occupation probability from the thermal 
cloud into the condensate if the sign of the current is negative, and from the 
condensate into the thermal cloud if the sign is positive. 
 
The stationary state – that replaces the thermal equilibrium solution – is reached  
for  t = τstat, which can be computed from the condition  

Overall particle number is conserved, if both the particles in the thermal cloud 
plus the ones in the condensed state are considered	

Ntot = Nth(t) +Nc(t)

with the time-dependent particle number in the thermal cloud	

and the density of states	
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3.3 Solution of the nonlinear equation 

The transformation 

reduces the nonlinear boson equation to a linear diffusion equation for P(ε,t)	

Alternatively, the linear transformation	

yields the nonlinear Burgers‘ equation for w(ε,t)	

It can be solved using Hopf‘s transformation	
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This reduces Burgers‘ equation to the heat equation	

Solving it and transforming back results in the final solution	

with a gaussian part that arises from the heat equation	

and an exponential function that contains an integral over the 
initial distribution ni(y)  	
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3.4 Application to a cold quantum gas:              
Exact analytical solution for θ-function initial condition 
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with the auxiliary functions u0(✏, t) =
1

2
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The analytical result agrees with the numerical solution. 
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Nonlinear equilibration of a bosonic CQG 
         for θ-function initial condition 

t = 0.01 – 2 ms, τeq = 4D/(9v2) = 3.6 ms, T = 8 peV ≈ 90 nK    
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n
(✏
,t
)

✏ (neV )

Video: Nonlinear time evolution of 
   the boson distribution	
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Equilibration time for bosons vs. fermions 

An explicit expression for the bosonic equilibration time follows from an 
asymptotic expansion of the error functions occuring in the solutions 

with argument zb at the boundary xb = εt 	

Deviations from the thermal solution thus scale with	

and the equilibration time in a Bose system becomes for Ni = 1 

⌧Bose
eq = 4D/(9v2) = ⌧Fermi

eq /9

exp[�(1 + 2Ni)
2v2t/(4D)] ⌘ exp[�t/⌧eq]
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4.  Application to CQG: Evaporative cooling 
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Integrands for an initial truncated BE distribution 

!  The particle content in the 
thermal cloud is reduced 
with time because particles 
move into the condensed 
state. 

!  The discontinuity at ε = εt 
     disappears and a thermal  
     tail develops within the	
     equilibration time τeq . 
 
!  The time evolution is 

nonlinear 
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5.  Summary and Conclusion 

!   From the bosonic Boltzmann collision term a nonlinear partial differential 
     equation for the time-dependent occupation-number distribution in a finite 
     Bose system has been derived. 

!  The resulting nonlinear bosonic diffusion equation has been solved 
     analytically. 
 
!  The solution has been applied to a cold quantum gas with a schematic 
      initial distribution, and to evaporative cooling with a truncated equilibrium 
      distribution. The flow from the thermal cloud into the condensate has  
      been determined. 
 
!  The equilibration time in a Bose system has been calculated analytically 
      within the nonlinear model, and is found to be ~ one order of  
      magnitude shorter than for fermions due to the statistical properties. 
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