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1. Introduction

VoLUME 48, NUMBER 15 PHYSICAL REVIEW LETTERS 12 ApriL 1982

Equilibration in Finite Fermion Systems

Georg Wolschin
Max -Planck -Institut fiiyr Kevnphystk, and Institul fiiy Theovelische Physik der Universitat,
Heidelberg, Fedeval Republic of Germany
(Received 14 October 1981)

A novel nonlinear transport equation for the time-dependent single-particle occupation
numbers in an equilibrating fermion system is derived. In the case of constant transport
coefficients its analytical solution together with an expression for the equilibration time
is obtained. Applications in mean-field theories extended to include particle collisions
for the description of low-energy heavy-ion reactions are envisaged.

PACS numbers: 24,60,+m, 24,90.+d, 25.70.Bec

(here at MeV energies, typical for nuclear levels)
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Nonlinear partial diff. equation for equilibration in a Fermi system

on 0 , 0D 0’n
E——&[vn(l—n)%—n E]JFD@

n =n(e,t) occupation number probability distribution
v(e, t) drift coefficient
D(e,t) diffusion coefficient

The transport coefficients are defined as moments of the transition probability.
In the simplified case of constant v and D, the equation becomes

on 0 0*n

Although it looks simple, it is difficult to solve analytically due to the nonlinearity.
It has the correct Fermi-type equilibrium solution with the temperature
=-Dl/v:

Neq(€) = {1+ exp[—(v/D)(e — €p)]} ™
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The analytical solution of the nonlinear equation...

...Is obtained either through a nonlinear transformation and subsequent solution of the
resulting linear diffusion equation, or via a linear transformation and solution of the
ensuing Burgers’ equation.

For a simple theta-function initial distribution  n;(e) = 0(1 — €/¢¢)
the analytical result is

n(e,t) = % { [ e%(éo—e)( 7:Dt exp(_ (GOID(;_)Q) _ %[1 — erf(a\)/%)]>

with a ,=vt+¢,a _= vt-¢. The Fermi distribution is the limit for t — o0 .
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2. Equilibration in a Fermi system (here at MeV energies)
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FIG. 1. Analytical solutions of the nonlinear differen-
tial equation (7) for the occupation-number distribution
in a finite fermion system. The initial distributions
(dashed curves) are n,, the equilibrium distribution is
7 .. The transport coefficients are D = 20x 102 MeV?
s™!, v ==5x10% MeV s™!. Times are in units of
10" % s.
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Equilibration in a Fermi system
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FIG. 2. Comparison of the results for the relaxation
Ansatz (left-hand side, with 7,y =4D/v? and the ana-
lytical solutions of Eq. (7) (right-hand side). Three
different initial distributions » ; are shown. The relax-
ation Ansatz causes a slower equilibration at short

times. ,
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Equilibration in a Fermi system (MeV energies)
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Analytical solutions recalculated by T. Bartsch, BSc student HD 2018
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Equilibration in a Fermi system
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The fermionic solution at LHC energies with antiparticle creation

Antiparticle creation

= Dirac sea
0.2 T=508 MeV
%0 o5 00 05 10 15 20
£(GeV)

(Analytical solutions, agree with the numerical results)
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3. An analytical model for equilibration in a Bose system
3.1 Relaxation ansatz

The system relaxes linearly from the initial nonequilibrium distribution n;(e)
towards the Bose-Einstein distribution

B 1
Neq(€) = o(e—m/T _ 1

according to
0 nrel/ ot = (neq — nrel)/ Teq

with the solution

Mrel(€, ) = ni(€) €770 4 ngq (€) (1 — e7/™a)

Apply this to a cold quantum gas (CQG) with a schematic
0-function initial condition in the peV-energy region
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Linear relaxation ansatz
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T=8peV=90nK<T,
u=-4.3peV
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Bosons equilibrate quickly towards a
Bose-Einstein distribution.

(Teq ~ 9x faster for

bosons than for fermions) 12



Video: Linear relaxation ansatz
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» The time evolution is discontinuous at ¢,
T=8peV=90nK<T

u=-4.3 peV

o Teg™ 3-6 Ms

> BEC formation not included

> The evolution is linear 13



3.2 Derivation of the nonlinear equation

Boltzmann collision term for bosons

on -~
a_tl — Z <V12234> G (61 _l_ 62, €3 _|— 64) X
€2,€3,€4

[(1 -+ nl)(l —+ ng) ng Ny — (1 + ng)(l -+ 714) n1 712-‘

<V12234> second moment of the interaction
G (€1 + €2,€3 + €4) energy-conserving function

— md(€1 + €2 — €3 — €4) in infinite systems

n; =n(€;,t) occupation number

The Bose-Einstein distribution is a stationary solution

B 1
Neq(€) = o(e—m/T _ 1
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Derivation of the nonlinear equation

Write the collision term in form of a Master equation (ME) with gain- and loss term

dnl

dt 1 +n1)ZH 4—1 M4 —anW]_M(l +7I4)

€4

with the transition probablllty ( W14 accordingly)

Wi = Z (V12234) G (€1 +€,€e3+€4) (1 +ng)ng

€2,€3
Introduce the density of states g; = g(¢))
Wi =W, 4191, Wisa = IVl‘igJ

Wia = War = W5(ea + 1), [ea — ]

W is peaked at ¢, = ¢, . Obtain an approximation to the ME through a Taylor
expansion of n, and g,n, around ¢, = ¢, to second order.

Hirschegg 2018 15



Introduce transport coefficients via moments of the transition probability (x=g,-¢,)

1

o0
D = §g1/ Wier,x) r?dr, v= 91—1
0

d

—(q1 D

o (91D)

and arrive at the nonlinear partial differential equation for the distribution of
the occupation numbers  n = ngy, (€, t) = nyn(eq, t)

on 0 50D 9?2

— VN 1 + - ‘n, — | + —= D T

ot Oe [ ( n) Oe ] Oe? [ ]
Dissipative effects are expressed through the drift term (e, ), diffusive
effects through the diffusion term D(e, ¢).

In the limit of constant transport coefficients, the nonlinear boson diffusion
equation for the occupation-number distribution becomes

on 0 9%n
P —va[n(l-l-n)] +D0T
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The Bose-Einstein distribution n..(¢) is a stationary solution of this equation
with the equilibrium temperature

T = —D/v with v < 0
(the drift is towards the infrared region).

For fixed equilibrium temperature T, the nonlinear evolution pushes a certain
fraction of particles from the thermal cloud into the condensate, provided
T is below T..

The nonlinear boson equation can also be written in the form of a continuity

equation _ ‘
on y 1 95 0
ot  g(e) Oe
with the probability current
. on
jle,t) = g(e)[vn(1+n)— D d_] :

i 201
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At ¢ = 0, this corresponds to the flow of occupation probability from the thermal
cloud into the condensate if the sign of the current is negative, and from the
condensate into the thermal cloud if the sign is positive.

The stationary state — that replaces the thermal equilibrium solution — is reached
for t =T, Which can be computed from the condition

on(0, Tstat )

v (0, Tstat) [1 + n(0, Tstar)] = D e

Overall particle number is conserved, if both the particles in the thermal cloud
plus the ones in the condensed state are considered

Niot = Nin(t) + Ne(2)
with the time-dependent particle number in the thermal cloud
o0
Na(t)= [ n(et)g()de
0

and the density of states
g(€) = (2m)*/?V Ve / (4n?) .



3.3 Solution of the nonlinear equation

The transformation
D  OP(e,t)
vP(e,t) Oe
reduces the nonlinear boson equation to a linear diffusion equation for P(e,t)

P; = —vFP, + DP,

n(et) = —

Alternatively, the linear transformation

1 1
n(et) = %w(e,t) —3

yields the nonlinear Burgers’ equation for w(e,t)

wi + wwe = Dwg,.
It can be solved using Hopf's transformation
w(e, t) = —2D¢¢ /o
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This reduces Burgers’ equation to the heat equation

Ot = D@ee.

Solving it and transforming back results in the final solution

n(e, t) = [ow (¢ — 3) Fle —x,t) G(z) do

f+°? F(e —z,t)G(x) dx

— 00

with a gaussian part that arises from the heat equation

and an exponential function that contains an integral over the
initial distribution n,(y)

G(z) = exp [—% (vz +20 /0 () dy)‘
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3.4 Application to a cold quantum gas:
Exact analytical solution for 6-function initial condition

| 1 ng(€,t) + ny(e, t) + ne(e, t) 1
n(e,t) = — X [nd(e.z‘) + ne(e, t) + ng(e, f)] 9

2V

ng(€,t) = exp [%(Uztﬂ — fue)} X [fu VDt [1 + erf (ug (e, t))} + 2D exp[—(ug (e, t))Q]] :

ny(e, 1) = exp [%(90%/2 - 3%)} x lsv\/@ [erf (us(e, t)) — erf (u (e, t))}
2D [exp[—(uQ(e, £))2] — exp[— (u1 (e, t))2]]] ,

ne(e, t) = exp[%(v%ﬂ — ve — 2v et)] X [v VDt [1 — erf (us (e, t))]

—2D exp[—(us(e, t))2]] :

i 201
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na(e,t) = VrDE exp[i(v%/z )| x 1+ erf (uole,1))]

2D
ne(e, t) = VrDt exp[%(9v2t/2 — 3?}6)} X [erf(uz(e,t)) — erf (uq (e,t))] :

ng(e,t) = VDt exp[%(v%ﬂ — ve — 20 et)] X [1 — erf(ug(e,t))] :

with the auxiliary functions  y (e, ) = 2\/11)7(_6 Lot
w(ert) = S+ 3u1),

us(e,t) = 2\/15(675 — €+ 3ut),

usz(e, t) = 2\/1E(6t — e+ ut).

The analytical result agrees with the numerical solution.
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Nonlinear equilibration of a bosonic CQG
for 6-function initial condition
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Thermal tail builds up
t=0.01-2ms, 1, ,=4D/(9v?) =3.6 ms, T =8 peV = 90 nK

' Yeq
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Video: Nonlinear time evolution of

n(e,t)

the boson distribution

e (neV)
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Equilibration time for bosons vs. fermions

An explicit expression for the bosonic equilibration time follows from an
asymptotic expansion of the error functions occuring in the solutions

1
ﬁzb

with argument z, at the boundary x, = ¢,

. 1
erf (2p) ~ 1 — exp[—2p] + exp(—2;) 0(3)

“b

1
Zh = rp — €+ (1 4+ 2N;) vt |.
b Nﬁ[ b ( ) vt ]

Deviations from the thermal solution thus scale with

exp[—(1 + 2N;)?v?t/(4D)] = exp|—t/Teq]

and the equilibration time in a Bose system becomes for N, = 1

7_Bose — 4D/(9U2) — 7_Fermi/g

eq €q
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4. Application to CQG: Evaporative cooling
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Figure 1: (color online) Equilibration of a finite Bose system
based on the nonlinear evolution according to Eq.(7) start-
ing from a truncated equilibrium distribution as in evapora-
tive cooling Eq.(19), upper curve with cutoff at ¢ =7 peV.
The transport coefficients are D = 8 x 10 *neV?s™!, v =
—1neVs~!. The temperature T = —D/v = 8 x 102 neV ~
931K is below the critical value for ® Rb. The time sequence
is 0.001,0.01,0.2,0.5,2 and 5 ms (top to bottom) with the
equilibration time 7oq = 4D/(9v?) ~ 3.6 ms. The nonequilib-
rium occupation drops below the thermal equilibrium values
because the particles are redistributed into the BEC ground
state in the IR, and into a new UV thermal tail.
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Integrands for an initial truncated BE distribution
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Figure 2: (color online) Integrands n(e, t) \/€ for the nonlinear
evolution according to Eq.(7) with initial condition Eq.(19),
upper curve with cutoff at ¢ =7 peV. The integrands are shown
at six values of time ¢ from 0.001 ms to 5 ms, top to bottom,
as in Fig.1. The integrated particle number Eq.(20) in the
nonequilibrium thermal cloud is not conserved during the time
evolution since particles in the IR move into the € = 0 conden-
sate. With increasing time a new nonequilibrium thermal tail
develops in the UV.

» The particle content in the
thermal cloud is reduced
with time because particles
move into the condensed
state.

» The discontinuity at € = ¢,
disappears and a thermal
tail develops within the
equilibration time t, .

> The time evolution is
nonlinear
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5. Summary and Conclusion

From the bosonic Boltzmann collision term a nonlinear partial differential
equation for the time-dependent occupation-number distribution in a finite
Bose system has been derived.

The resulting nonlinear bosonic diffusion equation has been solved
analytically.

The solution has been applied to a cold quantum gas with a schematic
initial distribution, and to evaporative cooling with a truncated equilibrium
distribution. The flow from the thermal cloud into the condensate has
been determined.

The equilibration time in a Bose system has been calculated analytically

within the nonlinear model, and is found to be ~ one order of
magnitude shorter than for fermions due to the statistical properties.
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Thank you for your attention |

Hirschegg 2018

29



