Three-body unitarity in the Finite Volume

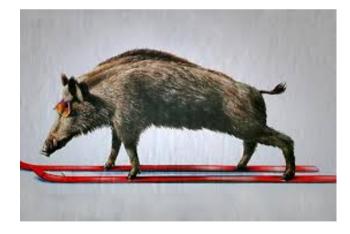
Michael Döring The George Washington University WASHINGTON UNIVERSITY WASHINGTON, DC

THE GEORGE

Collaboration:

3-body: M. Mai, J-Y. Pang, B. Hu, H.W. Hammer, A. Rusetsky, A. Szczepaniak, A. Pilloni **2-body**: M. Mai, R. Molina, B. Hu, D. Guo, A. Alexandru

Hirschegg 2018 Multiparticle resonances in hadrons, nuclei, and ultracold gases International Workshop XLVI on Gross Properties of Nuclei and Nuclear Excitations Hirschegg, Kleinwalsertal, Austria, January 14 - 20, 2018



Supported by

DOE DE-AC05-06OR23177 & DE-SC0016582; NSF PIF 1415459 & CAREER PHY-1452055

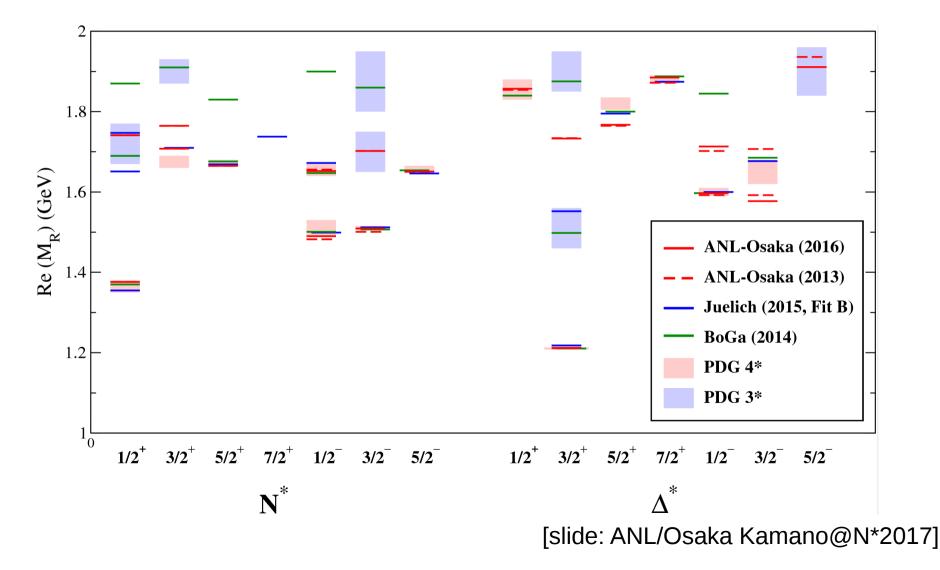
[Many slides from Maxim Mai]

HPC JSC grant jikp07

- **QCD** at low energies
- Non-perturbative dynamics
 - Q1: how many are there?
 - **Q2**: what are they?

- → mass generation & confinement
- → rich spectrum of excited states
 (missing resonance problem)

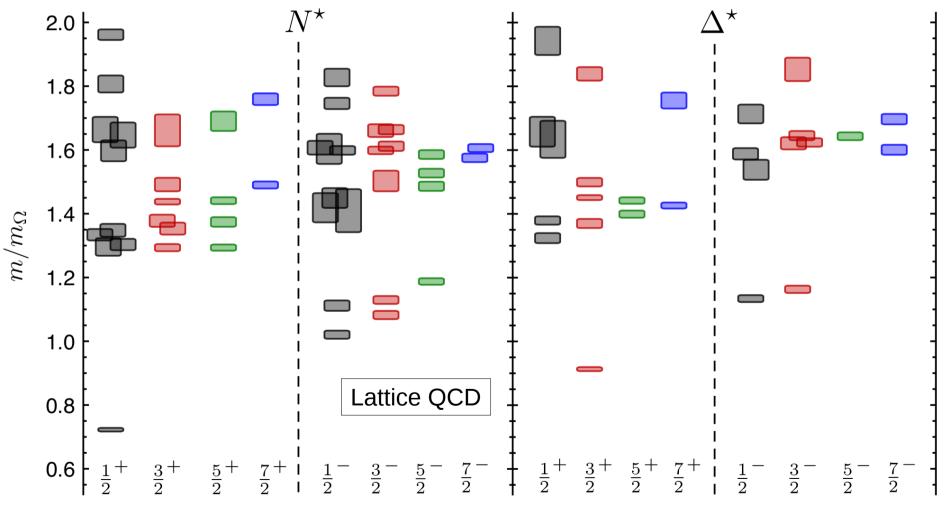
(2-quark/3-quark, hadron molecules, ...)



- **QCD** at low energies
- Non-perturbative dynamics
 - Q1: how many are there?
 - **Q2**: what are they?

- → mass generation & confinement
- → rich spectrum of excited states
 (missing resonance problem)

(2-quark/3-quark, hadron molecules, ...)



 $M_{\pi} = 396 \text{ MeV}$

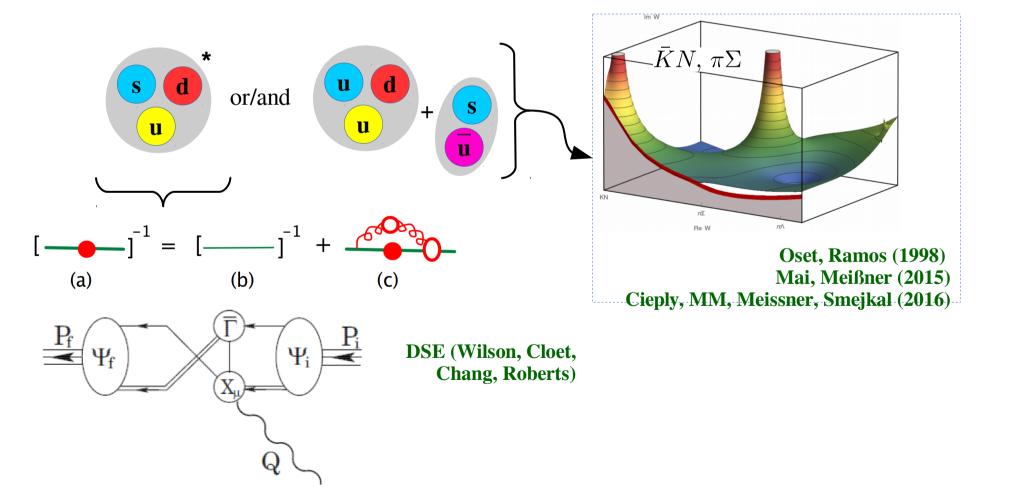
Edwards et al. (2011)

- **QCD** at low energies
- Non-perturbative dynamics

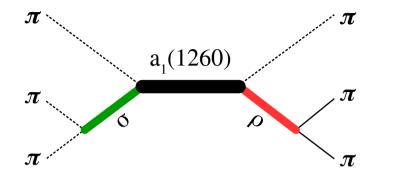
Q1: how many are there?

Q2: what are they?

- → mass generation & confinement
- → rich spectrum of excited states
 (missing resonance problem)
 (2-quark/3-quark, hadron molecules, exotics,...)

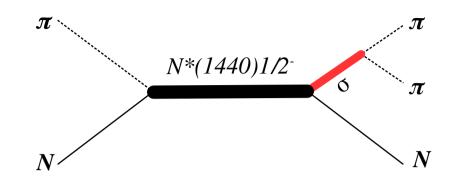


• Dynamics is important! Many states have dominant 3-body content



- important channel in GlueX @ JLab

- Finite volume spectrum from lattice QCD Lang, Leskovec, Mohler, Prelovsek (2014)



- Roper is debated for ~50 years
- first Lattice QCD results:
 - · Detection on lattice notoriously difficult
- 1st simulation w. meson-baryon operators:
- Finite volume spectrum Lang et al. (2017)

Universal understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX)
 → theory of 3-body scattering problem

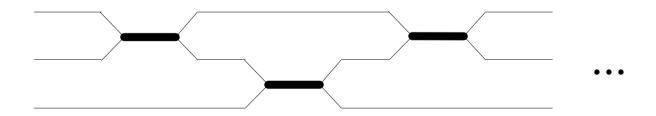
• Available tools:

- Faddeev equations (F.E.)
- F.E. in fixed-center approximation
 - \rightarrow usefull for πd , Kd ... systems
- F.E. in isobar formulation

 \rightarrow re-parametrization of two-body amplitude

Faddeev(1959) Brueckner(1953) Baru et al(2011) Mai et al. (2015)

> Omnes(1964) Aaron(1967) Bedaque(1999)



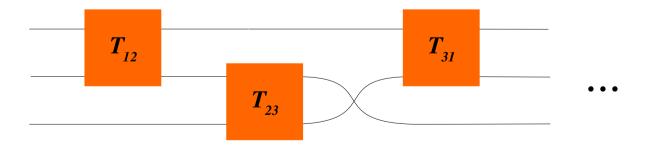
Universal understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX)
 → theory of 3-body scattering problem

• Available tools:

- Faddeev equations (F.E.)
- F.E. in fixed-center approximation
 - \rightarrow usefull for πd , Kd ... systems
- F.E. in isobar formulation
 - \rightarrow re-parametrization of two-body amplitude

Faddeev(1959) Brueckner(1953) Baru et al(2011) Mai et al. (2015)

> Omnes(1964) Aaron(1967) Bedaque(1999)



FADDEEV EQUATIONS WITH ISOBARS

M. Mai, Hu, M. D., Pilloni, Szczepaniak Eur.Phys.J. A53 (2017) 177

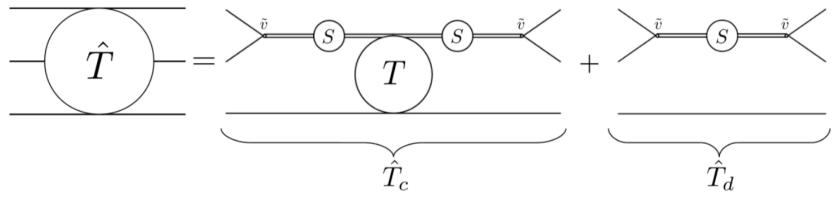
FE in isobar parametrization

Original study by Amado/Aaron/Young

AAY(1968)

- 3-dimensional integral equation from unitarity constraint & BSE ansatz
- valid below break-up energies (E < 3m) & analyticity constraints unclear

One has to begin with asymptotic states



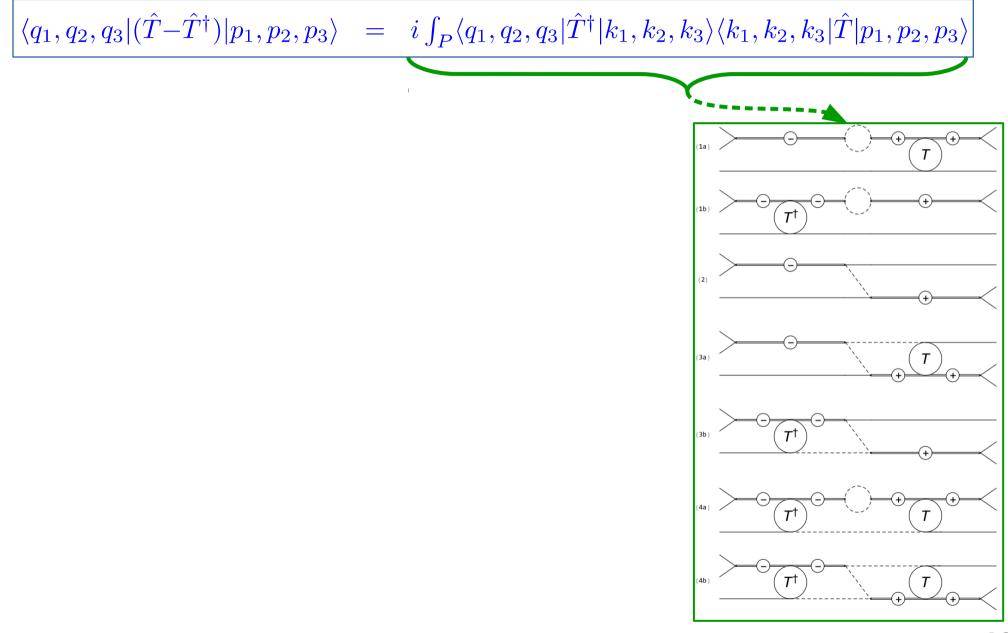
- *v* a general function <u>without cuts in the phys. region</u>
- two-body interaction is parametrized by an *"isobar"*

= has definite QN and correct r.h.-singularities w.r.t invariant mass

• *S* and *T* are yet unknown functions

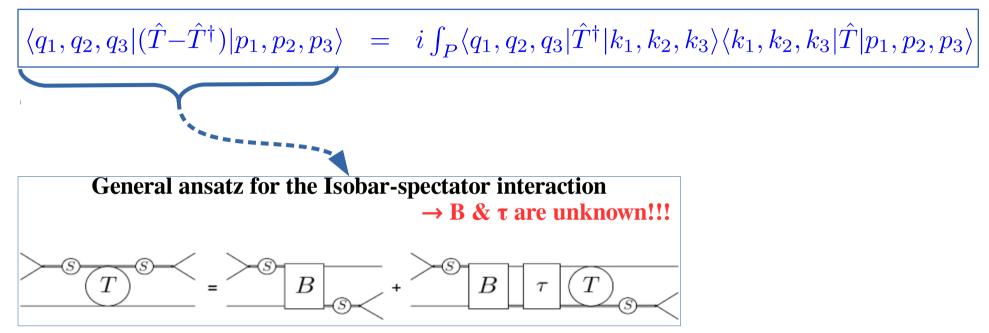
Unitarity & Matching

3-body unitarity (normalization condition ↔ phase space integral)



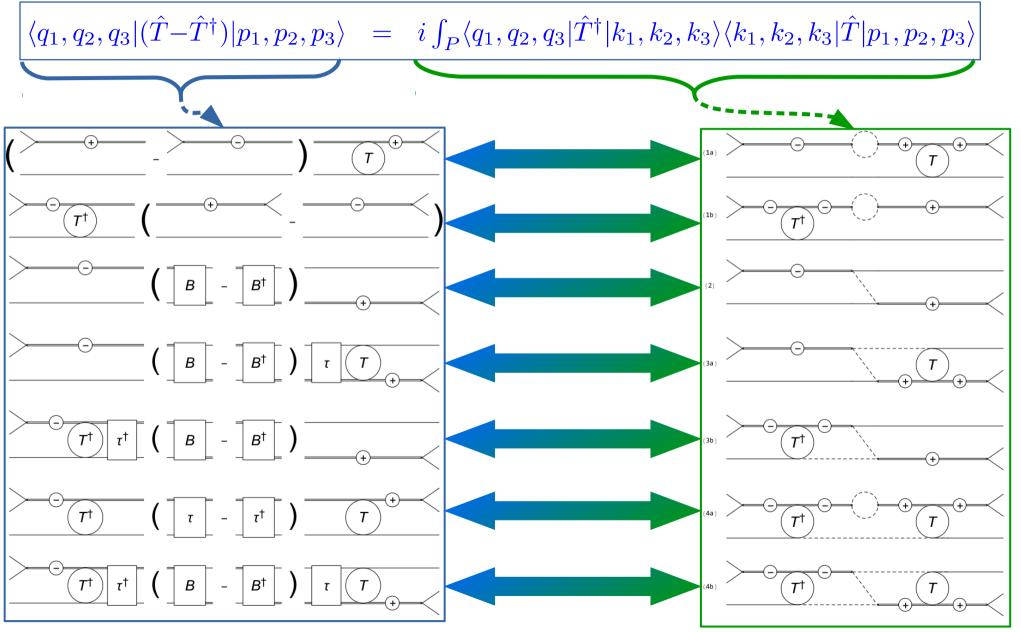
Unitarity & Matching

3-body Unitarity (normalization condition ↔ phase space integral)

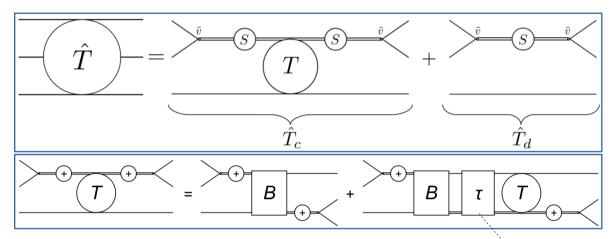


Unitarity & Matching

3-body Unitarity (normalization condition ↔ phase space integral)



 $3 \rightarrow 3$ scattering amplitude is a 3-dimensional integral equation

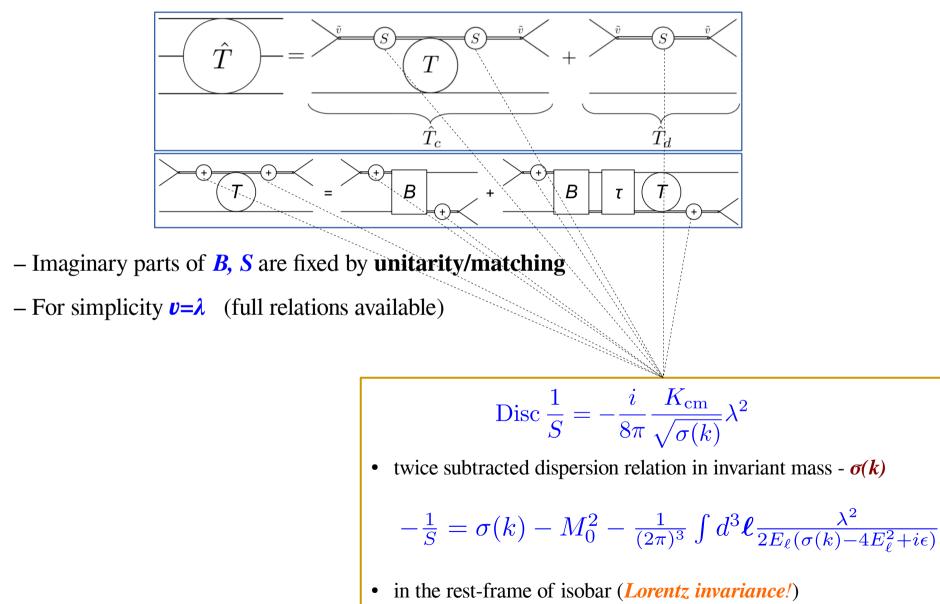


– Imaginary parts of **B**, **S** are fixed by **unitarity/matching**

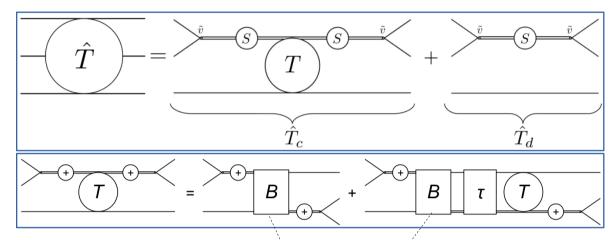
- For simplicity $v = \lambda$ (full relations available)

 $\tau(\sigma(k)) = (2\pi)\delta^+(k^2 - m^2)S(\sigma(k))$

$3 \rightarrow 3$ scattering amplitude is a 3-dimensional integral equation



 $3 \rightarrow 3$ scattering amplitude is a 3-dimensional integral equation



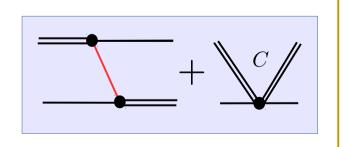
- Imaginary parts of **B**, **S** are fixed by **unitarity/matching**
- For simplicity $v = \lambda$ (full relations available)

Disc
$$B(u) = 2\pi i \lambda^2 \frac{\delta \left(E_Q - \sqrt{m^2 + \mathbf{Q}^2}\right)}{2\sqrt{m^2 + \mathbf{Q}^2}}$$

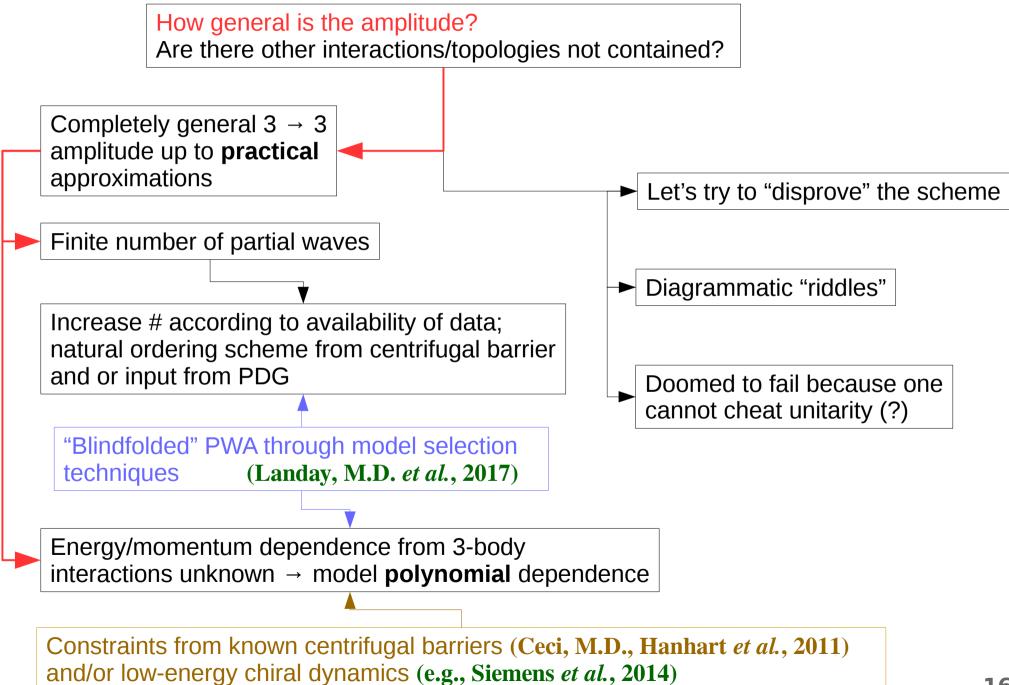
• un-subtracted dispersion relation

$$\langle q|B(s)|p\rangle = -\frac{\lambda^2}{2\sqrt{m^2 + \mathbf{Q}^2}\left(E_Q - \sqrt{m^2 + \mathbf{Q}^2} + i\epsilon\right)} + C$$

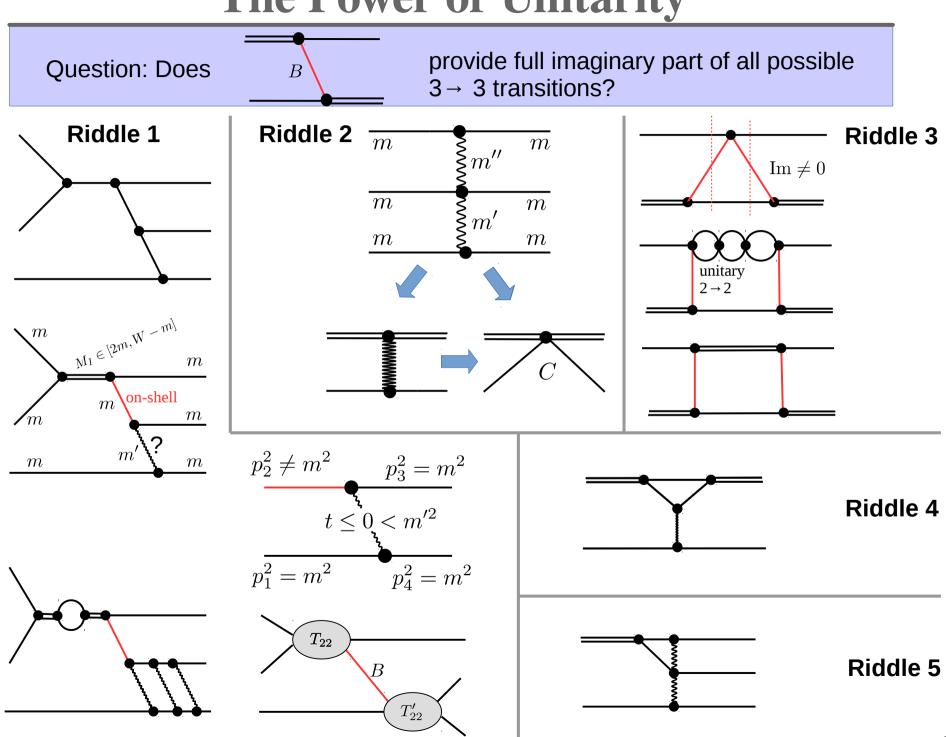
• one- π exchange in TOPT \rightarrow *RESULT* !

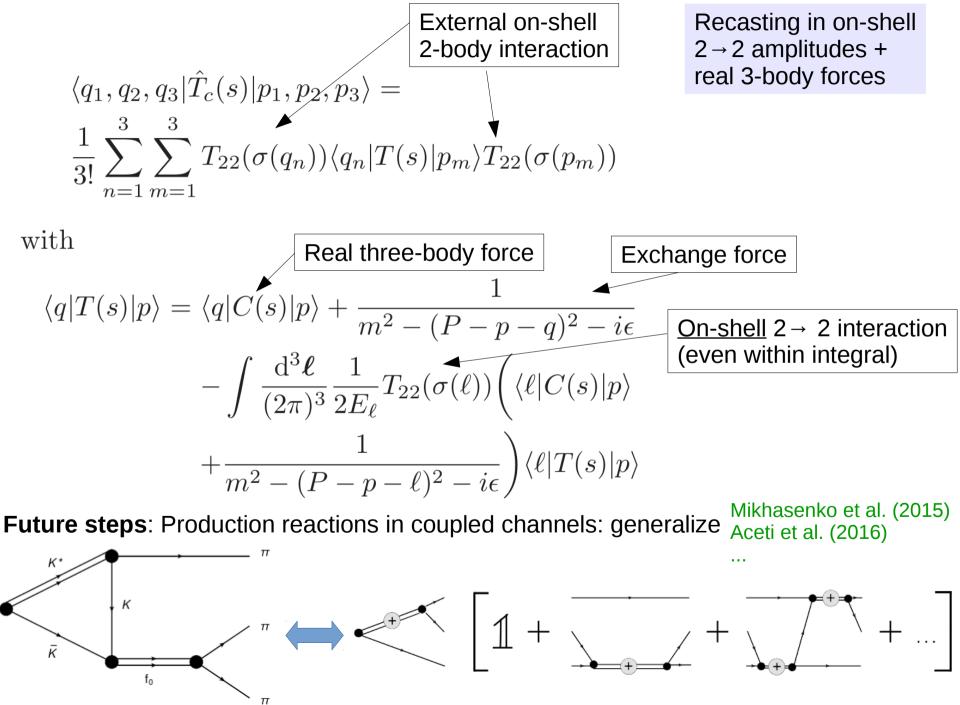


The Power of Unitarity



The Power of Unitarity

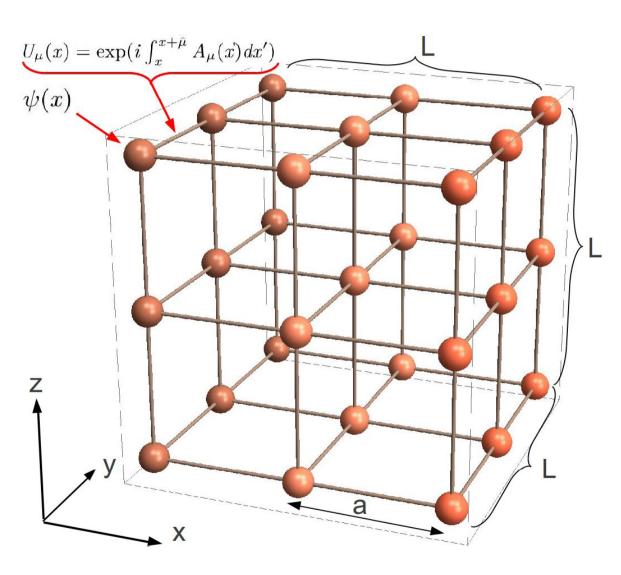




Two-body scattering on lattice

Input for 3-body

The cubic lattice



- Side length L, periodic boundary conditions $\Psi(\vec{x}) \stackrel{!}{=} \Psi(\vec{x} + \hat{\mathbf{e}}_i L)$ \rightarrow finite volume effects \rightarrow Infinite volume $L \rightarrow \infty$ extrapolation
- Lattice spacing a

 → finite size effects
 Modern lattice calculations:
 a ≃ 0.07 fm → p ~ 2.8 GeV
 → (much) larger than typical hadronic scales;

not considered here.

 Unphysically large quark/hadron masses
 → (chiral) extrapolation required.

Two body scattering

In the infinite volume

• Unitarity of the scattering matrix S: $SS^{\dagger} = 1$ $[S = 1 - i \frac{p}{4\pi E} T].$

• \rightarrow Generic (Lippman-Schwinger) equation for unitarizing the *T*-matrix:

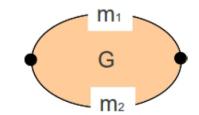
$$T = V + V G T \qquad \text{Im } G = -\sigma$$

V: (Pseudo)potential, σ : phase space.

• *G*: Green's function:

$$G = \int \frac{d^{3}\vec{q}}{(2\pi)^{3}} \frac{f(|\vec{q}|)}{E^{2} - (\omega_{1} + \omega_{2})^{2} + i\epsilon},$$

$$\omega_{1,2}^{2} = m_{1,2}^{2} + \vec{q}^{2}$$



Discretization

G, Õ

1

Discretized momenta in the finite volume with periodic boundary conditions

$$\Psi(\vec{x}) \stackrel{!}{=} \Psi(\vec{x} + \hat{\mathbf{e}}_i L) = \exp\left(i L q_i\right) \Psi(\vec{x}) \implies q_i = \frac{2\pi}{L} n_i, \quad n_i \in \mathbb{Z}, \quad i = 1, 2, 3$$

 $+ \omega_2$

Finite \rightarrow infinite volume: the Lüscher equation

Warning: rather crude re-derivation

• Measured eigenvalues of the Hamiltonian (tower of *lattice levels* E(L)) \rightarrow Poles of scattering equation \tilde{T} in the finite volume \rightarrow determines V:

$$\tilde{T} = (1 - V\tilde{G})^{-1}V \rightarrow V^{-1} - \tilde{G} \stackrel{!}{=} 0 \rightarrow V^{-1} = \tilde{G}$$

• The interaction V determines the T-matrix in the infinite volume limit:

$$T = \left(V^{-1} - G\right)^{-1} = \left(\tilde{G} - G\right)^{-1}$$

• Re-derivation of Lüscher's equation (T determines the phase shift δ):

$$p \cot \delta(p) = -8\pi\sqrt{s} \left(\tilde{G}(E) - \operatorname{Re} G(E) \right)$$

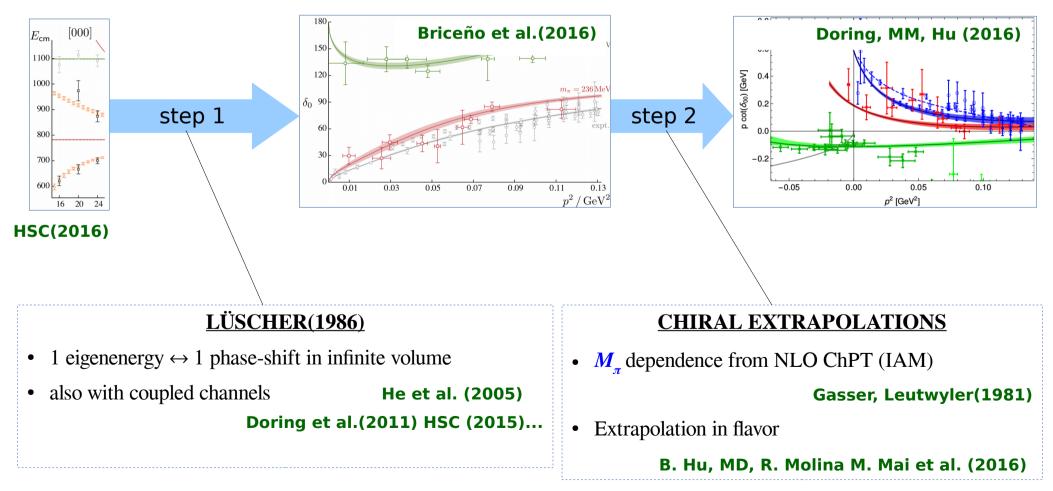
- V and dependence on renormalization have disappeared (!)
- p: c.m. momentum
- E: scattering energy
- $\tilde{G} \operatorname{Re}G$: known kinematical function ($\simeq Z_{00}$ up to exponentially suppressed contributions)
- One phase at one energy.

From two to three particles in finite volume

Finite-volume & chiral extrapolations

QCD calculations in finite volume

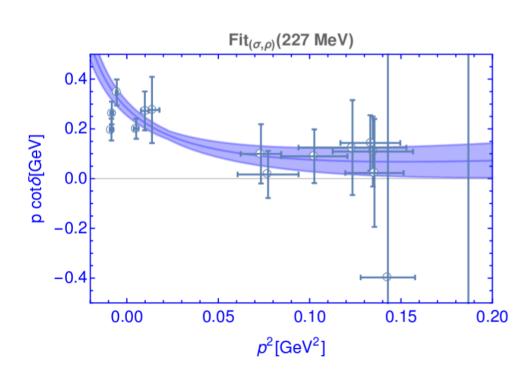
- unphysical pion mass
- (periodic) boundary conditions
 - \rightarrow <u>discrete momenta</u> & <u>discrete spectrum</u>
- Recipe for $2 \rightarrow 2$ scattering (e.g. $I=J=0 \pi \pi$ scattering)

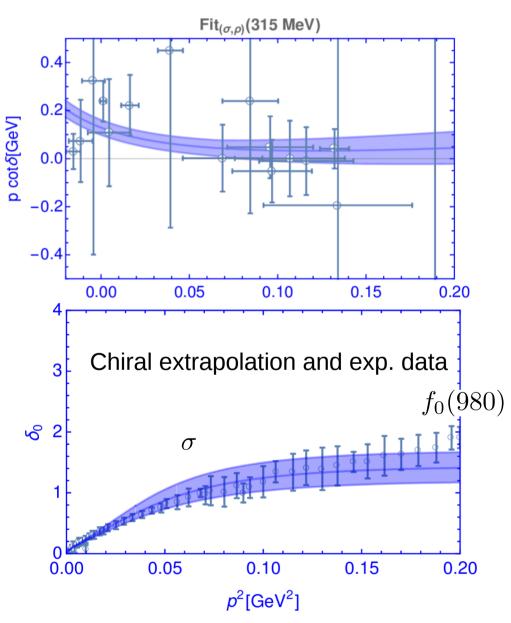


New: GWU lattice group calculates isoscalar

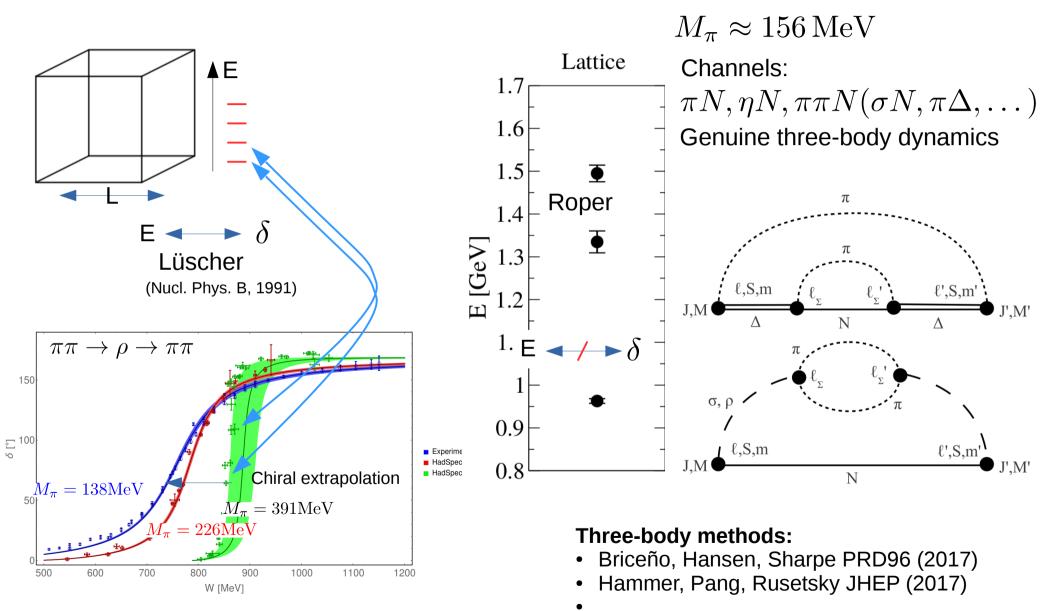
[Guo, Alexandru, Molina, M.D., M. Mai, preliminary]

- nHYP-smeared clover fermions with mass-degenerate quark flavors (N_f = 2)
- M_{π} =227 MeV and 315 MeV
- 3 elongated boxes
- Large variational basis including several meson-meson operators
- Moving frames
- Unitarized Chiral Perturbation Theory fits for chiral extrapolation





• Roper on lattice from BGR group [Lang et al., Phys.Rev. D95 (2017), 014510]



Data: HadronSpectrum (Dudek, PRD 2013,Briceño PRL 2016); Analysis: M.D., B. Hu, M. Mai, arXiv 1610.10070 See also: Bolton, Briceno, Wilson, Phys.Lett. B757 (2016) 50

Large # of d.o.f. require efficient parametrizations

Example: The coupled-channel $2 \rightarrow 2$, $2 \rightarrow 3$, $3 \rightarrow 3$ meson-baryon system

	$J^P =$	$\frac{1}{2}$ -	$\frac{1}{2}^{+}$	$\frac{3}{2}^+$	$\frac{3}{2}^{-}$	$\frac{5}{2}^{-}$	$\frac{5}{2}^{+}$	$\frac{7}{2}^{+}$	$\frac{7}{2}^{-}$	$\frac{9}{2}$	$\frac{9}{2}^+$
μ	$J \equiv$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$	$\overline{2}$
1	πN	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
2	$\rho N(S=1/2)$	S_{11}	P_{11}	P ₁₃	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G ₁₉	H_{19}
3	$\rho N(S = 3/2, J - L = 1/2)$	_	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
4	$\rho N(S = 3/2, J - L = 3/2)$	D_{11}	_	F_{13}	S_{13}	G_{15}	P_{15}	H_{17}	D_{17}	I ₁₉	F_{19}
5	ηN	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
6	$\pi \Delta (J - L = 1/2)$	_	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G_{19}	H_{19}
7	$\pi \Delta (J-L = 3/2)$	D_{11}	_	F_{13}	S_{13}	G_{15}	P_{15}	H_{17}	D_{17}	I ₁₉	F_{19}
8	σN	P_{11}	S_{11}	D_{13}	P_{13}	F_{15}	D_{15}	G_{17}	F_{17}	H_{19}	G_{19}
9	$K\Lambda$	S_{11}	P_{11}	P ₁₃	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	G ₁₉	H_{19}
10	$K\Sigma$	S_{11}	P_{11}	P_{13}	D_{13}	D_{15}	F_{15}	F_{17}	G_{17}	<i>G</i> ₁₉	H_{19}

including 3-body dynamics [Julich-Bonn; ANL-Osaka].

GOALS & CHALLENGES

Lüscher-like formalism in $3 \rightarrow 3$ case is under investigation

Polejaeva/Rusetsky (2012) Briceño/Hansen/Sharpe (2016)

Some challenges

- many systems involve (resonant) two-body sub-amplitudes (e.g. $N^*(1440) \rightarrow N\sigma \rightarrow \pi\pi N$)
- multiple sources for singularities
 - \rightarrow only some yield genuine 3-body dynamics
 - \rightarrow cancellation mechanisms have to be visible
- extrapolations between different energies:
 - \rightarrow 3 body scattering amplitude in infinite volume

Non-relativistic approaches based on dimer picture & effective field theory

Kreuzer, Griesshammer(2012) Hammer et al. (2016)

⇒ This work: **Quantization condition from 3-body unitarity**

THREE-BODY AMPLITUDE IN A BOX

M. Mai, MD, EPJA 2017 [arXiv: 1709.08222]

Partial Waves in infinite volume

- separation of angular momentum $\rightarrow Y_{lm}(\theta, \varphi)$
- reduces dimensionality of the problem

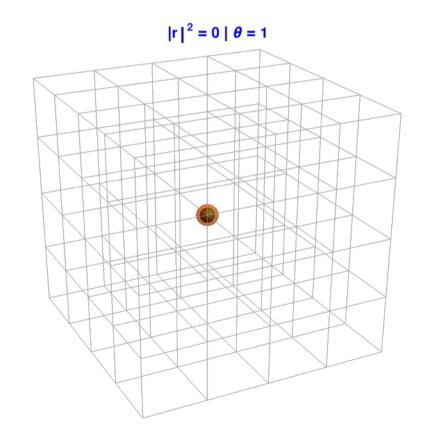
In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
 - \rightarrow irreps of cubic group: A_{l}^{+}, E^{+} , etc..
 - \rightarrow finite number of basis vectors for each irrep
 - \rightarrow mapping to PWA not isomorph

Consider a world <u>with one (s-wave) isobar</u> & project to A_1^+ (basis vector: $Y_{00}(\theta, \varphi)$)

$$\mathbf{q}_{ni} = \frac{2\pi}{L} \mathbf{r}_i$$

for $\{\mathbf{r}_i \in \mathbb{Z}^3 | \mathbf{r}_i^2 = n, i = 1, \dots, \vartheta(n)\}$



Partial Waves in infinite volume

- separation of angular momentum $\rightarrow Y_{lm}(\theta, \varphi)$
- reduces dimensionality of the problem

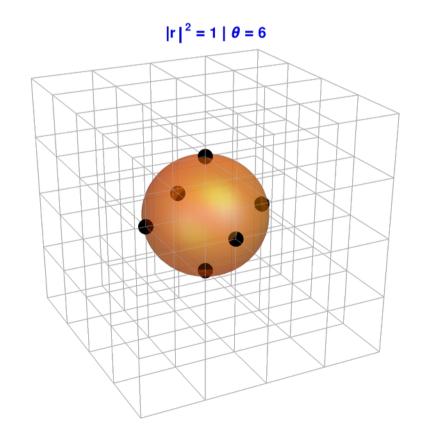
In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
 - \rightarrow irreps of cubic group: A_{l}^{+}, E^{+} , etc..
 - \rightarrow finite number of basis vectors for each irrep
 - \rightarrow mapping to PWA not isomorph

Consider a world <u>with one (s-wave) isobar</u> & project to A_1^+ (basis vector: $Y_{00}(\theta, \varphi)$)

$$\mathbf{q}_{ni} = \frac{2\pi}{L} \mathbf{r}_i$$

for $\{\mathbf{r}_i \in \mathbb{Z}^3 | \mathbf{r}_i^2 = n, i = 1, \dots, \vartheta(n)\}$



Partial Waves in infinite volume

- separation of angular momentum $\rightarrow Y_{lm}(\theta, \varphi)$
- reduces dimensionality of the problem

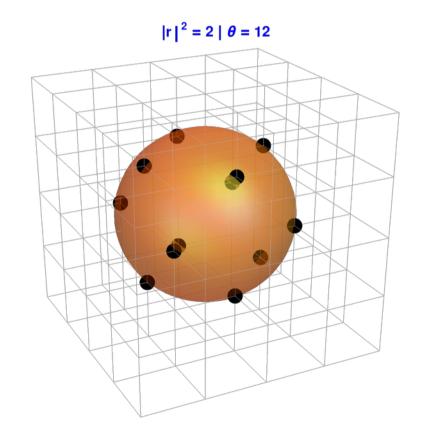
In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
 - \rightarrow irreps of cubic group: A_{l}^{+}, E^{+} , etc..
 - \rightarrow finite number of basis vectors for each irrep
 - \rightarrow mapping to PWA not isomorph

Consider a world <u>with one (s-wave) isobar</u> & project to A_1^+ (basis vector: $Y_{00}(\theta, \varphi)$)

$$\mathbf{q}_{ni} = \frac{2\pi}{L} \mathbf{r}_i$$

for $\{\mathbf{r}_i \in \mathbb{Z}^3 | \mathbf{r}_i^2 = n, i = 1, \dots, \vartheta(n)\}$



Partial Waves in infinite volume

- separation of angular momentum $\rightarrow Y_{lm}(\theta, \varphi)$
- reduces dimensionality of the problem

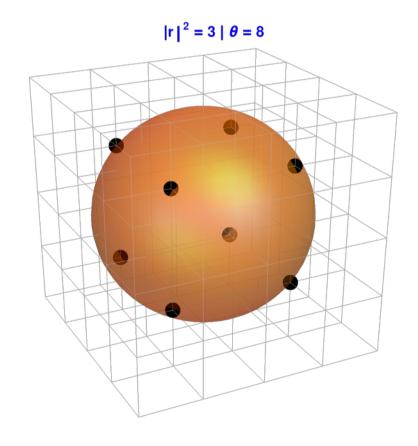
In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
 - \rightarrow irreps of cubic group: A_{l}^{+}, E^{+} , etc..
 - \rightarrow finite number of basis vectors for each irrep
 - \rightarrow mapping to PWA not isomorph

Consider a world <u>with one (s-wave) isobar</u> & project to A_1^+ (basis vector: $Y_{00}(\theta, \varphi)$)

$$\mathbf{q}_{ni} = \frac{2\pi}{L} \mathbf{r}_i$$

for $\{\mathbf{r}_i \in \mathbb{Z}^3 | \mathbf{r}_i^2 = n, i = 1, \dots, \vartheta(n)\}$



Partial Waves in infinite volume

- separation of angular momentum $\rightarrow Y_{lm}(\theta, \varphi)$
- reduces dimensionality of the problem

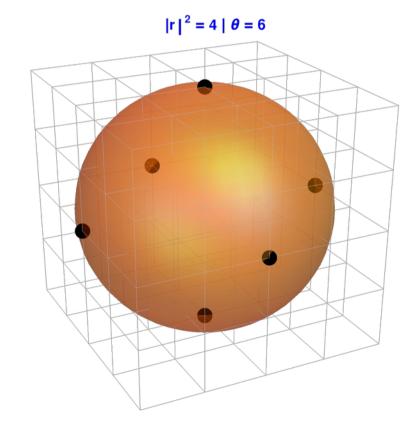
In finite volume this is different

- breakdown of spherical symmetry
- For a given "shell" (radius):
 - \rightarrow irreps of cubic group: A_{l}^{+}, E^{+} , etc..
 - \rightarrow finite number of basis vectors for each irrep
 - \rightarrow mapping to PWA not isomorph

Consider a world <u>with one (s-wave) isobar</u> & project to A_1^+ (basis vector: $Y_{00}(\theta, \varphi)$)

$$\mathbf{q}_{ni} = \frac{2\pi}{L} \mathbf{r}_i$$

for $\{\mathbf{r}_i \in \mathbb{Z}^3 | \mathbf{r}_i^2 = n, i = 1, \dots, \vartheta(n)\}$



Three-body singularities in finite volume

[M.D., H.-W. Hammer, M. Mai, J.-Y. Pang, A. Rusetsky, J. Wu, in preparation]

is singular: a genuine challenge in three-body physics

- Compare to Lüscher: Regular summation theorem for regular $2 \rightarrow 2$ potentials
- Can we still preserve "orthogonality" of partial waves from infinite volume?
- Cubic symmetry instead of rotational symmetry
- Need to project interaction itself to the irreps of octohedral group
 → Talk by A. Rusetsky
- 2 methods available; both equivalent \rightarrow Talk by J. Y. Pang
- Here: Expand a complex function on points of a shell
- Use cubic harmonics because they are orthogonal in the irreps
- Iterative scheme to determine cubic harmonics contributing to every shell
- Construct orthonormal basis functions w.r.t to scalar product

$$\langle f,g\rangle_s = \frac{4\pi}{\vartheta(s)} \sum_{j}^{\vartheta(s)} f(\hat{p}_j)^* g(\hat{p}_j)$$

Orthonormal basis functions provided in supplemental material for easy implementation

$$f^{s}(\hat{p}_{j}) = \sqrt{4\pi} \sum_{\Gamma\alpha} \sum_{a} f_{a}^{\Gamma\alpha s} \chi_{a}^{\Gamma\alpha s}(\hat{p}_{j}) \qquad \qquad f(\mathbf{p}) = \sqrt{4\pi} \sum_{\ell m} Y_{\ell m}(\hat{p}) f_{\ell m}(p)$$
$$\mathsf{VS.} \qquad \qquad \mathsf{VS.} \qquad \qquad f_{\ell m}(p) = \frac{1}{\sqrt{4\pi}} \int d\Omega Y_{\ell m}^{*}(\hat{p}) f(\mathbf{p})$$

DISCRETIZATION

• Consider first 8 shells $\rightarrow \Lambda \sim 1$ GeV for L=3 fm

 \rightarrow no degeneracies like $9 = (\pm 3)^2 + 0^2 = (\pm 1)^2 + (\pm 2)^2 + (\pm 2)^2$

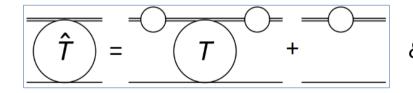
• Replace integrals by sums

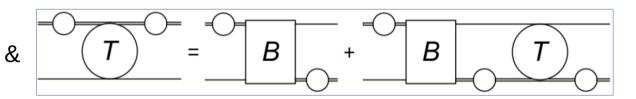
$$\int \frac{d^3 \mathbf{q}}{(2\pi)^3} \to \frac{1}{L^3} \sum_{n \in set_8} \sum_{i=1}^{\vartheta(n)}$$

 \rightarrow integration momenta in the isobar-propagator must be expressed by the

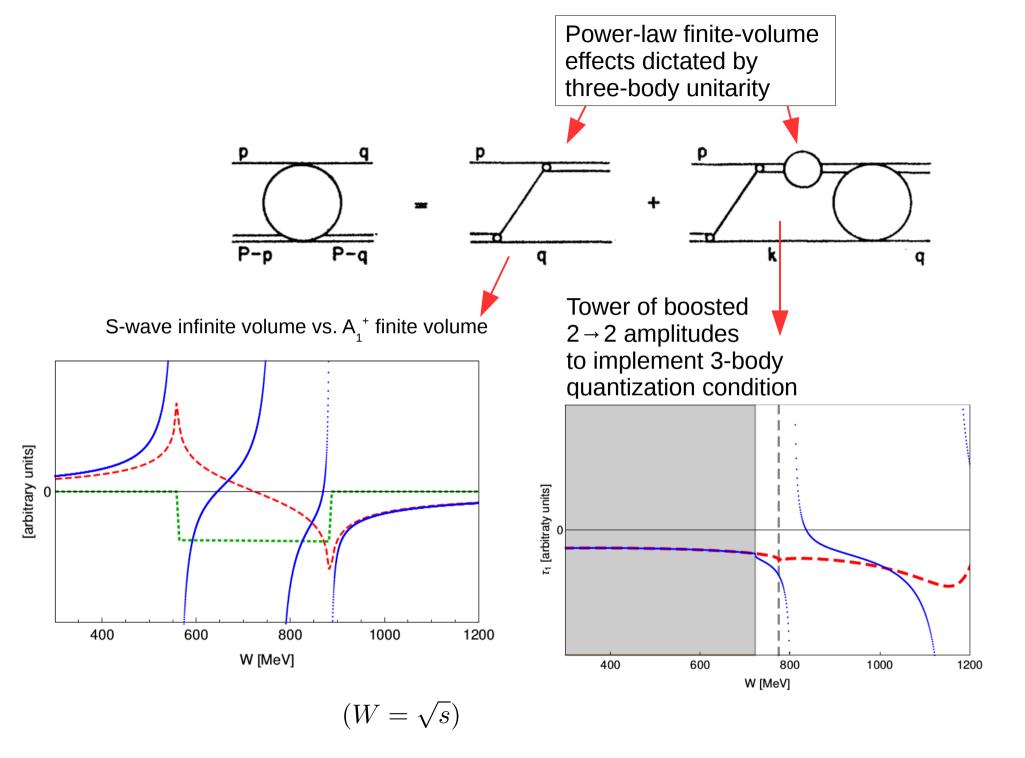
3-body cms momenta

Genuine 3-body eigenlevels = poles of $\check{T}(s)$ (*v* is cut-free)



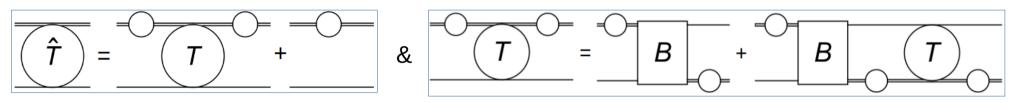


 $\rightarrow \check{T}(s)$ is a matrix in |q|, |p|=0,1,2,3,4,5,6,8



QUANTIZATION CONDITION

• Genuine 3-body eigenlevels = poles of $\check{T}(s)$ (*v* is cut-free)



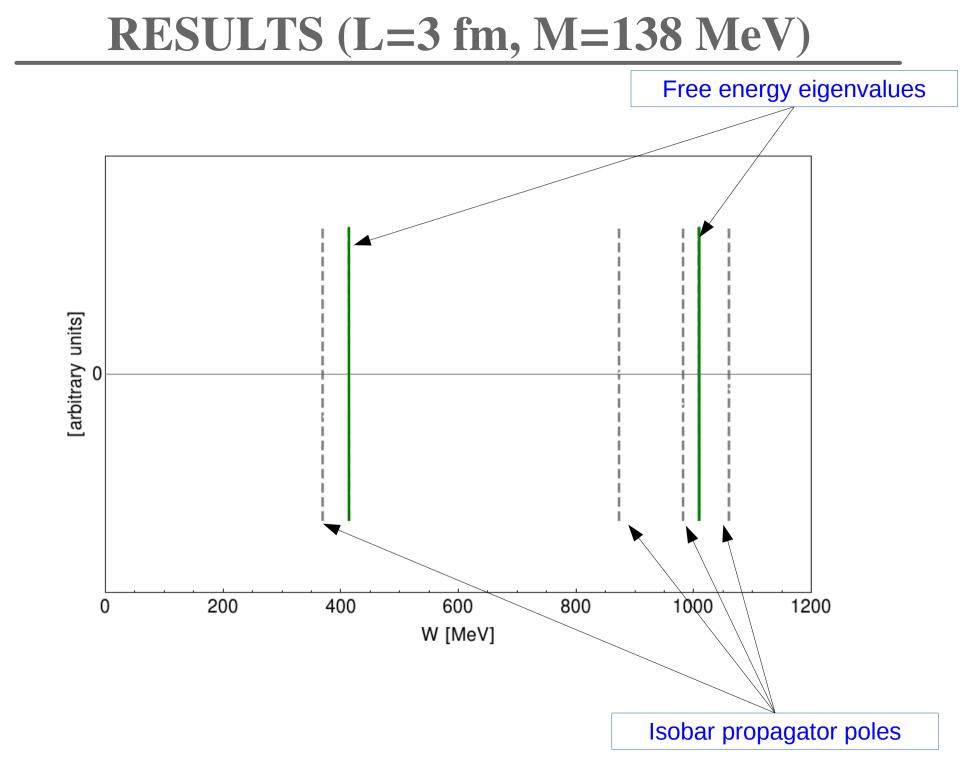
 $\rightarrow \check{T}(s)$ is a matrix in |q|, |p|=0,1,2,3,4,5,6,8

$$\hat{T}^{A_1^+}(s) = \left[X(s)B^{A_1^+}(s)X(s) + X(s)\tau(s)^{-1}\right]^{-1}$$

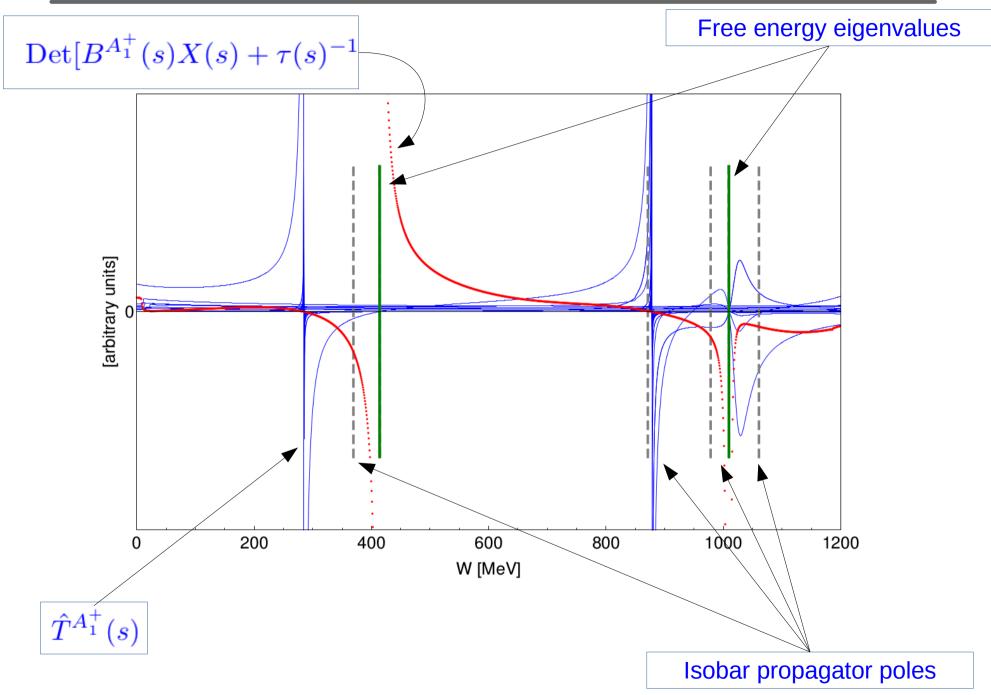
for $X(s) := \operatorname{Diag}_{n \in set_8}\left(\frac{\vartheta(n)}{2E_n(s)L^3}\right)$

 $\rightarrow \check{T}(W) = \infty iff$

$$Det[B^{A_1^+}(s)X(s) + \tau(s)^{-1}] = 0.$$



RESULTS (L=3 fm, M=138 MeV)



SUMMARY

3-body amplitude in infinite volume

- 3-body Unitarity dictates imaginary parts of the driving term & isobar propagator
- Result: 3-dim. relativistic integral equations

Finite volume investigation:

- Imaginary parts dictate leading finite-volume effects
- Discretization techniques
- Quantization condition

OUTLOOK

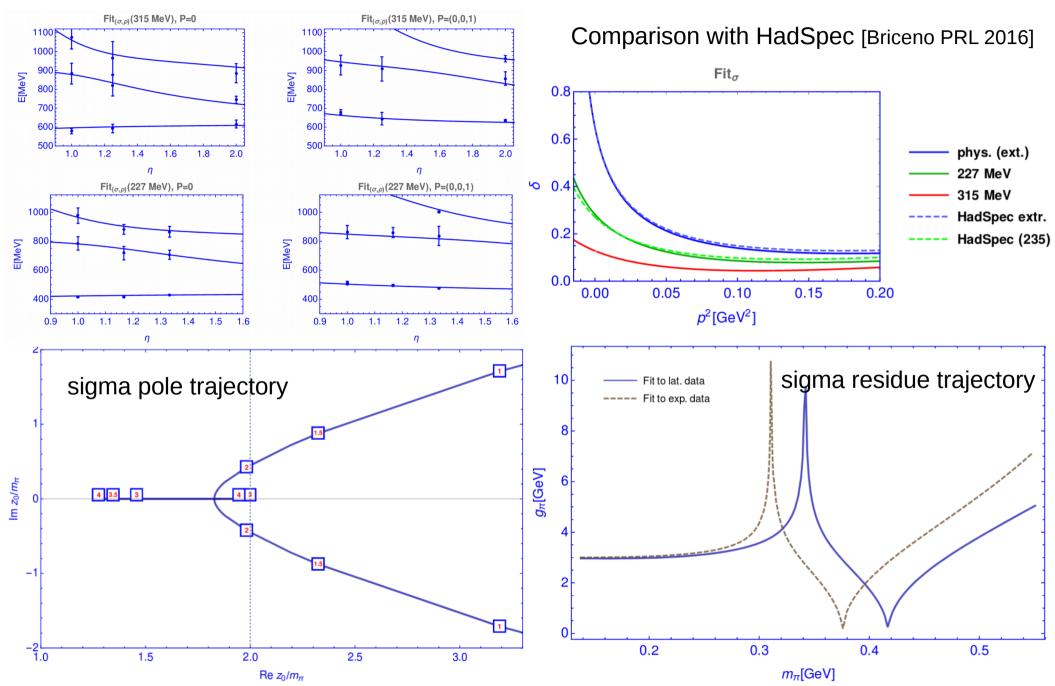
 \rightarrow include angular momentum / isospin / multiple isobars

 \rightarrow practical studies: a₁(1260), Roper...

SPARES

GWU lattice results: Chiral trajectory

[Guo, Alexandru, Molina, M.D., Mai, preliminary]

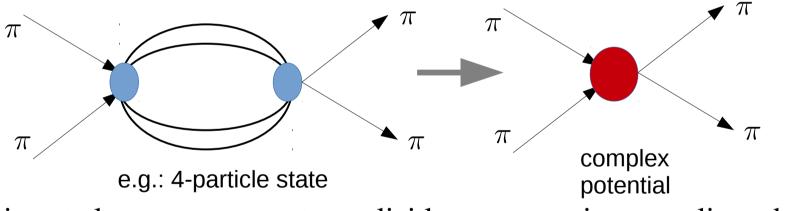


Effective method for multi-particle states

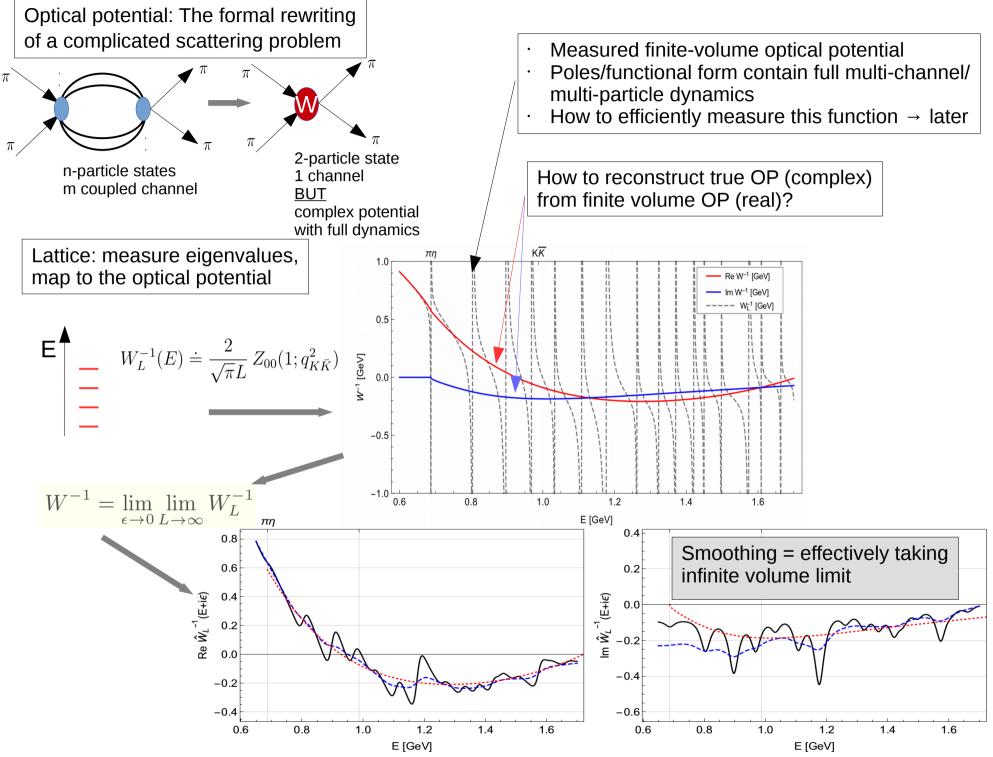
The Optical potential [D. Agadjanov, M.D., M. Mai, U.-G. Meißner, A. Rusetsky, JHEP (2016)]

Optical potential in finite volume

- Finite-volume corrections for complex hadronic systems.
- Example: The optical potential on the lattice



 It is not always necessary to explicitly parameterize complicated intermediate states → Absorb all "uninteresting" dynamics in a complexvalued optical potential

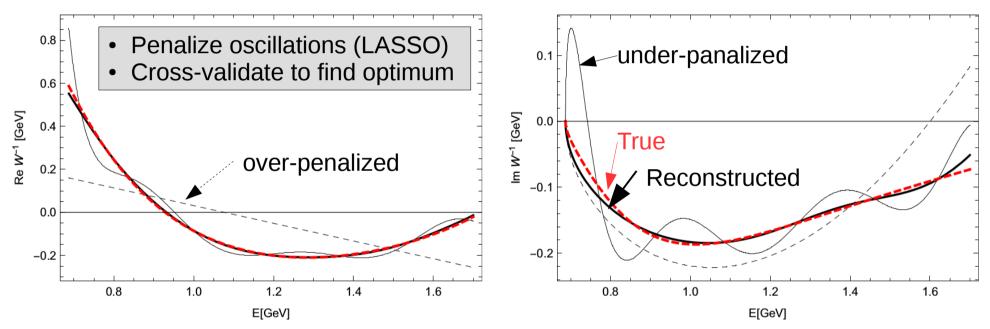


_7

Minimize:
$$\chi^2 = \sum_{k=1}^{m} \frac{\left|\hat{W}^{-1}(E_k) - \hat{W}_L^{-1}(E_k)\right|^2}{\sigma_k^2} + P_i(a_j, b_j)$$

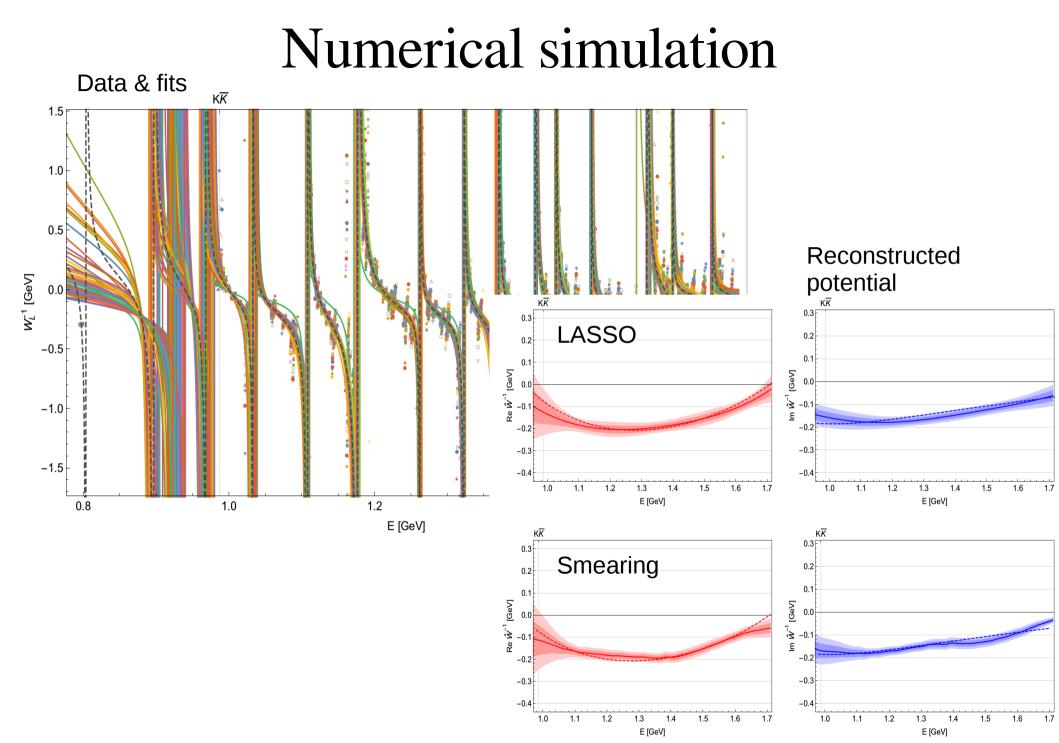
 $P_1(a_j, b_j) = \lambda^4 \int_{E_{\min} + i\varepsilon}^{E_{\max} + i\varepsilon} dE \left|\frac{\partial^2 \hat{W}^{-1}(E)}{\partial E^2}\right|$

The reconstructed infinite-volume limit [LASSO + Cross Validation]



Correct Choice of penalization parameter λ through cross validation:

Fit at finite ϵ , validate at different ϵ' ($E \rightarrow E + i\epsilon$).



Unitarity & Matching

• 3-body Unitarity (normalization condition ↔ phase space integral)

