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● QCD at low energies → mass generation & confinement 

● Non-perturbative dynamics → rich spectrum of excited states

Q1: how many are there? (missing resonance problem)

Q2: what are they? (2-quark/3-quark, hadron molecules, …)

[slide: ANL/Osaka Kamano@N*2017]
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Edwards et al. (2011)

● QCD at low energies → mass generation & confinement 

● Non-perturbative dynamics → rich spectrum of excited states

Q1: how many are there? (missing resonance problem)
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Lattice QCD
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● QCD at low energies → mass generation & confinement 

● Non-perturbative dynamics → rich spectrum of excited states

Q1: how many are there? (missing resonance problem)

Q2: what are they? (2-quark/3-quark, hadron molecules, 

exotics,...)

DSE (Wilson, Cloet, 
Chang, Roberts)
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● Dynamics is important! Many states have dominant 3-body content

π

π

π

π

ρ

π

π

π

π
σ

a1(1260)
π

π

N

σ

ππ

N

N*(1440)1/2-

- important channel in GlueX @ JLab

- Finite volume spectrum from lattice QCD
 Lang, Leskovec, Mohler, Prelovsek (2014)

• Roper is debated for ~50 years
• first Lattice QCD results:

• Detection on lattice notoriously difficult
• 1st simulation w. meson-baryon operators:
● Finite volume spectrum     Lang et al. (2017)
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● Universal understanding of Lattice QCD or experimental searches (BESIII, COMPASS, GlueX)

→ theory of 3-body scattering problem

● Available tools:
● Faddeev equations (F.E.)               Faddeev(1959)
● F.E. in fixed-center approximation                   Brueckner(1953)

→ usefull for πd, Kd … systems           Baru et al(2011) Mai et al. (2015) 

● F.E. in isobar formulation   Omnes(1964) Aaron(1967)

→ re-parametrization of two-body amplitude       Bedaque(1999)

...
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FADDEEV EQUATIONS 
WITH ISOBARS

M. Mai, Hu, M. D., Pilloni, Szczepaniak

Eur.Phys.J. A53 (2017) 177
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Original study by Amado/Aaron/Young          AAY(1968)
● 3-dimensional integral equation from unitarity constraint & BSE ansatz
● valid below break-up energies (E < 3m) & analyticity constraints unclear

One has to begin with asymptotic states

● v a general function without cuts in the phys. region
● two-body interaction is parametrized by an “isobar”

● S and T are yet unknown functions

FE in isobar parametrization

= has definite QN and correct r.h.-singularities w.r.t invariant mass
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Unitarity & Matching
3-body unitarity (normalization condition ↔ phase space integral)
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3-body Unitarity (normalization condition ↔ phase space integral)

General ansatz for the Isobar-spectator interaction
→ B & τ are unknown!!!

Unitarity & Matching
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3-body Unitarity (normalization condition ↔ phase space integral)

Unitarity & Matching
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SCATTERING AMPLITUDE
3 → 3 scattering amplitude is a 3-dimensional integral equation

– Imaginary parts of B, S are fixed by unitarity/matching   

– For simplicity v=λ   (full relations available)   

 



14  

3 → 3 scattering amplitude is a 3-dimensional integral equation

– Imaginary parts of B, S are fixed by unitarity/matching   

– For simplicity v=λ   (full relations available)   

 

● twice subtracted dispersion relation in invariant mass - σ(k)

● in the rest-frame of isobar (Lorentz invariance!)

SCATTERING AMPLITUDE
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3 → 3 scattering amplitude is a 3-dimensional integral equation

– Imaginary parts of B, S are fixed by unitarity/matching   

– For simplicity v=λ   (full relations available)   

 

● un-subtracted dispersion relation

● one-π exchange in TOPT →  RESULT !

SCATTERING AMPLITUDESCATTERING AMPLITUDE
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The Power of Unitarity

How general is the amplitude? 
Are there other interactions/topologies not contained? 

Let’s try to “disprove” the scheme

Doomed to fail because one
cannot cheat unitarity (?) 

Diagrammatic “riddles”

Completely general 3 → 3
amplitude up to practical
approximations

Finite number of partial waves

Increase # according to availability of data;
natural ordering scheme from centrifugal barrier
and or input from PDG

Energy/momentum dependence from 3-body
interactions unknown → model polynomial dependence

“Blindfolded” PWA through model selection 
techniques          (Landay, M.D. et al., 2017)   

Constraints from known centrifugal barriers (Ceci, M.D., Hanhart et al., 2011)    
and/or low-energy chiral dynamics (e.g., Siemens et al., 2014)
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The Power of Unitarity
    Question: Does provide full imaginary part of all possible 

3→ 3 transitions?

on-shell

?

unitary 
2→2

Riddle 1 Riddle 2 Riddle 3

Riddle 4

Riddle 5
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SCATTERING AMPLITUDE

Real three-body force

External on-shell
2-body interaction

Exchange force

On-shell 2→ 2 interaction
(even within integral)

Recasting in on-shell
2→2 amplitudes +
real 3-body forces 

Future steps: Production reactions in coupled channels: generalize
Mikhasenko et al. (2015)
Aceti et al. (2016)
...
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Two-body scattering on lattice

Input for 3-body
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The cubic lattice
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Two body scattering
In the infinite volume
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Discretization
Discretized momenta in the finite volume with periodic boundary conditions
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Finite → infinite volume: the Lüscher equation
Warning: rather crude re-derivation
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From two to three particles in finite volume
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Finite-volume & chiral extrapolations
QCD calculations in finite volume

● unphysical pion mass
● (periodic) boundary conditions 

→ discrete momenta & discrete spectrum

Recipe for 2 → 2 scattering (e.g. I=J=0 ππ scattering) 

 Briceño et al.(2016) Doring, MM, Hu (2016)

CHIRAL EXTRAPOLATIONS

● Mπ dependence from NLO ChPT (IAM) 

Gasser, Leutwyler(1981)

● Extrapolation in flavor

        B. Hu, MD, R. Molina M. Mai et al. (2016)  

LÜSCHER(1986)
● 1 eigenenergy ↔ 1 phase-shift in infinite volume             
● also with coupled channels                     He et al. (2005) 

Doring et al.(2011) HSC (2015)...

step 1 step 2

HSC(2016)
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New: GWU lattice group calculates isoscalar

● nHYP-smeared clover fermions with 
mass-degenerate quark flavors (N

f
 = 2)

● M
π
=227 MeV and 315 MeV

● 3 elongated boxes
● Large variational basis including

several meson-meson operators
● Moving frames
● Unitarized Chiral Perturbation Theory

fits for chiral extrapolation

[Guo, Alexandru, Molina, M.D., M. Mai, preliminary]

Chiral extrapolation and exp. data
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● Roper on lattice from BGR group [Lang et al., Phys.Rev. D95 (2017), 014510]

L

Data: HadronSpectrum (Dudek, PRD 2013,Briceño PRL 2016); 
Analysis: M.D., B. Hu, M. Mai, arXiv 1610.10070
See also: Bolton, Briceno, Wilson, Phys.Lett. B757 (2016) 50

Chiral extrapolation

E

Lüscher
(Nucl. Phys. B, 1991)

Roper

Channels: 

Genuine three-body dynamics

E

E

Three-body methods:
● Briceño, Hansen, Sharpe PRD96 (2017)
● Hammer, Pang, Rusetsky JHEP (2017)
● ...
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Large # of d.o.f. require efficient parametrizations

including 3-body dynamics [Julich-Bonn; ANL-Osaka]. 

Example: The coupled-channel 2→2, 2→3, 3→3 meson-baryon system 
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Lüscher-like formalism in 3 → 3 case is under investigation
Polejaeva/Rusetsky (2012) Briceño/Hansen/Sharpe (2016)

Some challenges
● many systems involve (resonant) two-body sub-amplitudes (e.g. N*(1440) → Nσ → ππN)
● multiple sources for singularities

→ only some yield genuine 3-body dynamics

→ cancellation mechanisms have to be visible
● extrapolations between different energies:

→ 3 body scattering amplitude in infinite volume

Non-relativistic approaches based on dimer picture & effective field theory
Kreuzer, Griesshammer(2012) Hammer et al. (2016)

 ⟹ This work:      Quantization condition from 3-body unitarity

 

GOALS & CHALLENGES
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THREE-BODY 
AMPLITUDE 
IN A BOX

M. Mai, MD, EPJA 2017 [arXiv: 1709.08222]
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DISCRETIZATION

Partial Waves in infinite volume 

● separation of angular momentum → Ylm(θ,φ)

● reduces dimensionality of the problem

In finite volume this is different
● breakdown of spherical symmetry
● For a given “shell” (radius):

→ irreps of cubic group: A1
+ ,E+, etc..

→ finite number of basis vectors for each irrep

→ mapping to PWA not isomorph

Consider a world with one (s-wave) isobar 

& project to A1
+  (basis vector: Y00(θ,φ))

Order momenta in shells 
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Three-body singularities in finite volume 

is singular: a genuine challenge in three-body physics

● Compare to Lüscher: Regular summation theorem for regular 2→ 2 potentials
● Can we still preserve “orthogonality” of partial waves from infinite volume? 
● Cubic symmetry instead of rotational symmetry
● Need to project interaction itself to the irreps of octohedral group

→ Talk by A. Rusetsky
● 2 methods available; both equivalent → Talk by J. Y. Pang
● Here: Expand a complex function on points of a shell
● Use cubic harmonics because they are orthogonal in the irreps
● Iterative scheme to determine cubic harmonics contributing to every shell
● Construct orthonormal basis functions w.r.t to scalar product

● Orthonormal basis functions provided in supplemental material for easy implementation
 

[M.D., H.-W. Hammer, M. Mai, J.-Y. Pang, A. Rusetsky, J. Wu, in preparation]

vs.
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DISCRETIZATION
● Consider first 8 shells →  Λ~1 GeV for L=3 fm 

→ no degeneracies like 9 = (±3)2 + 02 + 02 = (±1)2 + (±2)2 + (±2)2

● Replace integrals by sums

→ integration momenta in the isobar-propagator must be expressed by the 

3-body cms momenta

Genuine 3-body eigenlevels = poles of Ť(s) (v is cut-free) 

→ Ť(s) is a matrix in |q|, |p|=0,1,2,3,4,5,6,8

&
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Tower of boosted 
2→2 amplitudes
to implement 3-body
quantization condition

S-wave infinite volume vs. A
1

+  finite volume

Power-law finite-volume 
effects dictated by 
three-body unitarity
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QUANTIZATION CONDITION
● Genuine 3-body eigenlevels = poles of Ť(s) (v is cut-free) 

→ Ť(s) is a matrix in |q|, |p|=0,1,2,3,4,5,6,8

→ Ť(W) = ∞ if

&
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RESULTS (L=3 fm, M=138 MeV)
Free energy eigenvalues

Isobar propagator poles
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RESULTS (L=3 fm, M=138 MeV)
Free energy eigenvalues

Isobar propagator poles
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3-body amplitude in infinite volume

● 3-body Unitarity dictates imaginary parts of 

the driving term & isobar propagator
● Result: 3-dim. relativistic integral equations

Finite volume investigation:

● Imaginary parts dictate leading

finite-volume effects
● Discretization techniques
● Quantization condition

SUMMARY

OUTLOOK 

→ include angular momentum / isospin / multiple isobars

→ practical studies: a1(1260), Roper... 
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SPARES
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GWU lattice results: Chiral trajectory
[Guo, Alexandru, Molina, M.D., Mai, preliminary]

Comparison with HadSpec [Briceno PRL 2016]

sigma pole trajectory sigma residue trajectory
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Effective method for multi-particle states

The Optical potential        [D. Agadjanov, M.D., M. Mai, U.-G. Meißner, A. Rusetsky, JHEP (2016)]
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Optical potential in finite volume
● Finite-volume corrections for complex hadronic systems.
● Example: The optical potential on the lattice                                              

     

● It is not always necessary to explicitly parameterize complicated 
intermediate states → Absorb all “uninteresting” dynamics in a complex-
valued optical potential 

e.g.: 4-particle state
complex
potential
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n-particle states
m coupled channel

2-particle state
1 channel
BUT
complex potential
with full dynamics 

W

Optical potential: The formal rewriting
of a complicated scattering problem 

Lattice: measure eigenvalues,
map to the optical potential

E

• Measured finite-volume optical potential
• Poles/functional form contain full multi-channel/

multi-particle dynamics
• How to efficiently measure this function → later

How to reconstruct true OP (complex)
from finite volume OP (real)?

Smoothing = effectively taking
infinite volume limit
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The reconstructed infinite-volume limit [LASSO + Cross Validation]

True

Reconstructed

● Penalize oscillations (LASSO)
● Cross-validate to find optimum 

over-penalized

under-panalized

Minimize:

Correct Choice of penalization parameter     through cross validation:

Fit at finite    , validate at different      (                     ).
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Numerical simulation
Data & fits

Reconstructed
potential

LASSO

Smearing
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Unitarity & Matching
● 3-body Unitarity (normalization condition ↔ phase space integral)

Originally considered by 
AAY
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