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Quantization Condition

Particle-dimer formalism
(H.-W. Hammer, J.-Y. Pang and A. Rusetsky, arXiv: 1706.07700, arXiv: 1707.02176)

@ A dimer:

4n 1
L a2 +ql-mE
@ Particle-dimer scattering:

M1 (p.k; E) = Z(p,k; E)+ 3% ¥ Z(p.q; E)1.(q; E).#1(a,k; E)

Ho (A
Z(p,a4;E) = m-‘r (/J\(z)

@ See more in Akaki Rusetsky's and Michael Déring's talk



Quantization Condition

Quantization Condition

Poles in the 3-particle amplitude — energy spectrum
det (‘c[l(q; E)Spq— 2 Z(p,a: E)) —0

Assumptions:

@ Kinematics
3 identical scalar particles & Non-relativistic kinematics.

Non-identical particles, relativistic kinematics will be included later.

@ Dynamics

S-wave 2-body interaction & Non-derivative 3-body interaction.
Higher partial waves, derivative couplings will be included later.



Projection onto Irreps of the Octahedral Group

Breakdown of the Partial Wave Expansion (PWE)

@ Breakdown of PWE in a finite volume
Rotational symmetry broken.

Expansion in the Legendre polynomials does not converge for singular potentials, e.g.,
E) — 1 Ho(A) o o
Z(p,q;E) = PR + —}z~ is singular above the break-up threshold.

(M. Déring and M. Mai, arXiv:1709.08222)

@ Octahedral group Oy, on the lattice
24 rotations R,, (a=1,---,24).
Inversion of all 3 axis, /.

48 elements, R,, R,/ in the group O.



“Discrete” Partial Wave Expansion

Discrete Momenta

@ Discrete momenta p=2zn/L, (ncZ3).
Further, we measure momenta in unit ZT”

@ Integral over continuous momenta vs. Sum over discrete momenta

Infinite volume, [ d3pf(p) = /.pzdp /dQP f(p,2p).
SN—— S~——

different surfaces  solid angle inside the surface

Finite volume: Y, f(p) = Z Z f(s,p).
— ¢

different shells  ,rjentations inside shell s



“Discrete” Partial Wave Expansion

Shells

Shell is a set of momenta with the same |p|, which can be obtained from
reference momentum pg, p =gpo, & € Oh.

@ Shell 0 (0,0,0)
1 orientation. po(0) = (0,0,0). 48 Symmetry trans. on po: gpo = Ppo -

@ Shell 1
(17070)7(07170)7(07071)7(_17070)7'"
6 orientations.

Reference momentum po(1) = (1,0,0).

gpo(1) generates shell 1.
Each momentum produced 48/6 = 8 times.



“Discrete” Partial Wave Expansion

@ Shell 2
(1,1,0),(1,0,1),(0,1,1),(1,~1,0), -
12 orientations.

Reference momentum po(2) = (1,1,0).

gpo(2) generates shell 2.
Each momentum produced 48/12 = 4 times.

@ Shell s
Continue increasing the length of momentum.

s orientations, gpo(s) generates shell s. Each momentum produced G/¥; times.

Reference momentum pq(s) is chosen arbitrarily. Nothing depends on this choice.




“Discrete” Partial Wave Expansion

@ Degenerate shells, e.g., shell 8 and 9
(3,0,0),(0,3,0),(0,0,3),--- .
Reference momentum po(8) = (3,0,0).
(2,2,1),(2,1,2),(1,2,2),---.
Reference momentum po(9) = (2,2,1).
Radius of the shells 8 and 9 are both 3.

They are different shells.
gPo(8) and gpo(9) generate shells 8 and 9 separately.

@ Sum over shells All momenta in a given shell are produced from reference momentum.

Lfe)= ¥ %Y flemols))
~ -

different shells orientations inside shell s



“Discrete” Partial Wave Expansion

Expansion by Matrices of Irreps.

@ Analogous to PWE
£(p) = (P, Q) = VAT Y m frm(p) Yem(Qp). Spherical harmonics.
F(p) = f(gpo(s)) = Lr; £\ () TS (g). Matrices of irreps

@ Matrices of irreps (v. Bermard,et.al, arXiv:0806.4495)
48 group elements, g represented in 10 irreps. I = AT, AT, E*, T;, TS, TO(g).
1. 1 dimensional Ay, A; : T(A1i>A2i)(g) =41;
2. 2 dimensional E: T(E¥)(g) are 2x 2;
3. 3 dimensional Ty, T5: T(Tli‘T2i)(g) are 3 x 3.

° Orthogonality and closure relation Expansion is complete.
* M= ’
e Ti (g)r,,( )=68,6,C and Y ET@)T(6) =6,

i Jj st




“Discrete” Partial Wave Expansion

Reduction of the Quantization Condition

Homogeneous STM equation in a finite volume, .7 (p) = %73’ Za\ Z(p,q; E)t(q; E).Z (q).
@ Expansion of .7 (p)

FP)=F(gpo() =Lr; 7L ()T e) &  F(s)=Lx, T\ () F (gpo(s))-

@ Propagator 7, 1, (q;E) = t(gq; E).
t.(q; E) = t(gao(r); E) = 7.(r; E).

@ Expansion of Z Z(p,q; E) = Z(gp,gq; E).
Z(p.q;E) = Z(gpo(s).& ao(r); E) = ZrunsrT (e)z ) Dis.rE)T (&),

Z0(s,riE) = X4 Z(po(s),gq0(r);: E) T (g)-

FiNs) =8y, %y, Z0 (s, r E)u(rE) TN (r) —

det <T’1(r; E)I%SS,SJ-,, - E2—73”2‘,.(:)(5.1; E)) =0




Solution of the Quantization Condition

Solution in the Infinite Volume

@ Fragmentation threshold
Particle-dimer threshold mEg,; = —1 MeV?2.

Ground state of a particle and a dimer.

@ Break-up threshold
3-body threshold mEgeak =0 MeV?2.

Ground state of 3 particles.

@ Bound States

mE; = —10 MeV2.
mEy = —1.016 MeV?2.

energy

-1

3-body states

Bound states

Break-up

Fragmentation




Solution of the Quantization Condition

Solution of the Quantization Condition in Af -Irrep

20

-20

1. Projection

2. Determinant and zero points

@ Determinant in A/ -Irrep
det (T(r)_lz%&, — E;_—Q‘Z(Af’)(s7 r)> =0

determinant
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@ Spectra in a box

5 energy levels near th. in a box.

2 bound states and 3 scattering states.



Spectrum in a Finite Volume

Bound States in a Box

energy

energy

mE;

-4 mE; in box

Infinite volume limit mE; (L) — —10 & mEy(L) — —1.016.

Exponentially suppressed correction.
3-body bound state a— e , AEj o< L exp (f%u).
(U. MeiBner, G. Rios and A. Rusetsky, PRL 114(9) (2015), 091602)

Particle-dimer bound state k2 — a2 < k2, AEy o< %exp (7% K2 —a2 L) .
(M. Liischer, NPB 354 (1991) 531)




Spectrum in a Finite Volume

@ Theoretical Calculation

M (p.k; E) = 4 (p,k; E) N L9t (p.ai E)S7(a E). i (a ki E),

where 87, = Yz0 €™ 1(q; E) + O(}).

AE=8n[ 2,,3¢ "(a) Znzo €™t z(a)g(a) + -

Contour integral on the complex plane. lo
1. Regular w.f. ¢(q) ~ const. out
2i
2. Cut and pole of 7(q;E) = —— L poleat - oot
P (a: E) —a14y/3q2-mE—ie s .

AE:’:[( i Cop (—FwL) + \/;(KL)cexp( 23\/@%




Spectrum in a finite volume

2

Sl 2 11/ 2. /K22
AE‘m[(xmﬂcexP( ﬁKL>+\/m(KL)CeXP( sV —a L)}

@ 2 types of contributions
3-body contribution: W exp (7%1&)
Particle-dimer contribution: \/ﬁ (TIL) exp <—% VK2 — a*2L)
1. Suppressed as k2> a2

2. Dominating as k%2 —a 2 < K2

/!
@ Cand C The two coefficients are related to infinite volume wave function ¢(q).



Spectrum in a finite volume

@ lIdentification

Energy shift of bound state mEy = —1.016 is dominated by particle-dimer contribution.
In case of mE; = —10, both contributions are comparable in magnitude.
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Spectrum in a finite volume

@ lIdentification

1. We identify the state with mEy = —1.016 as predominately particle-dimer state.
2. A state with mE; = —10 is mixture.
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Spectrum in a finite volume

Scattering States above threshold
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@ Free 3-body state & Free particle dimer state
Free 3-body state: mE = p +% 2 Cpa) - a)’
Grd. st. p=q= 241(070,0) —~mE=0

2

)

Free particle-dimer state: mE = ("T - a%) + (75)
Grd. st. p= 2%(0,0,0) - mE= -1
1st excited st. p= 2T”(O,OA,I) or (0,1,0)--- - mE = L—Q -




Spectrum in a finite volume

@ Identify particle-dimer
ground state
The lowest-lying energy level
above threshold tends to
particle-dimer threshold

individually.

@ Avoided
The second and third energy
levels exhibit avoided level

crossing.

How to identify them?
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Spectrum in a finite volume

@ Shift of 3-body ground state 3

Theoretical calculations: of

(L) 1273!:37123 7+ 12a3 (]2+f)+O(L%).

nls

(S. Beane et.al., arXiv:0707.1670, S. Sharpe, arXiv:1707.04279) 1

@ Identification of 3-body Ground State and Particle-dimer 1st Excited State
Before avoided level crossing, the 2nd level is a 3-body state and the 3rd level is a

particle-dimer state

After avoided level crossing, they exchange their roles.

Finally, the 3-body state tends to the 3-body threshold mE =0 and particle-dimer state to
the particle-dimer threshold mE = —1.



Conclusions

@ In a finite volume, the quantization condition is projected onto the
different irreps of the octahedral group.

@ The spectra of Af-irrep are calculated. The individual energy levels
are identified in terms of bound states, as well as particle-dimer and
3-particle scattering states.

@ Outlook

» Derive the perturbative shift for the particle-dimer states. Use this
result for the identification of the corresponding energy levels.

» Use the method to predict the outcome of lattice simulation in the
realistic systems.



Thank you for your attention!
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